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w 1.2 Introduction: Main objective and idea

VSS Summer
Course-2019

Liu Hsu

m Main Objective:
m Propose an SMC scheme in order to guarantee global
stability and asymptotic exact tracking
m Output feedback is considered
m Uncertain linear systems are considered

m Main ldea:

m Implement a VS-MRAC with a combination of an standard
lead filter and the RED.
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w 1.2.1 Problem statement

VSS Summer

Course-2019 m Uncertain SISO LTI systems;
Liu Hsu m Arbitrary relative degree;
m Plant: N,(s)
s
t) = K,—=2 t
}’p( ) pr(s) u(t)
m Reference Model:

ol) = s ()

Objective: design u(t) such that
€& =Yp—Ym—0

m Standard MRAC assumptions are considered
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VS-MRAC
(n™ > 1)

1.2.2 Ideal VS-MRAC (n* > 1)

m Main idea: consider operator L(s) which reduce to n* = 1.

& = L(s)ey — & = k*ML(s)[u + U]

, Model
N V' m
4, i Vf
’LL+ Gp Yo €0 I €p j
Plant

Relay

4]

m However, the noncausal operator L(s) cannot be
implemented
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1.3 LF/VS-MRAC (n* > 1)

VSS Summer

Couree-20i m Use a lead filter to obtain a causal realization of L(s)

Liu Hsu

& = Li(s)ep = [ L(s) ] €o; F(rs) = (rs + 1)

LF/VS-MRAC

n* >

m If [Ba(t)] < 7Kg then [e(t)] < Ke** [e(0)] + O(r)
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1.3.1 Robust Exact Differentiator (RED)

&

VSS Summer
Course-2019

Liu Heu m Based on second order sliding modes

m The scheme is given by:

zi = v,

vi = —M\ilzi— Vi—1|(n_')/(n_'+1) sgn(zj — vi—1) + zit1,
i = 0,....n—1

zn = —Xpsgn(zp — vp—1)

m Input: v_; = ey(t) Outputs:

ziand vj_1 — eéi)(t), i=0,...,n

m Differentiator Parameters: A;, i =0,...,n
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1.3.1 Robust Exact Differentiator (RED)

W

VSS Summer
Course-2019

Liu Hsu m Convergence in finite time

m Necessary Condition: eé")(t) > Lipschitz constant C,1

m If \; are properly chosen, then:
7o = ey(t), zi=vi_1 = e(()')(t), i=1,...,n

m RED realization of L(s):

m L(s) =705 Y + 150" D o ey + (e
m & =L(s)e =
voes” Vel T 4 e 2o + o160
B & =0Zp -1+ V1Z(n—2) + Y —221 + Ve —120
m Exact realization after a finite time (&, = &)
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Global OF exact
tracking

1.4 Global output feedback exact tracking

m VS-MRAC with lead filter compensation:

m Approximated estimate of & (estimation error of order 7)

m Global stability

m Residual tracking error

m RED compensation
m Exact estimate of &

m Local stability

m Asymptotic convergence of the tracking error
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GRED/VS-MRAC
Control Scheme

1.4.1 GRED/VS-MRAC Control Scheme

m The idea is to combine both compensators

Model

m Convex combination

& = a(éy)é(t) + [1 — a(&y)] &(t)
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1.4.2 Switching Function I

VSS Summer
Course-2019

Liu e m Objective:

m Preserve global stability property
m Ensure the full error converges to zero

m what is proposed:
m Select the compensator using the difference between their
estimations

m Make the control structure similar to the LF/VS-MRAC
structure

m Ensure that after a transient process only the RED will
remain active

The switching function is defined as a boundary layer based on
é’rl
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w 1.4.2 Switching Function [l

VSS Summer
Course-2019 a(érl)
Liu Hsu
1
LF
RED
0 €M —¢C €M |&x

m where:
mé =& —&=¢—¢
m & is the estimation of & given by the RED
m & is the estimation of & given by the lead filter
m ey = ’/"KR
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1.4.3 GRED/VS-MRAC analysis representation

V55 Summer m Equivalent Representation

Liu Hsu

Control Signal: v )sgn(& + €)

Error Equation: & = k*M(s)L(s)[u+ U]
—f(t
&r)er + [1 — a(én)] e

Output Estimation Error: ¢ = of

16 / 164



w 1.5 Convergence of the GRED/VS-MRAC |

VSS Summer
Course-2019

Liu Hsu

m After a finite time &,(t) = &(t)

m Kg is chosen such that epy > ¢/(t) +¢, Vt> T
0, for |ér/’ <E€Ey—C

m Since o(&,) = ¢ LEl=owte - for e —c <&y <em
1, for |, > em

m Hence a(é)) =0,Vt > T,

Therefore € = 0 and the error state converges to zero.
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Convergence of the
GRED//VS-MRAC

1.5 Convergence of the GRED/VS-MRAC I

The ISpS property

m The key property to demonstrate formally the stability and
convergence of the hybrid scheme is as follows

m The system with the causal lead compensator L,(s) is
Input to State practical Stability (ISpS) w.r.t. the a small
bounded disturbance 3, = O(7) at the output of the
compensator (see Sec. 1.4)

m Then, with L,(s) alone, the system state ultimately tends
to a small compact set of order O(7).
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w 1.6 Simulation Results

VSS Summer
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m Plant: Gp(s) = with o = 0.125

1 1 }
(us+1) [ (s+2)(s+1)(s—-1) |"

m Model: M(s) = ﬁ

Input Signal: r(t) = sin(0.5t)

Input disturbance: de(t) = sqw(5t)

L(s) Operator: L(s) = (s + 2)?
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1.6 Simulation Results [

VSS Summer
Course-2019

Liu Hsu

m RED: \o =3C3, Ap = 1.5C% Ay = 1.1Gs, G = 250

m Lead Filter: F(7s) = (0.01s + 1)2

m Initial Conditions: y,(0)=0, y,(0)=2, y,(0)=4
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w 1.6.1 Plant n* = 3 4+ unmodeled dynamics

VSS Summer

Course-2019 m Tracking error ey(t)

Liu Hsu
e

% 3 4 5 6 7 3% 3 1o
time

(a) LF/VS-MRAC: (Lead Filter Compensator only)
(b) GRED/VS-MRAC (ey = 4007 e ¢ = 507)
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w 1.6.1 Plant n* = 3 4+ unmodeled dynamics [l

VSS Summer
Course-2019

Liu Hsu m Weighted Switching Function

alén)
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1.7 Experimental Results I

VSS Summer
Course-2019

Liu Hsu

m GRED/VS-MRAC applied to a servomechanism (SRV-02)
of angular positioning built by Quanser Consulting.

m Objective: show that the arm can follow a reference signal
without significant chattering

m Servomechanism Nominal Model:

_0(s) _ _ 80
Gp($) = V(s) = S(Zs11)

m Control Signal:

m Modulation Function: f =5 (Maximum input voltage)
m Boundary Layer (A)
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1.7.1 Experimental Results: Case 1

Objective: illustrate the transient behaviour of the
GRED/VS-MRAC

Reference signal: r(t) = 50sin(5t)

Initial Conditions: y,(0) = 180; y,(0) =0
Model: M(s) = 1%y

L(s) Operator: L(s) = (s + 2)

Lead Filter: F(7s) = (0.04s 4 1)2

RED: G, =20, = 1.5V, M\ = 1.1G
Boundary Layer: A = 20;

weighted switching function: ey = 30, ¢ = 20.
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w 1.7.1 Experimental Results: Case 1

VSS Summer
Course-2019 100

Liu Hsu

8 10 12 14 16 18 20
time

(a) Tracking error ey(t) in degrees
(b) Zoom of epy(t)
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1.7.1 Experimental Results: Case 1 1

VSS Summer

Course-2019 1
Liu Hsu —
w 0.5
0 i _
0 5 10 15 20

time

(a) Time behavior of a(&y)
(b) Control signal u(t)
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1.7.1 Experimental Results: Case 1 IV

VSS Summer
Course-2019

Liu Hsu m Objective: Comparison between the LF/VS-MRAC and
GRED/VS-MRAC

m Methodology:
m Compare both controllers using the same A = 15
(t €[0,10])
m Compare both controllers for the same level of chattering
m the boundary layer of the LF/VS-MRAC is adjusted
m LF/VS-MRAC — A =25 (t € (10,20])
m Design Parameters:
m Reference signal: r(t) = 70sin(8t)
m RED: Ao =5,A; =50
m Other design parameters are as in Case 1

27 / 164



1.7.2 Experimental Results: Case 2

VSS Summer .
Course-2019 u TraCkIng error eO(t)
3

Liu Hsu Cbdbdtiida o A b d b h ot

0 5 10 1;5 20
time
(a) LF/VS-MRAC (t€[0,10] — A = 15,
t€(10,20] - A = 25)
(b) GRED/VS-MRAC (A = 15)
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1.8 Conclusions

VSS S . . . .
e m Theoretical analysis for uncertain plants of arbitrary

Liu Hsu relative degree was developed
[Nunes et al.(2009)Nunes, Hsu, and Lizarralde]

m The full error system is globally exponential stable with
respect to a residual set;

m After a finite time the estimation of compensated output
error & is given exclusively by the RED;

m The full error state converges asymptoticly to zero;
m Simulation and Experimental results validate the analysis

and illustrate the applicability of the hybrid scheme in real
conditions
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The players

FESAL

(Nunes, Lizarralde, Cunha, Oliveira and Jacoud (circa 2010))
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multivariable
systems

2. Global OF tracking for multivariable systems
I

Global OF tracking for multivariable systems
m Introduction
m Uncertain MIMO LTI plants

m UVC with HGO based GRED
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2.1 Introduction |

V55 Summer m This section: motivated by the stronger robustness of
Liu Heu HGOs w.r.t. unmodeled dynamics, as compared to the
ordinary linear lead filters used in a previous work (GRED)
= HGO

m Uncertain MIMO linear systems with non-uniform arbitrary
relative degree

m Combine through a switching law:
m MIMO HGO

B Locally exact nonlinear MIMO differentiator (MIMO RED)

m Main Objectives:
m Exact tracking using only output feedback

m Global stability and convergence properties

m Main idea: Switching Adaptation to select between a
MIMO HGO and the MIMO RED
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w 2.2 Uncertain MIMO LTI plants

VSS Summer
Course-2019

Liu Hsu

m Uncertain MIMO LTI plant with m inputs and m outputs
Xp = Apxp + Bplu + d], Yp = Hpxp

m Assumptions:
m Known non-uniform arbitrary relative degree {p1,...,pm}
m The high frequency gain (HFG) matrix K, is nonsingular
m A matrix S, is known such that —K,,S,, is diagonally stable:
3D > 0 (diagonal) such that D(K,S,)+(K,S,) "D >0
m the uncertain disturbance d(x, t) is assumed bounded by
|d(x,t)| < k«|x| + kg, where ky, kg > 0 are known scalars.
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2.2.1 Reference Model

VSS Summer
Course-2019

Liu Hsu

m Reference Model: yp = Wy (s)r
Wi (s)=diag {(s+71) ", (s+7m) "} L7H(s), 75 >0

m L(s) =diag{Li(s),...,Lm(s)}
- Li(s)zs(ﬂi—l) + //[)i]_25(ﬂi—2) et /{"]5 + /g]
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w Arbitrary Vector Relative Degree

VSS Summer

e R m Systems with non-uniform arbitrary vector relative degree
Liu Hsu

{p17 s 7pm}
m Main Idea: use an operator L(s) to generate an ideal
sliding variable o with uniform vector relative degree one

Iy -y S
eV o M+ e,

o= L)W, (s)Kp[ 0] .
L(s)Wu(s) = diag {(s+ (54 m) 1},’}/j>0.
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w Ideal Lead compensator for UVC

VSS Summer

Course-2019 m Close the control loop with a modulated UVC based on
i (4w the ideal sliding variable o: v = —Q(t)spﬁ'
Model
r
—JWn(s) M o(t)
d _
U Gp(s) oo L(s) T oSy
Plant uvce

-1

m However, o is not directly available to implement u
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w UVC with GRED based on MIMO lead filter

VSS Summer
Course-2019

m Use a MIMO lead filter

&)= La(s)e, Ly(s)=L(s)F (rs), F(rs)=diag{(rsH)"

combined with MIMO RED to obtain an estimate of o
[Nunes et al.(2014)Nunes, Peixoto, Oliveira, and Hsul]

m The error system is globally practically stable and is ISpS
w.r.t a bounded disturbance at the output of the lead filter

m Global exponential stability and finite time convergence of
the sliding vector can be proved.

m Caveat: Unmodeled dynamics of the plant destroy ideal
sliding mode loop: chattering prone
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UVC with HGO
based GRED

2.3 Unit Vector Control with HGO based GRED

m Use MIMO HGO/RED to obtain an estimate of o (Hsu,

Nunes, Oliveira and Peixoto 2015 (RASM))

lg(t)

7,
_o5, Zo
27015,

m An ideal sliding mode loop can be preserved with
unmodeled dynamics — chattering avoidance
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VSS Summer
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Liu Hsu

UVC with HGO
based GRED

UVC using a MIMO HGO: Advantages

Ideal Sliding Loop around the discontinuous function preserved
in spite of unmodelled dynamics. Chattering alleviation is thus
expected.

HGO structure allows a more natural extension to nonlinear
plants (nonlinearities depending on unmeasured states)

The error system is globally practically stable and is ISpS w.r.t a
bounded disturbance in the output &y,

In spite of the high-gain observer, global stability is guaranteed
with a peaking free control signal.
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2.3.1 Switching Law for HGO-GRED-UVC

VSS Summer Very similar to the SISO case. The key property is the HGO

Course-2019

compesator leadinding to ISpS property w.r.t. to HGO output
disturbance. The properties and strategies below ensue.
m Main Idea:

Liu Hsu

m Globally drive the error state into a compact set Dg where
the convergence of the MIMO RED can be guaranteed

m Ensure that ultimately only the MIMO RED is used

m Problem: it is not possible to know when the error state enters
the set Dg (the error state is not available)

m Solution:

m Select the estimator using the difference between their
estimations

m Make the Hybrid Estimator equivalent to the MIMO HGO
plus a bounded disturbance €y
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2.4 Simulation Results |

VSS Summer
Course-2019

Ll m Consider a nonlinear plant with non-uniform relative

degree (p1=2, p2=3) described by
k(s+2) K
G(s)=| (s=I(sT1(s+3) (s+1)(s+2) ] ,

(s—1)(s+1)(s+3)2  (s+1)(s+2)(s+3)

where constant € [4,10] is uncertain and K, = g ﬂ is

the HFG matrix.

m disturbance
d(x)= [0.2 cos(t) sin(x2 x3)|xa| % (e_‘x5||X1] + |x2|)]
[Emelyanov et. al. 1992].

T
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w Plant and Reference Model

VSS Summer
Course-2019

Liu Hsu m The reference signal and model are chosen as
S r=[sin(t) sin(0.5t)] and

Wpn(s) = diag {

1 1
(s+1)*7 (s+1)°(s+2) }

m Relative Degree: p1=2, pp =3

-HFG:K,,:['S ’1’"]

m Model:

e 0
ym = Wi(s)r, Wy(s)= [ (SBI)2 1 ]
ey ey

m Reference Signal r(t) = [sin(t) sin(0.5t)]
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w Tracking Performance and Switching Function

VSS Summer
Course-2019 m Results

Liu Hsu

1

Simulation Results =
=

0.04 T T T T T T T T T
0.021- i

(€)
o
T

-0.02 q

~0.04 i i i i i i i i i
0 2 4 6 8 10 12 14 16 18 20

Time (s)

Fig. 2. (a) Tracking performance: y (—) and ym (- -); (b) Time behavior of switching
function (SF) a(-); (¢) Zoom of tracking errors e(t)
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Unmodeled dynamics and high frequency noise
effects

VSS Summer
Course-2019

Hu sy m Unmodeled dynamics of actuator with transfer matrix
given by
_1 0
Ga(s)=|"g* 1 |, p=01 (1)
pst+l

m Noise: output is corrupted by a high frequency
measurement noise, i.e.,

_ [ »1(t) + 0.01sin(200t)
ooise(t) = Bz(t) +0.01 cos(200¢) }
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w Results with unmodeled dynamics and output noise

VSS Summer
Course-2019

Liu Hsu

Simulation Results

Time (s)

Fig. 3. (a) Tracking with unmodeled dynamics and noise: y (—) and ym (- -); (b) Time
behavior of switching function (SF) a(-); (¢) Zoom of tracking errors e(t)

45 / 164



w 2.5 Conclusions

Y2 G m An output-feedback sliding mode exact tracking controller

based on a hybrid estimator was described for uncertain
MIMO systems with non-uniform arbitrary relative degree

Liu Hsu

m A class of nonlinear state-dependent disturbance was
allowed.

m The MIMO hybrid estimation scheme combines:
m Locally exact differentiator MIMO RED

m MIMO HGO that provides global practical stability
properties

m MIMO GRED based UVC:
m Asymptotic exact tracking is proved

m Robustness to unmodeled dynamics and output noise is
verified.
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(Nunes, Lizarralde, Cunha, Oliveira and Jacoud (circa 2010))
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VSS Summer
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Monitoring
function based
SMC for UCD

3. Monitoring function based adaptive SMC for
ucb I

Monitoring function based SMC for Unknown Control
Direction (UCD)
m Preliminaries
m Relative degree one
m Arbitrary relative degree
m Simulation and experiments
m Multivariable and Nonlinear systems
m Conclusions
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w 3.1 Introduction

VSS Summer
Course-2019

Liu Hsu

m Model Reference Robust Control (MRRC):

m Nonlinear systems / Relative degree one
L. Yan and J. Xu, 2004

m Sliding Mode Control (SMC):

m Uncertain nonlinear systems / state feedback
S. Drakunov, 1993

m First order nonlinear systems
G. Bartolini, A. Ferrara and L. Giacomini 2003

m Uncertain linear systems / relative degree one
L. Yan, L. Hsu, R.R. Costa and F. Lizarralde, 2003
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w Problem Statement |

VSS Summer
Course-2019

Liu Hsu
m Uncertain nonlinear SISO plant:

= Gole)lu+ ey )] = kp P+ el )

m Assumptions on the plant:

(A1) Standard MRAC Assumptions for Gp(s)
(A2) Gp(s) — known relative degree n*
(A3) The sign of k, # 0 (HFG) is unknown
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Problem Statement [

VSS Summer

QMRS  (A4) de: locally Lipschitz (y) & piecewise continuous (t)

Liu Hsu

de(y, t)] < de(y, t) < W(ly|) + kw, Y(y.t),

where W € K, and ky > 0 is a constant

m Finite-time escape is not precluded — t € [0, ty)

m Reference Model (of order n*)

km
Dim(s)

m r(t): piecewise continuous & uniformly bounded

Ym = M(s)r =

r

m Control objective:
m Global or semi-global stability
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w Problem Statement [l

VSS Summer
Course-2019

Liu Hsu

m Asymptotic convergence of output error

eo(t) := y(t) = ym(t)
to zero as t — oo (exact tracking)
m Output error equation: ey = k*M(s)[u — u*]

m k" = ky/km
m ut(t) = 0 Tw(t) — Wy(s) * de(t)
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3.2 Relative degree one

VSS Summer
Course:2019 m Control Scheme (n* = 1)
Liu Hsu
Model
r Ym
J—— M
d, ‘ f
u 1* y e
CHCH J
A P A
Plant Relay
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w 3.2 Relative degree one [l

VSS Summer
Course-2019

Liu Hsu
m Control Law (n* = 1)

ut = —f(t)sgn(eg) , teTT,
u =
um =f(t)sgn(eg) , teT™

f — Modulation function
m 7" and T~ have the form [tx, tys1) U~ U [t), tjt1)

m t, or t; denotes the switching time for u
m For simplicity M(s) = (S_’;'; y (@m, km > 0)
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w 3.2 Relative degree one 1

VSS Summer
Course-2019

Liu Hsu m An upper bound for the output error g
m Comparison Theorem

leo(t)] < €m0 e ()| + coe™**

where ¢, dp > 0 are unknown and ty— initial time

m Monitoring Function (n* = 1)

or(t) = e (=t |eo(t4)| + (k + 1)e  *1

t € [ty, tks1), to:=0, (k=0,1,...)
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3.2 Relative degree one IV

VSS Summer
Course-2019

Liu Heu m The switching time ty for u

min{t > tx : |eo(t)] = @k(t)}, if it exists,
tht1 = -
tv, otherwise
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w 3.2 Relative degree one V

VSS Summer
Course-2019

Liu Hsu

m Stability Results
m Theorem 1 and Corollary 1

The complete error state and the tracking error ey will
converge to zero at least exponentially

The control direction switching stops at a correct sign

[Reverse Dynamics Argument]
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w 3.3 Arbitrary relative degree I

VSS Summer
Course-2019

Liu Hsu m Control Scheme (n* > 1)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Model

Plant
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3.3 Arbitrary relative degree [l

VSS Summer
Course-2019

Liu Hsu

m Control Law (n* > 1)

ut = —f(t)sgn(éo) , teTH,
u =
um =f(t)sgn(é) , teT™

59 / 164



w 3.3 Arbitrary relative degree [

VSS Summer
Course-2019

Liu Hsu

= GRED Eo=(1—a)cp+acq [Convex Combination]

Oz(é)— O, |{::0—60’ <7'kR (RED),
- 1, |§0—Eo| ZTkR (Lead),

where kg > 0 is a design constant
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3.3 Arbitrary relative degree

m Equivalent structure for the nonlinear hybrid filter

Eo=¢c0+Ba

where 5, = Tkg is O(T)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

m In order to simplify the analysis: &g=¢¢ (o = 1)
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w 3.3 Arbitrary relative degree V

VSS Summer
Course-2019

Liu Hsu

m Auxiliary error co=k*ML[u — u*]+ Fy + e

m Difficulties:
Decaying peaking term: |e2| < Bze=2ot
R, depends on IC’s only (7-independent)
m Solutions:
Bu(t)] < Bu(t) = TWs(s) = f(t) = (TWj is a FOAF)
Decaying peaking term: |e2| < R,e™s(t=t(7)
= to(7) is the peak extinction time

Disturbance By := k* ML(s)[1 — F(7s)] F~(7s) * (u — u*)
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w 3.3 Arbitrary relative degree Vi

VSS Summer
Course-2019

Liu Hsu m Lemma I: An upper bound for g (sgn(kp) correct)

leo(t)] < (leo(te)| + | Bu(ti))e2m(t=5)
+(2Rae)e N + 2] (Bu)e |

m Monitoring Function (n* > 1)

pi(t) =(leo(ti)] + |Bu(te)[)e2m=1)
+a(k)e <t + 2| (Bu)el

a(k) > 0 is any unbounded monotonically increasing
sequence
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w 3.3 Arbitrary relative degree Vil

VSS Summer
Course-2019

o m The switching time ty for u

_ min{t >t : [Eo(t)] = @i(t)}, if it exists
tyv, otherwise

)
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w 3.3 Arbitrary relative degree VIII

VSS Summer
Course-2019

Liu Hsu

m Stability Results z7 := [X[, x¢]

m Proposition 2 The comp/ete error system is bounded by
|2(£)| < kzo|2(0)|+ka Z

vVt € [0, ty) where kzo, k are positive constants.
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Liu Hsu

3.3 Arbitrary relative degree

m Theorem 2

The control sign switching stops
Semi-GAS (or GAS) - compact set
Ultimately exponential convergence O(T)
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w 3.3 Arbitrary relative degree X

VSS Summer
Course-2019

Liu Hsu

m Chattering Avoidance and Exact Tracking
m Levant's RED algorithm (n;(t)—)e(gi)(t), i=0,1,2):

”.70 = W, ,

Vo = —Aol|no—eo|’® sgn(no—eo)+m1,
mo= v, )

vi = —Ar|m—wl? sgn(m—vo)+n2,
2 = —Aosgn(mz—vi)
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w 3.3 Arbitrary relative degree Xl
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m Corollary 2 With the nonlinear hybrid filter:

Theorem 2 holds
Exact tracking is achieved (finite time or exp.)
Switchings stops at the correct sign
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w 3.4 Simulation and experiments
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m n*=1 case: p(S) (s+§)+(i 1)

Table: Controller Parameters

IC’s y(0)=10, y(0)=2
Model M(s) = (si72) r(t) = sin(t)
Disturbance de(y, t) = y° + sqw(5t)
Monitor a(k) =k+1, an =2, b(k) = 7
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3.4 Simulation and experiments [l

VSS Summer * . . . .
Course-2019 m n*=1 case: tracking error ey, monitoring function ¢, and

Liu Hsu control signal u

15

0 0.05 0.1 0.15 0.2 0.25

200

100

(b)
o

-100

-200

0 0.05 0.1 0.15 0.2 0.25
t(s)
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3.4 Simulation and experiments 1

m n*>1 case: Gp(S):W (n*:?))

Table: Controller Parameters

IC’s ¥(0)=10, y(0)=10, 7(0)=10

Model M(s) = ﬁ, r(t) =sin(t)

Disturbance de(y,t) = y* + sqw(5t)

Monitor a(k) =k+1,an=2,Ac=1 t1 =t. =0.1s

Lead 1 £ :1((:;21))2, T=10"°

RED )\0 - 3C3§, )\1 = 1.5C3§, )\2 = 1.1C3, C3 = 250, kR = 600
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w 3.4 Simulation and experiments IV

VSS Summer

Course-2019 m n*>1 case: auxiliary error €9, monitoring function ¢y,
Liu Hsu switching law « and tracking error ey
100 T T T T T T
(NS
@50*‘ \\\\\‘»‘,,,‘,, ,,,,, 1
| AR
o ‘ ‘
0 0.5 1 15 2 25 3 35

Simulation and

experiments
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w 3.4 Simulation and experiments V
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m Experimental results were made with a DC motor position
control (n* = 2) (Peixoto et al CDC2006)

m They confirm the efficacy of the monitoring function
approach

m The ultimate RED compensator was verified to RED-lead
to less chattering in the control signal than the linear-Lead.
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3.5 Multivariable and Nonlinear systems |
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Liu Hsu m The monitoring function can be extended to classes of
multivariable nonlinear systems.

m (ACC2007, NY): nonlinear systems-linearly bounded in
unmeasured states, MIMO, decaying monitoring function,
unknown control direction(UCD);

m (Peixoto, Leite, Oliveira and Hsu ACC2009, St Louis):
MIMO nonlinear systems general normal form, norm

observer, experimental results with Zebra-0 visual servoing,
UCD;

m MIMO experimental results, visual servoing
[Oliveira, Leite, Peixoto and Hsu(2014)].
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3.5 Multivariable and Nonlinear systems Il
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Liu Hsu Classes of NL and MIMO systems considered

m Class 1 - NL-SISO (Oliveira-Peixoto-Hsu ACC2007)

Xp = Ap+ O(Xp, ) + Bpt,  y = CoXp, ()

where,

B fo(xp, t) =Apxp+0(Xp, t), X, €IR" is the state, u€IR is the
control input, y €IR is the measured output

m ¢ :IR"xIRT —1R" is regarded as uncertain state
dependent, possibly unmatched.

m ¢ satisfies |P(xp, t)] < ku|xp |+ (¥, t), Vxp, t and

m o(y, t)<WV,(ly])+k,, where ¥, e and k, >0 is
constant.
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3.5 Multivariable and Nonlinear systems Il
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m Class 2 - NL MIMO (Oliveira-Peixoto-Leite-Hsu ACC2009)

n = ¢0(n:y7t)7 (3)
}l/ = KPU+¢1(777y7t)7 (4)

where u € IR™ is the control input, y € IR™ is considered
as the measured output and the states n € IR"~ of the
n-subsystem, referred to as an “inverse system"”, are not
assumed to be measurable.
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w 3.5 Multivariable and Nonlinear systems IV
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Techiques for dealing with nonlinear uncertainties
m The use of norm-observers base on FOAF's is instrumental.

m The unmeasured state can be norm bounded by the
norm-observers in Class 1 and in Class 2.
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w 3.5 Multivariable and Nonlinear systems V
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m Example: in Class 1 |x,(t)| can be bounded as follows.
One has |xp(t)| <X,(t)+7(t), where

%p(t) [crp(y, 1) + calw(t)], (5)

:s—i—)\x

with c1, &2, Ax >0 The exponentially decaying term &
accounts for initial conditions, see [24].
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w 3.5 Multivariable and Nonlinear systems VI
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m Class 2, such norm observer requires an ISS property for
the inverse system (zero-dynamics) (3) w.r.t. y.
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3.5 Multivariable and Nonlinear systems VII
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Switching Strategy for MIMO systems
m In the scalar case the switching is simply betweem +1 and
—1. Very simple!
m What if we have a matrix gain K,?

m Strategy: K, (nonsingular) should be transformed to a
anti-Hurwitz matrix by premultiplying the control vector
by some matrix S such that —K,S becomes Hurwitz
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3.5 Multivariable and Nonlinear systems VIII
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m We then assume there exists a finite index set Q of known
matrices Sq € IR™*™ such that —K,S, is Hurwitz for
some g€ Q.

m The multivariable switching scheme is realized by cycling
through the elements of the finite index set Q [?] so that
stability and the tracking objective are achieved
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3.5 Multivariable and Nonlinear systems IX

Example: Robotics uncalibrated visual servoing

(MIMO) Consider a visual servoing system (n*=1) for a robot
manipulator [?]. Neglecting the robot dynamics (kinematic robot),
the end-effector (target) motion in the camera image coordinate
system is modelled by:

o=t =[50 [0 S0

where y(t) €IR? denotes the end-effector position vector in the
camera space, 1 represents the rotation angle of the camera
framework with respect to the task-space framework and

h; >0 (i=1,2) are uncertain scaling factors, belonging to a known
compact set.
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w 3.5 Multivariable and Nonlinear systems X
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Note that K} is nonsingular. We have included an input disturbance
#(y)=y? satisfying (A3) (with k,=0), in order to illustrate the
disturbance rejection property of the proposed scheme.
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3.5 Multivariable and Nonlinear systems Xl
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e B The desired dynamics and target position trajectory in the camera
space is defined by the reference model:

Im(t)=—ym(t)+r, ym,relR?.
The error dynamics eg=y—y,, is given by
é(t) = —ep(t) + Kp(u — u™), (6)

where u*=—¢(y) — Ky '(y—r).
The finite set of matrices Sq, g € @={0,1,2,3} is chosen as:

-1 0 10 0 -1 01
s o loelo t sy o) oo
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w 3.5 Multivariable and Nonlinear systems Xl|
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For any ¢, —K,S4 is Hurwitz for some S4. So, the usual restriction
|t)] <90° [?] can be removed. Here, the plant initial conditions and
reference signals are y;(0)=y2(0)=0, ri(t)=2cos (t) and
rp(t)=2sin(t), hh=h,=1 and ¢=90°.
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3.5 Multivariable and Nonlinear systems XllII
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m Experimental setup
Liu Hsu

=) TPl N3
Directory:

sja] 1@ E Al
Fhameaon

Fie:
[ewsetup ppm

Fig. 4. Experimental station.
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w 3.5 Multivariable and Nonlinear systems XIV

VSS Summer

e R m Monitoring function, error and switchings

monitoring function and error norm

-

1201 3rd sw 1

Liu Hsu 140

4th sW

Fig. 5. Monitoring function (¢,) and error norm ([e|).

The monitoring function, |e| and switchings are shown. Note that, at the 3rd
switching (k=k* =3), the correct S3 matrix is selected (—K,S3 is Hurwitz).
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w 3.5 Multivariable and Nonlinear systems XV
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trajectory tracking
-220 - T T T T T

—240

260 -

-280 -

[pixel]

-300 -

-320 -

-340 L L L L i L
300 320 340 360 380 400 420 440

[pixel]

Fig. 7. Trajectory tracking in the image frame.

The target trajectory is illustrated above, where one notices that the tracking is

achieved even for 1) =90°.
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w 3.6 Conclusions
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m A sliding mode output-feedback model-reference controller
for a class of uncertain nonlinear systems was proposed
m Multivariable plants with unknown control direction and
arbitrary relative degree were covered:
m A monitoring function — unknown control direction

. e i lati
m Nonlinear hybrid filter arbitrary re atlve. degree
exact tracking

m GAS or semi-GAS with respect to a compact set

m Ideal sliding mode is reached in finite time.
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The players

(Cunha, Oliveira, Jacoud, Leite (circa 2010))
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Adaptive SMC
via
X-equivalent
control

4. Adaptive Sliding Mode Control via X-equivalent
control I

Adaptive SMC via X-equivalent control
m Preliminaries
m Extended Equivalent Control
m Plant description
m Assumptions on the disturbance
m Sliding Mode Control
m Conclusions
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w 4.1 Introduction |
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m Sliding mode control (SMC) is robust to disturbances.

m Caveats:

m Bounds for disturbances must be known;

m Overestimating disturbances increases chattering.
m Solution:

m SMC with adaptive modulation function.
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Preliminaries

4.1 Introduction [

m Adaptive SMC strategies review:

Monotonically increasing gains

[Yan, Hsu, and Xiuxia(2006), Oliveira, Leite, Peixoto and Hsu(2014),
Moreno, Negrete, Torres-Gonzélez, and Fridman(2016)]

Problem: Disturbances may be overestimated.

Increasing and decreasing gains

[Plestan, Shtessel, Brégeault, and Poznyak(2010),
Bartolini, Levant, Plestan, Taleb, and Punta(2013),
Estrada, Plestan, and Allouche(2013)]

Problem: Sliding modes may fail temporarily.

Equivalent control
[Bartoszewicz(1989), Utkin and Poznyak(2013),
Edwards and Shtessel(2016)]
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4.1 Introduction I

VSS Summer

Course-2019
L [ Benefits of equivalent control approaches

m Provides an estimate of the disturbance once sliding
motion is established;

m Control gain is updated according to disturbance
amplitude;

m Less conservative control amplitude reduces chattering and
power loss.

A new adaptive SMC approach

extended equivalent control.
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4.2 Extended Equivalent Control I
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m Equivalent control defined on the sliding mode

Extended Equivalent

o(x(t),t) =0

m Extended equivalent control valid on and outside the
sliding mode [9].
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w 4.2 Extended Equivalent Control [l
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m Consider the nonlinear system:

x=f(x,t)+ B(x,t)u

m Extended equivalent control:

ueq(t) = —[GB(x(t), t)] 71 | GF (x(t), t) + %U(X(t)’ t)

where G = Lo(x(t), t).
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w 4.2 Extended Equivalent Control 1
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m On the sliding mode
o(x(t),t) =0 = ZLo(x(t),t) =0, then, the extended
equivalent control is the usual equivalent control.

Ueq(t) = —[GB(x(t), t)] 1 GF (x(t), t).

m Outside the sliding mode the extended equivalent control
is a piecewise-continuous signal given by the control law:

Ueg(t) = u(t).
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w 4.2 Extended Equivalent Control vV
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m Average Control

m Problem: extended equivalent control not available.
m Alternative: average control given by the low-pass filter:

Extended Equivalent
Control

Tlyy = —Uyy + U, 7>0.

m If 7 is small enough, then

Ueq(t) = ua(t), Vt>0.
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w 4.3 Plant description (nonlinear)
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n=f(n¢t),
&1 =&,
&-rfl = él’ y

ér = f(Xv t) —i—g(X, t) [u+ d(t)] )

mx=[n", €T]T € R" is the state; n € R"™"; £ € R";
E=[¢,...,&]T €R";
m v € R is the control input;

m d(t) € R is an exogenous input disturbance.
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w Assumptions on the plant
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m Usual assumptions:
m The input gain is positive: g(x,t) > g >0,
m The internal dynamics /) = fy(1, €, t) is input-to-state
stable (ISS) with respect to ¢ .
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w 4.4 Assumptions on the disturbance
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I (A1) The input disturbance d(t) is:
m unknown,
m locally integrable and

m norm bounded by |d(t)| < d, Vt,

d>0 is an unknown scalar.

m Moreover, there exist known constants

and 7>0 such that

where

cr > >0

d(t)] < cre ™t x |77 e 7 xd(t)|, V.

101 / 164



4.4 Assumptions on the disturbance [l
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o m Notes on (Al) :
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m Discontinuous disturbances are allowed:;

m For 7 — 40 the averaging filter can be neglected;

m The average control gives an estimate of the input
disturbance during the sliding mode;

m The modulation function must dominate the disturbance:

o(t) = cre " x uay (t)] = cre™ " x |d(t)] > |d(t)]-

m Unbounded disturbances are allowed, such as:

EILTEOT

|d(t)] < doels 7t dy > 0.
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4.5 Sliding Mode Control
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m Sliding variable:

o= 5S¢,

Siding Mde Contro where S =[sp,... ,s,—1] is such that
Sr_iAN 14 - 4 51\ + 59 is a Hurwitz polynomial.
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4.5 Sliding Mode Control 1l
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m Therefore: o= fy(x,t) + g(x, t) [u+ d(t)] .

m Control law:

u=uc+ us,
Siding Mode Contr _ fe(xt)
- glxt)
us = —o(t)sgn(o).

I
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w 4.5.1 Conventional SMC
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Liu Hsu P() > [d(t)]

Continuous
control

Sliding Mode Control

» Problem: synthesis of modulation function o(t) .

> If o(t) > |d(t)], Vt>0, then,the sliding surface o =0
will be reached in finite time.

105 / 164



4.5.2 Adaptive SMC

VSS Summer
Course-2019

Liu Hsu

Adaptive modulation function

Sliding Mode Control

Continuous
control

» Adaptive synthesis of modulation function o(t) .
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Sliding Mode Control

4.5.3 Adaptive SMC

Adaptive modulation function

» Averaging filter estimates the extended equivalent control:

TlUay = —Uay + Us .
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Sliding Mode Control

4.5.4 Adaptive SMC

Adaptive modulation function

» Estimate the absolute value of the extended equivalent control:

[teq| = [Uay
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w 4.5.5 Adaptive SMC
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Liu Hsu Adaptive modulation function

u u ]

Adaptive | Vv | & | Aver: ]

law er ]
] d(t)

Continuous
control

Sliding Mode Control

» Adaptive modulation function:
0= —vr0+cs(|ua| +9) .

» 0 >0 guarantees a desired minimum excitation for start-up.
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Sliding Mode Control

4.5.6 Adaptive SMC

Adaptive modulation function

Continuous
control

» Adaptive modulation function:
e T (|ttav] +0) -

» 0 >0 guarantees a desired minimum excitation for start-up.
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Sliding Mode Control

4.5.7 While sliding is not reached

Adaptive modulation function

Continuous
control

» Adaptive modulation function:
0= =770+ cs (Jua| +0) .

» Before sliding mode  |uay| & |ueq| = 0 , then ...
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Sliding Mode Control

4.5.8 Adaptive modulation law

Adaptive modulation function

» Adaptive modulation function:
0= —vyro+cr(o+9).
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4.5.9 Adaptive modulation law (cont.)
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Liu Hsu Adaptive modulation function

Adaptive ey | Ve Averaging
law filter ]
| d()

Continuous
control

Sliding Mode Control

» Adaptive modulation function:
o0=—yeter(e+d) .
» ...then, c¢; >~ >0 guarantees the loop is unstable, thus,

o(t) grows exponentially, faster than |d(¢)|.
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w 4.5.10 Effect of averaging quality
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Liu Hsu - - -—d(t)

Sliding Mode Control

t[s]

» Average control signal for different time constants;

» Sinusoidal disturbance.
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4.5.11 Theorem 1
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Theorem 1 The following stability properties hold for the proposed
control system with the adaptive modulation function o

1. the sliding surface ¢ = 0 is reached in finite time;

2. the closed-loop system is uniformly globally exponentially
i e Conr stable in the sense that the state = = 7, ¢7]7  converges
exponentially to the origin and

3. all remaining signals are uniformly bounded.
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4.6 Conclusions
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(L [k » New adaptive SMC to circumvent non smooth disturbances
with unknown bounds has been addressed.

» Based on the extended equivalent control and average control.
» The control gain p is adapted to dominate disturbances:

o decreases/increases as the disturbance does;
Discontinuous and unbounded disturbances are allowed;

>
>
> The precision of the stabilization is improved,;
> Preserves sliding mode;

>

Reduces chattering.

» Main steps of the proof of uniform and global stability as well
as perfect disturbance rejection were introduced.
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5. Monitoring Function Approach (MFA) for
adaptive SMC I

Monitoring Function Approach (MFA) for adaptive SMC

m Preliminaries
m Problem statement
m Non-adaptive UVC

m Adaptive Unit Vector Control

m Stability Analysis
m Tracking Control of a Surface Vessel
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5.1 Preliminaries
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i (il The context

m UVC for uncertain MIMO systems

m Disturbance are bounded but with unknown bounds

m Quite general class of nonsmooth disturbances

Global stabilization/tracking by state or output feedback

Adaptive gain modulates according to the size of
disturbances: reduce chattering

Application to a surface vessel subject to ocean currents,
wind and waves is discussed.
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5.1 Preliminaries [
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Novel properties of the MFA

m Prespecified transient time
m Maximum overshoot

m Guaranteed steady steady
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w 5.2 Problem statement |
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Consider (MIMO) systems in regular form [43, 30]

n = Aun+ Ao+ di(x,t), (7)
o = Aun+ Axno + da(x,t)+ Bau, (8)

u € R™ is the input, o € R™ the output, n € R"™™,
x:=[nT,0T]7 the state, d; : R” x RT — R"™™ is an
unmatched disturbance, and db : R” x Rt — R™ is a matched
disturbance. Aj; and B, are constant and uncertain.
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w 5.2 Problem statement I
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Liu Hsu m Assumptions

(A1) Minimum phase from u to o: Aj; is Hurwitz.
(A2) S, € R™™ is known so that — K, is Hurwitz, where

K, := B,S, (9)

is the effective high-frequency gain (HFG).
(A3) di(x,t) and da(x, t) are locally Lipschitz in x, p.w.c. in t,
and satisfy

ldi(x,t)|| < di < 400, |da(x,1)]| < do < +o0, VxeER"
B B (10)
(A4) d, >0 and d, > 0 are unknown!.
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w 5.2 Problem statement IlI
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m Control Objective
m Achieve global stability and convergence of the output
signal (o(t)) to a small neighborhood of the origin

m 0 may also be the tracking error w.r.t. some desired
trajectory

m Then, stabilization of o implies tracking of a reference
signal.
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5.3 Non-adaptive UVC I

V55 Summer For known disturbance norm bounds d; and d», the control
Liu Hsu signal is pre-compensated by u = S,u. Then,
d':Azzo'—f-KpU—i-d(t), (11)
d(t) = Aan(t) + da(x(t), t) , (12)

(A The disturbance d(t) can be rejected by the UVC law

g

U= —p(t)ma (13)

p(t) =6+ collo(t)] + calld(t)], VE=0,  (14)

for appropriate ¢, > 0 and ¢y > 0. The arbitrary constant
0 > 0 is required to guarantee ¢ = 0 in finite time.
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w 5.3.1 Modulation for UVC [
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m State feedback
If the state x(t) is available, then

Id()] < calln(t)]| + (15)
where ¢; > ||A21|| A modulation function is thus given by

p(t) = d+cllo()l+cactlln(t)ll +d,  (16)
g = Cdd_z. (17)
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w 5.3.1 Modulation for UVC [
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m Output feedback
If n is unavailable for feedback, then a bound for norm |||
is found using a FOAF as follows. The solution o(t) is

n(t) = exp(A11t)n(0)+exp(Ar1t)*[Ano(t)+di(x(t), t)], ¢t

(18)
Here, o(t) dependent term is norm bounded by the FOAF
output.
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w 5.3.1 Modulation for UVC [l
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The resulting modulation function is given by (modulo

irrelevant 7 terms) :

p(t) = 6+ cllo(®)] + capro(t) +d,  (19)

d = ¢ <Cndld1 + d. ) (20)
!

~ Cno
F10(t) = SN0 (0)]
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Adaptive Unit Vector

Control

5.4 Adaptive Unit Vector Control |

Now the upper bounds d are assumed UNKNOWN! Then,
adapt...

The following adaptive law is proposed

~ o o ﬂl(k)7 if t<t, o
d(t)_ﬁ(k7t t)_{ﬁz(k7t—f), if tZE, Vte[tk7tk+1]7 k=1,2,...,

(21)
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5.4 Adaptive Unit Vector Control Il
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B ty41 denotes the new switching time

m The unknown d — class K, function £1(k) in Phase 1
(t<t)

m or a class Koo L function Sa(k, t — t) in the Phase 2
(t > t) of the algorithm

m t > 0 is the phase transition time , and k € N is the
switching number of a monitoring function to be defined

m [(k,t — t) grows monotonically with k and decreases with
(t — t) (for t > t) after each switching,
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5.4 Adaptive Unit Vector Control Il
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m After each new switching, the function 5 will give a norm
bound for the disturbance d(t) in (12) at least during a
sufficiently large interval of time.

m The adopted UVC law is u = SpU with U given as (13).

m the modulation function p(t) is designed to overcome the
net input disturbance in (11).

Liu Hsu

Adatie nie Vctor m the following adaptive modulation functions have been
obtained
SF
p(t) =8 + co|lo ()l + caar[n(e)]| + d(t), (22)
OF

p(t) =8+ collo(t)| + cadro(t) +d(1).  (23)
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5.4 Adaptive Unit Vector Control IV
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By the UVC Lemma 1,the output signal o(t) tends to zero
being bounded by

lo(t)ll < ke Do (R)[|, Ve € [fo, +o0),  (24)

A Ui Vectr where ty denotes any initial time, and ki, A1[, A2 > 0 are

known constants satisfying some inequalities related to K,
provided that the estimated disturbance (21) upper bounds the
true disturbance Vt > tp.
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5.4.1 New monitoring switching scheme |
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m Preliminary results (Oliveira, Melo, Hsu and Cunha
2017)[42], did not guarantee pre-specified transient and
steady-state performance.

m A new monitoring switching strategy is now introduced to
“fill the gap”.

The performance specifications are illustrated by the figure
below.
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5.4.1 New monitoring switching scheme ||
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Phase 1 =—— Phase 2

lo(O)lI+A

Forbidden zone

FIGURE 1 Performance specifications on ||o(?)]|.

132 / 164



w 5.4.1 New monitoring switching scheme Il
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Definition

The stabilization /tracking error o is said to satisfy the
transient and steady-state performance specifications, if:
1 |le(®)| < [lo(0)|| + A, Yt [0, T), and
2 lo(t)]| <e VE>T,
where A is the allowed maximum overshoot, T > 0 is the

maximum transient time, and € € (0, A] is the allowed
maximum steady-state error, that can be freely specified.
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m The proposed algorithm has two phases described below.

m This is similar to Yan et al.[Yan, Hsu, and Xiuxia(2006)],

the switching times of 5(k,t — t) are according to the two
phases below.

m In the algorithm, r1, » > 1 are arbitrarily chosen design
constants, which can adjust the frequency of switchings.
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5.4.1 New monitoring switching scheme V

Phase 1: Force ||o(t)|| < ¢/r2 before T while avoiding the violation
of the allowed maximum overshoot.

If [[o(t1)|l = |o(0)|| < €/r2, then the algorithm passes to Phase 2.

Otherwise, for every k for which ||o(tk)|| > &/r2, the switching time
ty+1 is defined by

lo(&)l = [le(0)]| + A (1 —1/rf)
tr1 :=ming t >ty - or ,
t=T((1-1/rf) and |o(t)]|>¢e/r
If for some time t = £ < T, the condition

lo (D)l = &/r2 (26)

is reached, then the algorithm proceeds to Phase 2.
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Let tj+1 be the final switching time in Phase 1. The switching time
in Phase 2 is defined by

min{ t>te:|o(t)] =¢ (1 - 1/r2k*j+1)} , if it exists,
tkt1 = .
400, otherwise,
(27)
where if k = j 41, then tx of the right-hand side of (27) should be
replaced by t. It can be checked from (27) that

lo(tira)ll > llo (el - (28)

Hence, B(k,t — t) switches in Phase 2 only when ||o|| increases and
becomes too close to €.
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For each k in (21), the function 3(k,t — t) must satisfy

Bk+1,t—1t)>pB(k,t—1t) > 0, (29)
im Pkt-t
kl)—i-oo [max(r, rz)]k oo (30)
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5.4.1 New monitoring switching scheme VIII

Table: Adaptive sliding mode controller for the system (7)—(8).

Unit vector control law

u(t) = SU(),  U() = —p(0) 2y

p for state feedback

p(t) = 8 + collo ()]l + cgerlln(®)]| + d(t)

p for output feedback

p(t) = 8 + collo(t)l + cad1o(t) + d(t)

FOAF for output feedback

G105 (t) = =151 (t) + cnollo(t)]l,  515(0) >0

Adaptive law

From Phase 1 to 2

5 - B1(k) if t<ft,

d = k — = - —

(1) =Bkt = %) {ﬁz(k,t—t), if t>F.

[0 it o) < =/r2.
t< T : |lo(t)]| =e/r, otherwise.

MF during Phase 1

lo(®)ll = llo©) +a (1 = 1/rf)

tgpr ;= min { t >t or

t:T(l—l/rlk) and |lo(t)|| > e/

MF during Phase 2

. min{ t >t lo(b)]| :s(lfl/r;7j+1)} , if it exists,
k+1 =
* +oo, otherwise .
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Specifications and Pratical stability theorem:

Theorem

Assume that (A1)—(A3) hold. Then, with the described
monitoring function adaptive UVC, practical

stabilization /tracking is achieved, with the output signal or
tracking error o(t) converging ultimately close to an
e—neighborhood of the origin. Moreover, all the closed-loop
signals are uniformly bounded and all pre-specified transient
and steady-state in Definition 1 are guaranteed as well.
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In some practical applications, despite the fact the disturbance
d(t) has unknown norm bound, it may tend to some specific
value or has a minimal upper bound after some finite time (for
example, when the disturbance has a large transient and then
goes to a small steady state). For these situations, the

Stabiy Analyi following corollary can be stated.
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In Theorem 1, if d(t) has the additional property:
174, (£) + d2(x(2), t)|| < dj, Vt € [t,+00) (31)

d; > 0 known constant, then replacing (22) for SF or (23) for OF by
the new modulation functions

SF: p(t) =6 + collo(t) | + cacalln(t)l| + d(t) + di, (32)
OF : p(t) = 5+ cllo(t)ll + cadro(t) + d(t) + i, (33)
then exact stabilization/tracking is achieved and o(t) is kept in the
origin after some finite time. Moreover, a(t) — 0, Vt > t;, which
decreases the amplitude of the control signal u(t) needed to keep the
sliding mode.
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FIGURE 2 Top view of the vessel and coordinate systems.
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FIGURE 3 Trajectory of the vessel on the water surface (solid line), and reference trajectory (doted line).
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FIGURE 4 Heading angle of the vessel (solid line), and reference heading angle (doted line).
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FIGURE 5 Norm of the sliding variable with € = 0.1.
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5.5 Tracking Control of a Surface Vessel V
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FIGURE 6 Modulation signal (p — solid line), and the norm of the disturbance (||d|| — doted line) with € = 0.1.
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FIGURE 8 Norm of the sliding variable with £ = 1.
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FIGURE 9 Modulation signal (p — solid line), and the norm of the disturbance (||d|| — doted line) with & = 1.
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