

VSS Summer Course-2019

Liu Hsu UFRJ

Introduction

Synthesis vi Lyapunov A brief history A 1965 survey

MRAC

Simple example System equations Block diagram Adaptive control law

Lyapunov based MRAC design

equations

Error equations

Adaptive laws

Global Tracking for Uncertain Systems by Output Feedback

Liu Hsu UFRJ

VSS SUMMER SCHOOL 2019

April 11, 2019

1. Introduction

VSS Summer Course-2019

Liu Hsu UFRJ

Introduction

Synthesis via Lyapunov A brief history A 1965 survey

MRAC

Simple example System equation: Block diagram Adaptive control law Lyapunov based MRAC design

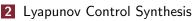
MRAC — System equations

Error equations

Lyapunov desigi

Adaptive laws

1 Introduction



- A brief history
- A 1965 survey

3 MRAC

- Simple example
 - System equations
 - Block diagram
 - Adaptive control law
- Lyapunov based MRAC design
- MRAC System equations
 - Error equations
- Lyapunov design
 - Adaptive law

2. Control Signal Synthesis

VSS Summer Course-2019

Liu Hsu UFRJ

Introduction

Synthesis via Lyapunov

A brief history A 1965 survey

MRAC

Simple example System equations Block diagram Adaptive control law

MRAC design

equations

Error equations

Adaptive laws

1 Introduction

2 Lyapunov Control Synthesis

- A brief history
- A 1965 survey

MRAC

- System equations
- Block diagram
- Adaptive control law
- Error equations
- Adaptive law

2.1 Control Signal Synthesis: brief history

VSS Summer Course-2019

> Liu Hsu UFRJ

Introduction

Synthesis via Lyapunov A brief history A 1965 survey

MRAC

- Simple example System equations Block diagram Adaptive control law
- MRAC design MRAC — Syster
- equations
- Lyapunov design
- Adaptive laws

- Back to the 60's, e.g., Lyapunov control synthesis was exploited.
- Sliding modes or Variable Structure Systems not well acknowledged. However, the need of discontinuous control appeared.
- Lowe & Rowlands (1974) used "signal synthesis" for designing Model Reference Adaptive Control (MRAC).
- Devaud & Caron (1975) pioneered use discontinuous SMC (Sliding Mode Control) in the context Model Reference Control.
- Ambrosino, Celentano & Garofalo (1984) introduced the term Variable Structure MRAC using only input and output measurements.

2.2 A 1965 survey

(L.P.Grayson, Automatica, vol.3, pp. 91-121, 1965)

VSS Summer Course-2019

Liu Hsu UFRJ

Introduction

Synthesis via Lyapunov A brief history A 1965 survey

MRAC

Simple example System equations Block diagram Adaptive control law Lyapunov based MRAC design

MRAC — Syste equations

Linor equations

Adaptive laws

Technique	Plant	Procedure	Resulting System	Literature
1	$\dot{x} = A(\alpha)x$ is asymptotically stable for all fixed α allowed.	Choose α to minimize $\varphi(\alpha) = \int_0^\infty x' Qx dt$	Linear, time-invariant. Over-all system is optimal.	Krasovskii [3], Meerov [4] Alex [5]
2	$\dot{x} = Ax + Bu$ where $\dot{x} = Ax$ is asymptotically stable.	Choose <i>u</i> , such that $ u_i \le 1$ to minimize $\varphi(u) = \int_0^\infty x' Qx dt$	Nonlinear, time-invariant. The u _i s result in relays or <i>saturation</i> elements. A regulator. System is optimal.	Bass [7] Kalman and Bertram [8] Gieseking [9]
3	$\dot{x} = Ax + bf(\sigma)$ where $\dot{x} = Ax$ is asymptotically stable and $\sigma f(\sigma) \neq 0$ for $\sigma \neq 0$.	Choose $\sigma = a'x$ where $a = -Pb$ and $V = x'Px$.	Nonlinear, time-invariant plant; a linear time-invari- ant controller. Overall it is a regulator.	Bass [7]
4	$\dot{x} = Ax + bf(\sigma)$ where $\dot{x} = Ax$ is asymptotically stable and $\sigma f(\sigma) \neq 0$ for $\sigma \neq 0$.	Choose σ to satisfy $\dot{\sigma} + k\sigma = ax - lf(\sigma)$ where $a = -Pb$ and $V = x'Px$, $k \ge 0$, $l \ge 0$, $k^2 + l^2 \ne 0$.	Nonlinear, time-invariant plant; a nonlinear, time- invariant controller. Overall it is a regulator.	Bass [7]
5	$\dot{x} = Ax + bf(\sigma)$ where $\dot{x} = Ax$ is arbitrary and $f(\sigma) = \operatorname{sgn} \sigma$.	Choose σ to satisfy $\dot{\sigma} + k\sigma = a'x - [l - x'Qx] f(\sigma)$ where $a = -Pb$, $V = x'Px$ and $A'P + PA = -Q$.	Time-invariant plant with relays. Controller is non- linear, time-invariant. A regulator.	Bass [7]
6	$\dot{x} = f(x) + u$ where $\dot{x} = f(x)$ is stable, but not asymptotic- ally stable.	Choose u to make system asymptotically stable, such that the $ u_i $ are bounded, or the time to reach $x=0$ is minimized, or the time con- is a minimum.	Linear or nonlinear con- trollers.	Lee [10] Geiss [11]

3. Model Reference Adaptive Control (MRAC)

VSS Summer Course-2019

> Liu Hsu UFRJ

Introduction

Synthesis via Lyapunov A brief history A 1965 survey

MRAC

Simple example System equations Block diagram Adaptive control law Lyapunov based MRAC design

equations

Error equations

Adaptive laws

1 Introduction

Lyapunov Control Synthesis

3 MRAC

- Simple example
 - System equations
 - Block diagram
 - Adaptive control law
- Lyapunov based MRAC design
- MRAC System equations
 - Error equations
- Lyapunov design
 - Adaptive law

3.1 Simple example: Adaptive roll control of an aircraft (Lavrestky 2008)

VSS Summer Course-2019

> Liu Hsu UFRJ

Introduction

Synthesis via Lyapunov A brief history A 1965 survey

MRAC

Simple example

System equations Block diagram Adaptive control law

Lyapunov based MRAC design

equations

Error equations

a s s s

3.1.1 System equations

VSS Summer Course-2019

> Liu Hsu UFRJ

Introduction

Synthesis via Lyapunov A brief history A 1965 survey

MRAC

Simple example

System equations

Block diagram Adaptive control law

Lyapunov based MRAC design

MRAC — Syste equations

vanunov dorign

Adaptive laws

- <u>Uncertain</u> Roll dynamics: $\dot{p} = L_p p + L_{\delta_{ail}} \delta_{ail}$
 - p is roll rate,
 - $\delta_{\scriptscriptstyle ail}$ is alleron position

 $-\left(L_{p}, L_{\delta_{all}}\right)$ are <u>unknown</u> damping, aileron effectiveness

- Flying Qualities Model: $\dot{p}_m = L_p^m p_m + L_{\delta}^m \delta(t)$
 - $-\left(L_{p}^{m}, L_{\delta}^{m}\right)$ are <u>desired</u> damping, control effectiveness
 - $\delta(t)$ is a reference input, (pilot stick, guidance command) - roll rate tracking error: $p_{e_n}(t) = (p(t) - p_m(t)) \rightarrow 0$
- Adaptive Roll Control: $\begin{cases}
 \hat{K}_{p} = -\gamma_{p} p(p - p_{m}) \\
 \hat{K}_{\delta} = -\gamma_{\delta_{ail}} \delta(t)(p - p_{m}), \quad (\gamma_{p}, \gamma_{\delta_{ail}}) > 0
 \end{cases}$ parameter adaptation laws

E. Lavrets

3.1.2 Block diagram of adaptive roll rate control

Liu Hsu UFRJ

Introduction

Synthesis via Lyapunov A brief history A 1965 survey

MRAC

Simple example

System equations

Block diagram

Adaptive control law

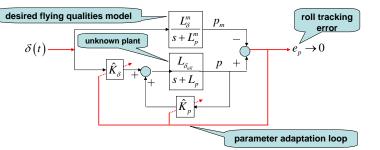
Lyapunov based MRAC design

MRAC — Syste equations

Error equations

Lyapunov design

Adaptive laws



3.1.3 Adaptive control law

VSS Summer Course-2019

> Liu Hsu UFRJ

Introduction

Synthesis vi Lyapunov A brief history A 1965 survey

MRAC

Simple example System equation

Adaptive control

Lyapunov based MRAC design MRAC — Syster equations

Error equations

Adaptive laws

The roll control problem is a particular case of the following system:

- Plant: $\dot{x} = ax + bu$
- Model reference: $\dot{x}_m = a_m x_m + b_m r$
- Regressor vector: $\omega^T = [x \ r]$
- Model matching control (unknown):

 $u^* = -k^*x + l^*r; \ l^* = b_m/b; \ k^* = (a_m + a)/b$

- Adaptive parameter vector: $\theta^T = [I \ k]$
- Control parameterization: $u := \theta^T \omega$
- Output (tracking) error: $e = x x_m$
- Adaptation gain matrix: $\Gamma = \begin{bmatrix} \gamma_1 & 0 \\ 0 & \gamma_2 \end{bmatrix}$
- Adaptation law: $\dot{\theta} = -sign(b)\Gamma\omega e$

3.2 Lyapunov based MRAC design

VSS Summer Course-2019

> Liu Hsu UFRJ

Introduction

Synthesis via Lyapunov A brief history A 1965 survey

MRAC

Simple example System equations Block diagram Adaptive control law

Lyapunov based MRAC design

MRAC — Syster equations

Error equations Lyapunov design

Adaptive laws

Lyapunov based design for adaptive control (Parks, 1966)

362

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-11, NO. 3, JULY, 1966

Liapunov Redesign of Model Reference Adaptive Control Systems

PATRICK C. PARKS

A landmark in modern adaptive control theory.

3.2.1 MRAC - System equations

VSS Summer Course-2019

> Liu Hsu UFRJ

Introduction

Synthesis vi Lyapunov A brief history A 1965 survey

MRAC

Simple example System equations Block diagram Adaptive control law

Lyapunov based MRAC design

MRAC — System equations

Error equations Lyapunov design For model following a necessary assumption is that the plant be minimum-phase!

- Plant: $G(s) = K_p \frac{N(s)}{D(s)}; y = W(s)u$
- Reference Model (SPR): $W_m(s) = K_m \frac{Z(s)}{R(s)}; y_M = W_M(s)r$
- Output error: $e_1 = y y_M$
- State variable filters $(\omega_1, \ \omega_2 \in \mathbb{R}^{n-1})$

$$\dot{\omega}_1 = \Lambda \omega_1 + gu$$

 $\dot{\omega}_2 = \Lambda \omega_2 + gy$

- Regressor vector: $\omega^T = [\omega_1^T \ \omega_2^T \ y \ r]$
- Adaptive parameter vector: $\theta^T = [\theta_1^T \theta_2^T \theta_3 \theta_4]$

3.2.2 Error equations

VSS Summer Course-2019

Liu Hsu UFRJ

Introduction

Synthesis via Lyapunov A brief history A 1965 survey

MRAC

Simple example System equations Block diagram Adaptive control law

MRAC design MRAC — Systen equations

Error equations Lyapunov design Adaptive laws

- The output error is denoted $e_1 = y y_M$
- The parameter error is $\tilde{\theta} := \theta \theta^*$
- Error dynamic equations (including filters)

$$\dot{e} = Ae + \rho^* b \tilde{\theta}^T \omega, \ \rho^* = (\theta_4^*)^{-1} = K_p / K_m, \ e \in \mathrm{I\!R}^{3n-2}, \ e_1 = h^T e_1$$

 \blacksquare We arrive at a similar error equation but $e\in{\rm I\!R}^1\to e\in{\rm I\!R}^{3n-2}$

• Why (3n-2)? ... to include the state variable filters

- $e_1 = h^T e$ for some $h \in \mathrm{I\!R}^{3n-2}$
- $\{A, b, h\}$ is a *nonminimal* realization of model $W_M(s)$

3.4 Lyapunov design, $n^* = 1$

VSS Summer Course-2019

Liu Hsu UFRJ

Introduction

Synthesis via Lyapunov A brief history A 1965 survey

MRAC

Simple example System equations Block diagram Adaptive control law Lyapunoy based

MRAC design MRAC — System equations

Error equations

Lyapunov design

Adaptive laws

The (simplified) Kalman-Yakubovitch-Popov Lemma (*)

Let $G(s) = C((sI - A)^{-1}B)$ be a $p \times p$ transfer function, where (A, B) is controllable and (A, C) is observable. Then G(s) is strictly positive real iff $\exists P = P^T > 0$, Q > 0 such that

$$PA + A^T P = -Q$$
$$PB = C$$

Choose candidate Lyapunov function V and adaptive law for $\dot{V} \leq 0$

3.4 Lyapunov design, $n^* = 1$

VSS Summer Course-2019

Liu Hsu UFRJ

Introduction

Synthesis via Lyapunov A brief history A 1965 survey

MRAC

Simple example System equations Block diagram Adaptive control law

Lyapunov based MRAC design MRAC — Systen

Fror equations

Lyapunov design

Adaptive laws

Remarks

- Generalization of the KYP to noncontrollable systems was made by Meyer. We need it because (A, b, h) is nonminimal.
 - **Fact**: $\exists \theta^* \text{ s.t. plant matches reference model with <math>u^* = \theta^{*T} \omega$ with regressor vector ω .
 - **Assumptions**: known *n*, known sign of *K*_{*p*}.

hideallsubsections

11

3.4.1 Adaptive laws, $n^* = 1$

The Lyapunov function:

VSS Summer Course-2019

> Liu Hsu UFRJ

Introduction

Synthesis via Lyapunov A brief history A 1965 survey

MRAC

Simple example System equations Block diagram Adaptive control law

MRAC design MRAC — System

Error equations

Lyapunov design

Adaptive laws

$V = rac{1}{2} e^{T} P e + rac{1}{2} ilde{ heta}^{T} | ho^{*} | \Gamma^{-1} ilde{ heta} > 0$

•
$$\dot{V} = e^T P \dot{e} + |\rho^*| \tilde{\theta}^T \Gamma^{-1}(\dot{\theta})$$

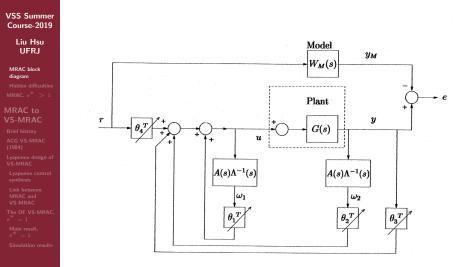
Adaptive control law – SISO, $n^* = 1$

• Control law:
$$u = \theta^T \omega$$

- Adaptation law: $\dot{\theta} = -sign(K_p)\Gamma\omega e; \ \Gamma = \Gamma^T > 0$
- $\dot{V} = e^T P(Ae + b\rho^*[\tilde{\theta}^T \omega] + |\rho^*|\theta^T \Gamma^{-1}(-sign(\rho^*))\Gamma \omega e_1$ • or $\dot{V} = -e^T Qe + e_1 \rho^*[\tilde{\theta}^T \omega] - \rho^* \tilde{\theta}^T \omega e_1;$
- Thanks to the KYP Lemma:

$$\dot{V} = -e^{T}Qe \leq 0$$
 (semidefinite negative)

3.4.2 MRAC block diagram



3.4.3 Hidden difficulties of semi-definite \dot{V}

VSS Summer Course-2019

> Liu Hsu UFRJ

MRAC block diagram Hidden difficulties MRAC, $n^* > 1$

MRAC to VS-MRAC

Brief history

ACG VS-MRAC (1984)

Lyapunov design of VS-MRAC

Lyapunov contro synthesis

Link between MRAC and VS-MRAC

The OF VS-MRAC, $n^* = 1$

 $\begin{array}{l} \text{Main result,} \\ n^{*} = 1 \end{array}$

Simulation results

With $V(e, \tilde{\theta}) > 0$ but $\dot{V} = -e^T Q e \leq 0$ (semi-definite) one can conclude or unconclude:

- $e(t) \in \mathcal{L}_{\infty} \bigcup \mathcal{L}_{2}$ and $\widetilde{ heta}(t) \in \mathcal{L}_{\infty}$
- $\dot{e}(t) \in \mathcal{L}_{\infty}$
- $e(t) \rightarrow 0$
- The parameteric error θ
 (t) := (θ θ*) may not converge to zero. It requires *Persistency of Excitation* or r(t) sufficiently rich.

In fact,

The adaptation transient can be extremely slow or oscillatory. Still a rather open problem in adaptive control!

3.5 MRAC general case of $n^* \ge 1$

VSS Summer Course-2019

Liu Hsu UFRJ

MRAC block diagram Hidden difficulties MRAC. n* > 1

MRAC to VS-MRAC

Brief history ACG VS-MR/

(1984) Lyapunov design

Lyapunov control synthesis

Link between MRAC and VS-MRAC

The OF VS-MRAC, $n^* = 1$

 $\begin{array}{l} \text{Main result,} \\ n^{*} = 1 \end{array}$

Simulation results

Limitation

SPR implies relative degree 1.

- Major difficulty of the general case: relative degree ≥ 1 .
- The Reference Model can not be SPR.
- Solution for adaptive control: Monopoli's augmented error
- Adaptive algorithm analysis and synthesis much more complicated!

VSS Summer Course-2019

> Liu Hsu UFRJ

MRAC block diagram Hidden difficultie MRAC. $a^* > 1$

MRAC to VS-MRAC

Brief history

ACG VS-MRAC (1984)

Lyapunov design o VS-MRAC

Lyapunov contro synthesis

Link between MRAC and VS-MRAC

The OF VS-MRAC $n^* = 1$

 $\begin{array}{l} \text{Main result,} \\ n^{*} = 1 \end{array}$

Simulation results

4. Transforming MRAC to VS-MRAC I

- MRAC block diagram
- Hidden difficulties of semi-definite \dot{V}

MRAC to VS-MRAC

- Brief history
- ACG VS-MRAC (1984)

Lyapunov design of VS-MRAC

- Lyapunov control synthesis
- Link between MRAC and VS-MRAC

• The OF VS-MRAC, $n^* = 1$

- Main result
- Simulation results

4.1 Brief history

VSS Summer Course-2019

> Liu Hsu UFRJ

MRAC block diagram Hidden difficultie MRAC, $n^* > 1$

MRAC to VS-MRAC

Brief history

ACG VS-MRAC (1984)

Lyapunov design of VS-MRAC

Lyapunov contro synthesis

Link between MRAC and VS-MRAC

The OF VS-MRAC, $n^* = 1$

 $\begin{array}{l} {\sf Main \ result,} \\ {n^{*}} \ = \ 1 \end{array}$

Simulation results

STATE FEEDBACK: (Devaud & Caron 1975), (Zinober, El-Ghezawi & Billings, 1982) and references therein.

OUTPUT FEEDBACK:

- Ambrosino, Celentano & Garofalo (1984): "Variable structure model reference adaptive control systems" (VS-MRAC) first named this technique. *However, the control was ill-defined...*
- Bartolini & Zolezzi (1988): "The V.S.S. Approach to the Model Reference Control of Nonminimum Phase Linear Plants", a very ambitious objective –Problem: requires a stringent a priori signal boundedness condition to assure stability.

4.2 ACG VS-MRAC (1984)

Liu Hsu UFRJ

MRAC block diagram Hidden difficultie MRAC, $n^* > 1$

MRAC to VS-MRAC

Brief history

ACG VS-MRAC (1984)

Lyapunov design o VS-MRAC

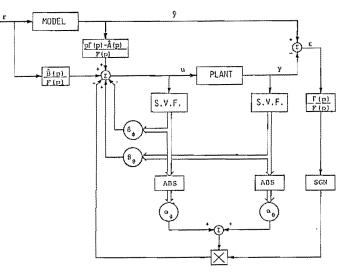
Lyapunov contro synthesis

Link between MRAC and VS-MRAC

The OF VS-MRAC $n^* = 1$

 $\begin{array}{l} \text{Main result,} \\ n^* = 1 \end{array}$

Simulation results



sections

4.3 Lyapunov design of VS-MRAC

VSS Summer Course-2019

Liu Hsu UFRJ

MRAC block diagram Hidden difficulties MRAC, $n^* > 1$

MRAC to VS-MRAC

Brief history ACG VS-MRA (1984)

Lyapunov design of VS-MRAC

Lyapunov contro synthesis

Link between MRAC and VS-MRAC

The OF VS-MRAC $n^* = 1$

 $\begin{array}{l} \text{Main result,} \\ n^{*} = 1 \end{array}$

Simulation results

From MRAC to VS-MRAC with $n^* = 1$

Underlying ideas (Hsu & Costa 1989)

■ What if the adaptation gain tends to ∞ and the parameters are defined memoryless?

• Then
$$V(e) = \frac{1}{2}(e^T P e)$$

- ...Back to Lyapunov Synthesis Approach!
- ...But using only output feedback.

4.3 Lyapunov design of VS-MRAC

VSS Summer Course-2019

> Liu Hsu UFRJ

MRAC block diagram Hidden difficultie MRAC, $n^* > 1$

MRAC to VS-MRAC

Brief history

ACG VS-MRA((1984)

Lyapunov design of VS-MRAC

Lyapunov contro synthesis

Link between MRAC and VS-MRAC

The OF VS-MRAC $n^* = 1$

 $\begin{array}{l} \text{Main result,} \\ n^{*} = 1 \end{array}$

Simulation results

Recall MRAC error equations and KYP lemma. Error equations (including I/O filters)

$$\dot{e}=Ae+
ho^*b ilde{ heta}^{ au}\omega,\
ho^*=(heta_4^*)^{-1}=K_{
ho}/K_m,\ e\in{
m I\!R}^{3n-2},\ e_1=0$$

- We arrive at a similar error equation but $e \in {\rm I\!R}^1 o e \in {\rm I\!R}^{3n-2}$
- $e_1 = h^T e$ for some $h \in \mathrm{I\!R}^{3n-2}$
- $\{A, b, h\}$ is a *nonminimal* realization of model $W_M(s)$
- Chose an SPR model: $\exists P, Q > 0$ such that $A^T P + PA = -Q < 0, Pb = h$ (KYP Lemma)

hideallsubsections

11

VSS Summer Course-2019

Liu Hsu UFRJ

MRAC block diagram Hidden difficulties MRAC, $n^* > 1$

MRAC to VS-MRAC

Brief history

ACG VS-MRAC (1984)

Lyapunov design of VS-MRAC

Lyapunov control synthesis

Link between MRAC and VS-MRAC

The OF VS-MRAC $n^* = 1$

 $\begin{array}{l} \text{Main result,} \\ n^{*} = 1 \end{array}$

Simulation results

VS control

Similar to adaptive control law: $u = \sum_{i=1}^{2n} \psi_i \omega_i$.

Now, instead of adapting the parameters psi_i with an integral law, we let them switch.

The switching functions ψ_i is designed from the Lyapunov function

$$V(e)=\frac{1}{2}e^{T}Pe\,,$$

where $P = P^T > 0$ satisfies the KYP lemma.

I

VSS Summer Course-2019

Liu Hsu UFRJ

MRAC block diagram Hidden difficulties MRAC, $n^* > 1$

MRAC to VS-MRAC

Brief history

ACG VS-MRAC (1984)

Lyapunov design of VS-MRAC

Lyapunov control synthesis

Link between MRAC and VS-MRAC

The OF VS-MRAC $n^* = 1$

 $\begin{array}{l} \text{Main result,} \\ n^{*} = 1 \end{array}$

Simulation results

Calculating dV/dt with respect to error dynamic equations one has (recall $\theta_{2n}^* > 0$):

$$ar{\mathcal{V}} = -e^T Q e + (heta_{2n}^*)^{-1} \left(u - heta^{*T} \omega
ight) e_1
onumber \ = -e^T Q e + (heta_{2n}^*)^{-1} \sum_{i=1}^{2n} \left(\psi_i - heta_i^*
ight) \omega_i e_1 \,.$$

hideallsubsections

П

VSS Summer Course-2019

> Liu Hsu UFRJ

MRAC block diagram Hidden difficulties MRAC. $a^* > 1$

MRAC to VS-MRAC

Brief history

ACG VS-MRAC (1984)

Lyapunov design o VS-MRAC

Lyapunov control synthesis

Link between MRAC and VS-MRAC

The OF VS-MRAC, $n^* = 1$

 $\begin{array}{l} \text{Main result,} \\ n^{*} = 1 \end{array}$

Simulation results

where $\bar{\theta}_i > |\theta_i^*|$, $\forall i$, then

Now, choosing

$$\dot{V} = -e^T Q e + (\theta_{2n}^*)^{-1} \sum_{i=1}^{2n} \left(-\bar{\theta}_i |\omega_i e_1| + \theta_i^* \omega_i e_1 \right) \,.$$

 $\psi_i = -\bar{\theta}_i \operatorname{sign}(\omega_i e_1),$

Since summation above is non-positive, then

V is negative definite! Exponential stability guaranteed!

$$\dot{V} < -e^T Q e < 0$$
.

hideallsubsections

111

VSS Summer Course-2019

> Liu Hsu UFRJ

MRAC block diagram Hidden difficulties MRAC. $a^* > 1$

MRAC to VS-MRAC

Brief history

ACG VS-MRAC (1984)

Lyapunov design o VS-MRAC

Lyapunov control synthesis

Link between MRAC and VS-MRAC

The OF VS-MRAC, $n^* = 1$

 $\begin{array}{l} \text{Main result,} \\ n^{*} = 1 \end{array}$

Simulation results

Summarizing:

- Lyapunov function candidate: $V(e) = \frac{1}{2}e^T Pe$
- SPR allows: $e_1 = (Pb)^{-1}e$
- Upper bounds $\bar{\theta}_i > \theta^*_i$ are known
- Choose $\psi_i = -\bar{\theta}_i sign(\omega_i e_1)$
- Conclude $\dot{V} < -e^T Q e < 0$

Remark:

SPR made the "magic" of sign-indefinite terms being cancellable!

hideallsubsections

IV

4.3.2 Link between MRAC and VS-MRAC

Consider the adaptation law:

VSS Summer Course-2019

> Liu Hsu UFRJ

MRAC block diagram Hidden difficulties MRAC, $n^* > 1$

MRAC to VS-MRAC

Brief history

ACG VS-MRAC (1984)

Lyapunov design of VS-MRAC

Lyapunov contro synthesis

Link between MRAC and VS-MRAC

The OF VS-MRAC, $n^* = 1$

 $\begin{array}{l} \text{Main result,} \\ n^{*} = 1 \end{array}$

Simulation results

with forgetting factor $\sigma/\mu>$ 0 and singular perturbation $\mu\to$ 0^+ and "normalized gain"

$$\Gamma = diag \left[rac{(\sigma/\mu) ar{ heta}_i}{|e_1 \omega_i|}
ight]$$

 $\mu\dot{\theta} = -\sigma\theta - \Gamma\omega e_1, \quad \mu > 0$

Туре	σ/μ	μ
MRAC	0	1
transition	> 0	small
VS-MRAC	∞	0

This is in agreement with the "fast forgetting and high adaptation gain" interpretation of the VS-law.

4.4 The (output feedback) VS-MRAC, $n^* = 1$

VSS Summer Course-2019

Liu Hsu UFRJ

MRAC block diagram Hidden difficulties MRAC. $p^* > 1$

MRAC to VS-MRAC

Brief history

ACG VS-MRAC (1984)

Lyapunov design of VS-MRAC

Lyapunov contro synthesis

Link between MRAC and VS-MRAC

The OF VS-MRAC, $n^* = 1$

 $\begin{array}{l} \text{Main result,} \\ n^{*} = 1 \end{array}$

Simulation results

Compact form

(Hsu & Araújo 1990)[?]

$$u = -\rho(\omega)\operatorname{sign}(e_1)$$
$$\rho = \left[\sum_{1}^{2n} \bar{\theta}_i |\omega_i| + \delta\right]$$

 ρ is called "gain" or "modulation" function of the relay function sign(.), with arbitrary $\delta>0.$

4.4.1 Main result

VSS Summer Course-2019

Liu Hsu UFRJ

MRAC block diagram Hidden difficultie MRAC, $n^* > 1$

MRAC to VS-MRAC

Brief history

ACG VS-MRAG (1984)

Lyapunov design of VS-MRAC

Lyapunov contro synthesis

Link between MRAC and VS-MRAC

The OF VS-MRAC, $n^* = 1$

 $\begin{array}{l} \text{Main result,} \\ n^{*} = 1 \end{array}$

Simulation results

Theorem (Global Stability): For every initial condition,

- $||e(t)| \rightarrow 0$ with at least an exponential rate, independent of the excitation r(t);
- The output error e₁(t) = h^Te becomes zero after finite time t₁ ≥ t₀, in sliding mode.

4.4.2 Simulation results

VSS Summer Course-2019

> Liu Hsu UFRJ

MRAC block diagram Hidden difficulties MRAC, $n^* > 1$

MRAC to VS-MRAC

Brief history

ACG VS-MRA((1984)

Lyapunov design of VS-MRAC

Lyapunov contro synthesis

Link between MRAC and VS-MRAC

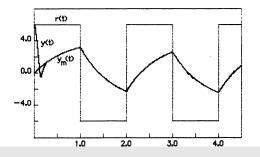
The OF VS-MRAC $n^* = 1$

 $\begin{array}{l} \text{Main result,} \\ n^{*} \ = \ 1 \end{array}$

Simulation results

Uncertain nonlinear time-varying plant (Hsu and Costa 1989)

$$\begin{aligned} \dot{x}_1 &= [1 + a(t)]x_2 \\ \dot{x}_2 &= \sin x_1 - 2\sin x_2 + d(t) + u \\ \dot{y}_m &= -2y_m + r(t); \\ y &= 6x_1 + x_2 \end{aligned}$$



sections

4.5 VS-MRAC, $n^* \ge 1$

VSS Summer Course-2019

Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments ROV DP

Linear vs nonlinea control

Experimental ROV P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC As for MRAC, an augmented error was also proposed by (Hsu 1990) for the VS-MRAC, inspired by:

- (Monopoli, 1974)
- predicted error and prediction error (Goodwin and Mayne 1987)

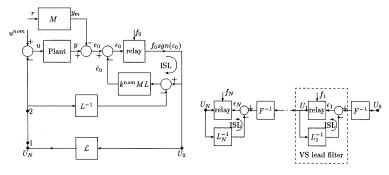
4.4.1 Block diagram, $n^* \geq 1$

Liu Hsu UFRJ

- V_{5} -MRAC, $n^* \ge 1$ **Block diagram**, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem
- From theory to experiments ROV DP
- Linear vs nonlinea control
- Experimental ROV P-PI DP
- Experimental ROV VS-MRAC DP
- Robot manipulator
- Other Application

MIMO VS-MRAC

Multivariable VS-MRAC



 $k^{nom} = k^* \rightarrow \varepsilon_0 = k^* ML(-U_0 - L^{-1}u^*)$

- \mathcal{L}
- - \mathcal{L} is an approximation of $L = L_1 \dots L_N$; - $L_i = (s + \alpha_i)$; $F^{-1} = 1/(\tau s + 1)$ is an averaging filter.
- -ISL: is an "Ideal Sliding Loop" if $\mathit{ML} \in \mathsf{SPR}$

4.4.2 Global stability/tracking

VSS Summer Course-2019

Liu Hsu UFRJ

- VS-MRAC, $n^* \ge 1$ Block diagram $n^* \ge 1$
- Global stability Fundamental Lemmas Stability Theorem
- From theory to experiments
- Linear vs nonlinea
- Experimental ROV P-PI DP
- Experimental ROV VS-MRAC DP
- Robot manipulators
- Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

- Partial proof (n* = 2) was presented in (Hsu, Araújo, Costa, 1994) [Hsu, Araújo, and Costa 1994]
- The complete stability proof was published in (Hsu, Lizarralde and Araújo 1997)[Hsu, Lizarralde, and Araújo 1997]
- Two fundamental lemmas were developed to this end:

4.4.3 Fundamental Lemmas

VSS Summer Course-2019

Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$

Fundamental Lemmas Stability Theorems

From theory to experiments ROV DP

control

Experimental ROV P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

Lemma 1

Consider the ${\rm I}/{\rm O}$ relationship

$$\varepsilon_0(t) = M(s)[u + d(t) + \pi(t)], \quad u = -f(t)sign(\varepsilon_0)$$

where M(s) is SPR, d(t), $/\pi(t)$ are LI (locally integrable), $|\pi(t)| \leq Re^{-at}$, a > 0. Let x be the state of a stable realization of M(s). If f(t) is LI and $f(t) \leq |d(t)|$, $\forall t \geq 0$, then the inequality

$\|\varepsilon_0(t)\|$ and $\|x(t)\| \le [c_1\|x(0)\| + c_2R]e^{-\lambda_1 t}$

holds $\forall t \geq 0$ and for positive constants c_1, c_2, λ_1 . Moreover, if $f(t) \leq |d(t)| + \epsilon$, $\forall t \geq 0$, for arbitrary $\epsilon > 0$, then $\varepsilon_0(t)$ tends to zero in finite time.

Proof: [Hsu and Costa 1989], (Hsu and Lizarralde 1992).

4.4.3 Fundamental Lemmas

VSS Summer Course-2019

> Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability

Fundamental Lemmas Stability Theorems

From theory to experiments ROV DP Linear vs nonlinear control

Experimental ROV P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulator

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

Lemma 2

Consider the ${\rm I}/{\rm O}$ relationship

$$\varepsilon(t) = \frac{1}{s+\alpha} \left[u + d(t) \right] + \pi(t) + \beta(t), \quad u = -f(t) sign(\varepsilon_0)$$

where $\pi(t)$ is as in Lemma 1 and $\beta \in L_{\infty e}$, are both absolutely continuous. If $f(t) \ge |d(t)|$, $\forall t$, then with $\hat{e}(t) := \varepsilon(t) - \beta(t)$:

$$|\hat{e}(t)| ext{ and } |arepsilon(t)| \leq |\hat{e}(0)|e^{lpha t} + 2\left[R\,e^{-\min(lpha,\lambda)t} + sup_t|eta|
ight]$$

Proof: Nontrivial! [Hsu, Lizarralde, and Araújo 1997]

hideallsubsections

11

4.4.3 Fundamental Lemmas

Lemma 3 (FOAF (*) Lemma)

Course-2019 Liu Hsu UFRJ

VSS Summer

Fundamental Lemmas

VS-MRAC

Consider the stable strictly proper input/output relationship z = W(s)d. Let γ_0 be a positive constant satisfying $0 < \gamma_0 < \min_i |Re(p_i)|$ (p_i are the poles of W(s)), and $\overline{d}(t)$ be an instantaneous upper bound of d(t), i.e., $|d(t)| \leq \overline{d}(t) \ \forall t$. Then, there exists a positive constant c_1 such that the impulse response w(t) satisfies $|w(t)| \leq c_1 \gamma_0 e^{-\gamma_0 t}$ and the following inequalities hold

$$|W*d(t)| \leq c_1 rac{\gamma_0}{s+\gamma_0} * ar{d}(t);$$
 (1)

$$|z(t) - z^{0}(t)| \leq c_{1} |\hat{d}(t) - \hat{d}(t)^{0}|; \quad \hat{d} = (\frac{\gamma_{0}}{s + \gamma_{0}})\bar{d}$$
 (2)

$$|z(t)| \leq c_1 \hat{d}(t) + \exp$$
 (3)

where z^0 , \hat{d}^0 and "exp" depend on the initial conditions and decay exponentially to zero with rate γ_0 (for a proof see [?]).

(*) First Order Approximation Filter

111

4.4.3 Fundamental Lemmas

VSS Summer Course-2019

Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$

Fundamental Lemmas

Stability Theorems

to experiments

ROV DP

Linear vs nonlinea control

Experimental ROV P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

Corollary

Consider $z = G_F(\tau s)G_L(s)d = G_F(\tau s)\frac{1}{s+\alpha}\bar{G}_L(s)d$ where G_F, G_L are rational, stable, strictly proper, \bar{G}_L has *positive impulse response* (p.i.r.), $\alpha > 0$. If $\tau \in [0, \bar{\tau}]$ and $\bar{\tau}$ is sufficiently small, there exists k > 0 such that (2) and (3) hold with

 $\hat{d}(t) = kG_L\bar{d}(t)$

hideallsubsections

IV

VSS Summer Course-2019

> Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorems

From theory to experiments ROV DP

control

P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

Theorem 1

Consider the auxiliary errors ε_i , i = 0, ..., N ($N = n^* - 1$). Then, with the relay modulation functions satisfying (i = 0, ..., N - 1)

$$f_i \ge \left| (F_{1,i}^{-1} L_{i+1,N}^{-1}) * (\bar{U}) \right|$$
 and $f_N \ge \left| F_{1,N}^{-1} * U_d \right|;$ (4)

the auxiliary errors e_i' $(i=0,\ldots,N-1)$ tend to zero, at least exp. Moreover,

$$|e'_{i}(t)|, ||x_{e}(t)|| \leq \Pi^{0}; |e'_{N}(t)| \leq 2\tau\kappa K_{eN}C(t) + \Pi;$$

 $|\pi_{ei}(t)|, |\pi_{0i}(t)| \leq \Pi^{0}; \quad i = 0, \dots, N; \quad |\beta_{uN}(t)| \leq \tau K_{\beta N} C(t) + \Pi^{0}$

where, $\Pi^0(t)$ and $\Pi(t)$ are exp. decaying terms depending on the initial conditions, and

$$C_1(t) = \sup_{t} \|\omega(t)\|; \quad C(t) = M_{\theta}C_1(t) + M_{red}$$

with some positive constants M_{θ} , M_{red} and $\tau := \max_i \tau_i$.

VSS Summer Course-2019

Liu Hsu UFRJ

- VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorems
- From theory to experiments ROV DP Linear vs nonline
- Experimental ROV
- Experimental ROV VS-MRAC DP
- Robot manipulators
- Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

Interpretation of Theorem 1

Basically, Theorem 1 says that all auxiliary errors decay exponentially to zero, except the last one ε_N which tends exponentially to a "small" residual value of order $\tau C(t)$. But C(t) depends on the states of the system, so in order to conclude stability, a further step is Theorem 2.

hideallsubsections

11

VSS Summer Course-2019

Liu Hsu UFRJ

- VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorems
- From theory to experiments ROV DP
- Linear vs nonlinear control
- Experimental ROV P-PI DP
- Experimental ROV VS-MRAC DP
- Robot manipulators
- Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

Theorem 2: Global stability/tracking for $n^* \ge 1$

Assume that the modulation functions satisfy Theorem 1. Then, for sufficiently small $\tau > 0$, the full error system with state z is globally exponentially stable with respect to a residual set of order τ , i.e., there exist positive constants K and δ such that $\forall z(0), \forall t \ge 0, ||z(t)|| \le Ke^{-\delta t} ||z(0)|| + O(\tau)$.

Proof:

Based on

- a small gain argument
- a recurrence relation relating the full error state z from time t to t + T where T is some large enough period

VSS Summer Course-2019

> Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorems

From theory to experiments ROV DP Linear vs nonlinea control Experimental ROV

Experimental ROV

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC This proves stability and convergence to a residual set, the size being independent of the initial conditions.

hideallsubsections

IV

VSS Summer Course-2019

Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorems

From theory to experiments ROV DP

Linear vs nonlinea control

Experimental ROV P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

The players

(Costa, Araújo, Lizarralde (circa 1995))

5. From theory to practice I

VSS Summer Course-2019

> Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments

ROV DP

Linear vs nonlinea control

Experimental ROV P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

- Block diagram, $n^* \geq 1$
- Global stability
- Fundamental Lemmas
- Stability Theorems

From theory to experimentsROV DP

- Linear vs nonlinear control
- Experimental of ROV P-PI DP
- Experimental ROV P-PI DP
- Robot manipulators
- Other Applications

MIMO VS-MRAC

■ UV-MRAC Relative degree 1

5. From theory to practice II

VSS Summer Course-2019

Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments

ROV DP

Linear vs nonlinear control

Experimental ROV P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC The VS-MRAC was successfully applied to a number of practical problems.

5.1 Dynamic Positioning of an ROV

VSS Summer Course-2019

> Liu Hsu UFRJ

VS.MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments ROV DP

Linear vs nonlinea control

Experimental ROV P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC Dynamic positioning of an ROV is perfect for SMC application due to model uncertainties and environmental disturbances

Two main publications report the application of the VS-MRAC to ROV Dynamic Positioning Control:

- (da Cunha, Costa and Hsu 1995) IEEE J. of Ocean Engineering
- (Hsu, Costa, Lizarralde and da Cunha J. 2000) IEEE Robotics and Automation Magazine

5.1 Dynamic Positioning of an ROV

The Passive Arm

VSS Summer Course-2019

> Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments ROV DP

Linear vs nonline control

Experimental RO P-PI DP

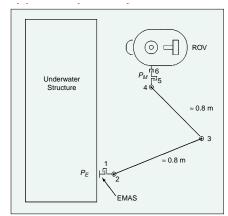
Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC



hideallsubsections

П

5.1 Dynamic Positioning of an ROV

VSS Summer Course-2019

> Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments ROV DP

Linear vs nonline control

Experimental ROV P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

The ROV-Passive Arm system

Figure 3. The passive arm installed on the MKII ROV.

hideallsubsections

ш

VSS Summer

Course-2019 Liu Hsu UFRJ

ROV DP

VS-MRAC

5.1 Dynamic Positioning of an ROV

ROV Coordinate system

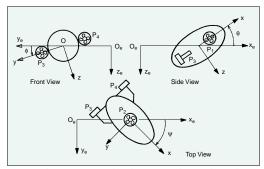


Figure 7. Schematic ROV views and coordinate systems, where O and O₂ are the origins of the body and inertial frames, respectively; $P = [x_0, y_0, z_0]^T$ is the ROV position given by the inertial coordinates of O; x, y, and z are the body coordinate axes; x, y_{a} , and z_{a} are the inertial coordinate axes (also the inertial coordinates of O); ϕ , θ , and ψ are the roll, pitch, and heading Euler angles, respectively; $Q = \begin{bmatrix} \phi & \theta & \psi \end{bmatrix}^T$ is the ROV attitude

5.1.1 Linear vs nonlinear control algorithms

VSS Summer Course-2019

> Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments ROV DP

Linear vs nonlinear control

Experimental ROV P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

P-PI (Proportional-Proportional Integral) linear Control

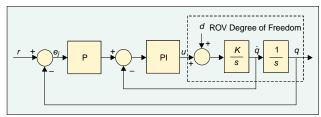


Figure 8. Block diagram of the P-PI.

51 / 138

5.1.1 Linear vs nonlinear control algorithms

VSS Summer Course-2019

Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments ROV DP

Linear vs nonlinear control

Experimental RO P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

VS-MRAC ($n^* = 3$) as applied for ROV DP (Note the noise filter)

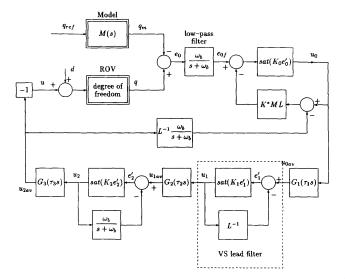
hideallsubsections

Ш

5.1.1 Linear vs nonlinear control algorithms

MIMO VS-MRAC

Multivariable VS-MRAC



hideallsubsections

ш

VSS Summer

5.1.2 Experimental results with 350Kg ROV (Tatuí-I) P-PI

Course-2019 Liu Hsu UFRJ Experimental ROV P-PI DP

Experimental RO

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

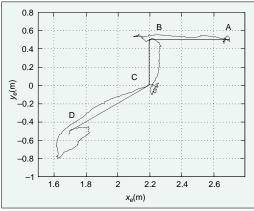


Figure 10. Trajectory tracking tests with the P-PI control algorithm applied to a large ROV. Horizontal $x_e y_e$ plane view.

(IEEE RAM 2000)

VSS Summer

5.1.3 Experimental result of ROV (Tatuí-I) VS-MRAC DP

Robot manipulators

MIMO VS-MRAC

Multivariable VS-MRAC Movie

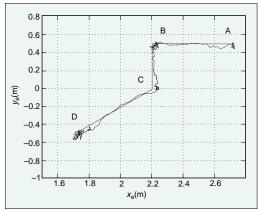


Figure 11. Trajectory tracking tests with the VS-MRAC control algorithm applied to a large ROV. Horizontal $x_e y_e$ plane view.

VSS Summer Course-2019

Liu Hsu UFRJ

- VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem
- From theory to experiments
- Linear vs nonlinea
- Experimental ROV P-PI DP
- Experimental ROV VS-MRAC DP
- Robot manipulators
- Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

- VS-MRAC extended to the tracking control of robot manipulators without joint velocity measurements (Hsu and Lizarralde 1995)
- A decentralized VS-MRAC was implemented on a PUMA 560 manipulator
- Better results than in the literature
- R. Guenther developed the VS-MRAC for Flexible Link and Rigid Link Electrically Driven manipulators using cascade control

VSS Summer Course-2019

> Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments ROV DP

Linear vs nonlinea control

Experimental ROV P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

MIMO VS-MRAC

Multivariable VS-MRAC Equations of *n*-link rigid manipulator in joint space

$$H(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = \Gamma$$
 (5)

Ш

• $q \in \Re^n$ is the vector of joints;

- $\Gamma \in \Re^n$ is the vector of torques;
- $H(q) \in \Re^{n \times n}$ is the inertia matrix;
- $C(q, \dot{q})\dot{q}$ represents the centrifugal and Coriolis torques/forces;
- $g(q) \in \Re^n$ is the vector of gravitational torques/forces

OOPS! a nonlinear system!!

VSS Summer Course-2019

Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorems

From theory to experiments

Linear vs nonlinear control

Experimental ROV P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

MIMO VS-MRAC

Multivariable VS-MRAC We wish to design a suitable control to ensure that the joint tracking error

$$\tilde{q} = q - q_d$$
 (6)

Ш

remains small.

The desired trajectory and derivatives $q_d(t)$, $\dot{q}_d(t)$ and $\ddot{q}_d(t)$ are given.

VSS Summer Course-2019

> Liu Hsu UFRJ

- VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem
- From theory to experiments
- Linear vs nonlinea control
- Experimental ROV P-PI DP
- Experimental ROV VS-MRAC DP
- Robot manipulators

MIMO VS-MRAC

Multivariable VS-MRAC Lagrangian systems are nonlinear.

We need to bring our system to a linear form with nonlinear disturbances.

The proposed strategy is based on the following ideas:

- Using Computed Torque, linearize and decouple into n subsystems, with the available (nominal) parameter information;
- Regard imperfect compensation as an input disturbance to each subsystem;
- Control each subsystem by means of the I/O VS-MRAC. This circumvents the problem of velocity measurement.

hideallsubsections

IV

VSS Summer Course-2019

> Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments ROV DP Linear vs nonlinea control

Experimental ROV P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

MIMO VS-MRAC

Multivariable VS-MRAC Linearization and decoupling is trivial in the case of perfect parameter knowledge and with position and velocity measurements. Indeed, using

$$\Gamma = H(q)u + U_{ff} \tag{7}$$

$$U_{ff} = H(q)\ddot{q}_d + C(q,\dot{q})\dot{q} + g(q)$$
(8)

we obtain from the dynamic equation of the manipulator (5), the following system

$$\ddot{\tilde{q}} = u$$
 (9)

where u is the control vector to be designed so as to achieve asymptotic tracking ($\tilde{q} \rightarrow 0$). We can thus control separately each joint, reduced to simple double integrators.

VSS Summer Course-2019

> Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments ROV DP Linear vs nonlinear control Experimental ROV

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC Now, when the system parameters are known only *nominally* and \dot{q} is not measured, the feedforward terms of U_{ff} (8) can be replaced by an approximation, using nominal parameter values and desired trajectory quantities, i.e.,

$$U_{ff}^{o} = H^{o}(q_{d})\ddot{q}_{d} + C^{o}(q_{d}, \dot{q}_{d})\dot{q}_{d} + g^{o}(q_{d})$$
(10)

where the superscript o in H, C and g indicates that nominal parameters are being used. Now, the subsytems is reduced disturbed and coupled double integrators with the control law given by

$$\Gamma = H^{o}(q)u + U^{o}_{ff} \tag{11}$$

VSS Summer Course-2019

> Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments ROV DP Linear vs nonlinea control Exportmental RO

P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC one obtains from (5), the following system

$$\ddot{\tilde{q}} = u + d \tag{12}$$

where

$$d = d_{\alpha} + d_{\beta} + d_{\gamma} + d_{\delta} \tag{13}$$

with disturbances terms bounded (elementwise) by:

$$|d_{\alpha i}| \leq K_{1i}^{\alpha} \left\| \dot{\tilde{q}} \right\| + K_{2i}^{\alpha} \left\| \dot{\tilde{q}} \right\|^{2}$$
(14)

$$|d_{\beta i}| \leq \delta_{1i} \|u\| \tag{15}$$

$$|d_{\gamma i}| \leq \delta_{2i} \|\ddot{q}_d\| + \delta_{3i} \|\dot{q}_d\|^2 + \delta_{4i}$$
(16)

$$\|d_{\delta i}\| \leq K_{1i}^{\delta} \|\ddot{q}_{d}\| + K_{2i}^{\delta} \|\dot{q}_{d}\|^{2} + K_{3i}^{\delta}$$
(17)

where δ_{ki} , K_{ki}^{δ} and K_{ki}^{α} are nonnegative constants. Note that the constants δ_{ki} tend to zero when nominal values approach the true values, i.e., $\tilde{H} \to 0$, $\tilde{C} \to 0$ and $\tilde{g} \to 0$.

VSS Summer Course-2019

> Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorems

From theory to experiments ROV DP Linear vs nonlinea

control Experimental ROV

P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

MIMO VS-MRAC

Multivariable VS-MRAC The controller is designed to generate the control signal u_i for each of the subsystems of (12), namely,

$$\ddot{\tilde{q}}_i = u_i + d_i \tag{18}$$

VIII

where \tilde{q}_i , u_i and d_i are the i-th component of \tilde{q} , u and d, respectively.

As can be observed, the plant (18) has relative degree $n^* = 2$.

VSS Summer Course-2019

> Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments ROV DP

Linear vs nonlinea control

Experimental ROV P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC Thus, the VS-MRAC for $n^* = 2$ can be applied to each generic degree of freedom.

hideallsubsections

IX

VSS Summer Course-2019

5.2 Robot manipulator applications

Linear vs nor

control

P-PI DP

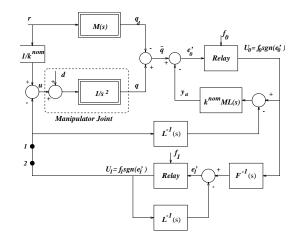
Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC



hideallsubsections

Х

VSS Summer Course-2019 Theorem

Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theoreme

From theory to experiments ROV DP

Linear vs nonlinear control

Experimental ROV P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC Consider system MRAC error system with u(t) given by the VS-MRAC of Fig. 56. Let z(t) be the complete state of the error system as defined above and let C(t) be defined as

$$C(t) = M_{\theta}C_{\omega}(t) + \|W_d\|C_d(t)$$
(19)

XI

where $C_{\omega}(t) = \sup_{t} |\omega(t)|$; $C_{d}(t) = \sup_{t} |d(t)|$ and $||\theta^{*}|| \le M_{\theta}$. Then one has

 $\|e\| \le \tau K_e C(t) + EXP \tag{20}$

Moreover, if the following stability condition

$$C(t) \le K_1 ||z(0)|| + K_2$$
 (21)

holds $\forall z(0)$, then z(t) is globally exponentially stable with respect to some small residual set with magnitude of order τ .

VSS Summer Course-2019

> Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments ROV DP Linear vs nonlinea

Experimental RO

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC The proof of **(B)** invokes the Frobenius-Perron's Theorem, due to the residual coupling of the control of each subsystem which is fortunately of order $O(\tau)$.

hideallsubsections

XII

VSS Summer Course-2019

5.2 Robot manipulator applications

Liu Hsu UFRJ $v_{s}^{s} \geq 1$ Block diagram, $a^{*} \geq 1$ Global stability Fundamental

Stability Theorems

From theory to experiments ROV DP Linear vs nonlinea control

Experimental RO P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

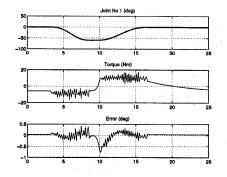


Figure 2: Joint $N^{\circ}1$, a) q and q_d in degrees, b) control signal Γ in Nm and c) tracking errors in degrees.

hideallsubsections

XIII

VSS Summer

5.2 Robot manipulator applications

Course-2019 Liu Hsu UFRJ

Experimental ROV

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

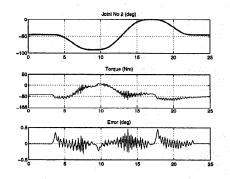


Figure 3: Joint $N^{\circ}2$, a) q and q_d in degrees, b) control signal Γ in Nm and c) tracking errors in degrees.

hideallsubsections

XIV

VSS Summer

5.2 Robot manipulator applications

ROV DP

Linear vs nonlinea control

Experimental RO\ P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

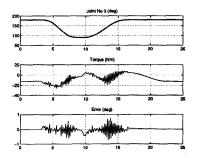


Figure 4: Joint $N^{\circ}3$, a) q and q_d in degrees, b) control signal Γ in Nm and c) tracking errors in degrees.

hideallsubsections

XV

5.3 Other Applications

VSS Summer Course-2019

Liu Hsu UFRJ

- VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem
- From theory to experiments
- Linear vs nonlinea control
- Experimental ROV P-PI DP
- Experimental ROV VS-MRAC DP
- Robot manipulators
- Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

- A.D. de Araújo (UFRN, Natal) developed several successful applications with DC and Induction motor control (a CHESF project 2009).
- He proposed several variations of the VS-MRAC, including adaptive pole placement control with variable structure (VS-APPC).
- Sahjendra N. Singh (UNLV, Las Vegas) and A. D. Araújo: applications of the VS-MRAC to aerospace and aircraft problems. One example (2012) is in satellite formation control.

VSS Summer Course-2019

Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments ROV DP

Linear vs nonlinea control

Experimental ROV P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

The players

(Costa, Lizarralde, Cunha, Araújo (circa 2000))

VSS Summer Course-2019

Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments ROV DP

Linear vs nonlinea control

Experimental ROV P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

6. MIMO VS-MRAC I

- Block diagram, $n^* \geq 1$
- Global stability
- Fundamental Lemmas
- Stability Theorems

From theory to experiments

- Linear vs nonlinear control
- Experimental of ROV P-PI DP
- Experimental ROV P-PI DP

6 MIMO VS-MRAC

- Multivariable VS-MRAC
 - UV-MRAC Relative degree 1
- UV-MRAC, $n^* \geq 1$

6.1 Multivariable VS-MRAC

VSS Summer Course-2019

Liu Hsu UFRJ

- VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem
- From theory to experiments ROV DP Linear vs nonlines
- Experimental ROV P-PI DP
- Experimental ROV VS-MRAC DP
- Robot manipulators
- Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC References: (Cunha, Hsu, Costa and Lizarralde 2002, 2003, 2006, 2008-FOAF)

Other approaches: (Spurgeon and Edwards 1998), (Emelyanov et al 1992), (Chien et al 1996), (Bandhiopadhyai 2002 (dicrete-time))

A powerful approach is the High Gain Observer approach for output feedback SMC (Oh and Khalil 1995, 1997). However, peaking and noise sensitivity are of concern.

VSS Summer Course-2019

Liu Hsu UFRJ

VS.MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments ROV DP

Linear vs nonlinea control

Experimental ROV P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

- Designs for linear and nonlinear multivariable plants;
- Unit vector control;
- −*K_p* Hurwitz uncertain High Frequency Gain (N & S for sliding!);
- Global stability with output feedback.

Remark: First Order Approximation Filters (FOAF) are instrumental to extend VS-MRAC to nonlinear systems.

Problem statement

Plant

VSS Summer Course-2019

Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments ROV DP

Linear vs nonlinea control

Experimental ROV P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

$\dot{x}_{p} = A_{p}x_{p} + \phi(x_{p}, t) + B_{p}u, \qquad y = C_{p}x_{p}$ $x_{p}, \phi \in \mathbb{R}^{n}, \quad y, u \in \mathbb{R}^{m}$

Linear subsystem transfer function matrix:

$$G(s)=C_p(sI-A_p)^{-1}B_p$$

High frequency gain matrix:

$$K_p = C_p B_p$$

hideallsubsections

П

Special assumptions

Course-2019 Liu Hsu UFRJ

VSS Summer

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments ROV DP Linear vs nonlinea control Experimental ROV

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

(A1) S_p is known such that $-K_pS_p$ is Hurwitz (relaxes the positive definiteness condition)

(A2) $\phi(x_p, t)$: piecewise continuous in t and locally Lipschitz in x_p

 $(\mathsf{A3}) \ \|\phi(x_p,t)\| \leq k_x \|x_p\| + \varphi(y,t) \,, \quad k_x, \varphi \geq 0 \text{ are known}$

(A1) relaxes a positive definiteness condition. All uncertainty is expressed as a Hurwitz condition.

It is less conservative than allowing $\phi = B\xi(t, x_p, u)$ and requiring

$$\|\xi(t, x_{p}, u)\| \leq k_{1}\|u\| + \alpha(t, x_{p})$$

and bounding the gain k_1 as made in several other published works (e.g. (Edwards and Surgeon 1998)).

hideallsubsections

Ш

VSS Summer Course-2019

Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments ROV DP

Linear vs nonlinear control

Experimental ROV P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

Unit Vector control law

$$u = u^{nom} - S_p \rho \frac{e}{\|e\|}$$

Modulation (or variable gain) function:

$$\rho = \delta + c_1 \|\omega\| + c_2 \|r\| + c_3 \|e\| + \hat{\phi}(t)$$

output feedback!.

VSS Summer Course-2019

Liu Hsu UFRJ

 V_{s}^{S-MRAC} , $v_{s}^{*} \geq 1$ Block diagram, $n^{*} \geq 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments ROV DP Linear vs nonlinea

Experimental ROV P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

Other Application

MIMO VS-MRAC

Multivariable VS-MRAC

Lemma

Consider the MIMO system

$$\dot{e}(t) = A_M e(t) + K [u + d(t) + \pi(t)],$$
 (22)

$$u = -\rho(e,t)\frac{e}{\|e\|}, \qquad (23)$$

where $A_M, K \in \mathbb{R}^{m \times m}$; d(t), $\pi(t)$ and ρ are LI. If -K is Hurwitz and

$$\rho(e,t) \geq \delta + c_e \|e(t)\| + (1+c_d)\|d(t)\|, \qquad (24)$$

where $c_e, c_d \ge 0$ are appropriate constants, and $\delta \ge 0$ is an arbitrary constant, then $\exists k_1, k_2, \lambda_1 > 0$ such that

$$\|e(t)\| \le (k_1 \|e(0)\| + k_2 R) \exp(-\lambda_1 t).$$
(25)

Therefore, for $\pi(t) \equiv 0$ the system is globally exponentially stable. Moreover, if $\delta > 0$, then the sliding mode at e = 0 is reached after some finite time $t_s \ge 0$.

Proof: see (Cunha et al, 2003) [Cunha, Hsu, Costa, and Lizarralde 2003].

Theorem

VSS Summer Course-2019

Liu Hsu UFRJ

- VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorems
- From theory to experiments ROV DP Linear vs nonlinear control Experimental ROV P-PI DP
- VS-MRAC DP
- Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

Theorem 1 If certain assumptions including (A1)–(A3) are verified, then the The UV-MRAC system is globally exponentially stable. Moreover, if $\delta > 0$, the output error e(t) becomes zero after some finite time.

Proof: Application of a Lemma 1 to the nonminimal realization of error equation and the equations for the transient state of W_d and of the filter that generates \hat{d} . The transient state is incorporated to the π term of Lemma 2 of Sec. 4.

VSS Summer Course-2019

> Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments ROV DP Linear vs nonlinea control Experimental ROV

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

$\ensuremath{\textbf{Remark}}$: The Hurwitz condition is necessary and sufficient for UVC.

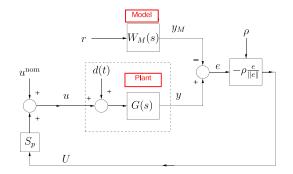
VSS Summer

Course-2019 Liu Hsu UFRJ

6.1.1 UV-MRAC *n** = 1

VIII

UV-MRAC (n*=1) Block diagram



VSS Summer Course-2019

> Liu Hsu UFRJ

VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem

From theory to experiments ROV DP Linear vs nonlinea control

Experimental ROV P-PI DP

Experimental ROV VS-MRAC DP

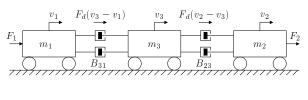
Robot manipulators

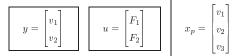
Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

Simulation Example: Three car chain



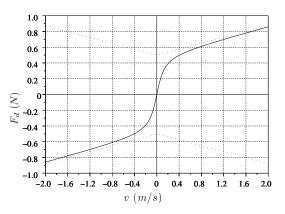


VSS Summer

Course-2019

6.1.1 UV-MRAC n* = 1

Nonlinear damper



hideallsubsections

Х

Liu Hsu UFRJ v_s MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental

Lemmas Stability Theorem

From theory to experiments ROV DP Linear vs nonlinea control

Experimental RO P-PI DP

Experimental ROV VS-MRAC DP

Robot manipulators

Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

84 / 138

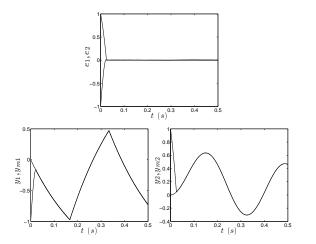
VSS Summer

Course-2019

6.1.1 UV-MRAC *n** = 1

XI

Position control of carts 1 and 2



hideallsubsections

Liu Hsu UFRJ $v_{s-MRAC,}^{*} \geq 1$ Block diagram,

- n 2 1 Global stability Fundamental Lemmas Stability Theore
- From theory to experiments ROV DP
- Linear vs nonline control
- Experimental RO P-PI DP
- Experimental ROV VS-MRAC DP
- Robot manipulators
- Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC

6.2 UV-MRAC, $n^* \ge 1$

VSS Summer Course-2019

Liu Hsu UFRJ

- VS-MRAC, $n^* \ge 1$ Block diagram, $n^* \ge 1$ Global stability Fundamental Lemmas Stability Theorem
- From theory to experiments ROV DP
- Linear vs nonlinea control
- Experimental ROV P-PI DP
- Experimental ROV VS-MRAC DP
- Robot manipulators
- Other Applications

MIMO VS-MRAC

Multivariable VS-MRAC Two options have been proposed:

- Generalize the VS-MRAC SISO by using unit vectors instead of relays
- Use High Gain Observers (HGO) to get the necessary (error) state estimation of uncertain plants.

6.2.1 UV-MRAC properties, $n^* \geq 1$]

VSS Summer Course-2019

> Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$ Problem stateme

Assumptions UV-MRAC Block Diagram, $n^* \ge 1$

VS-MRAC with HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework Summary of properties

- Applicable for a class of uncertain multivariable nonlinear systems;
- Assumes uniform relative degree $n^* \ge 1$;
- Includes nonlinear state dependent and unmatched disturbances;
- Peaking free (in contrast to well known HGO based design);
- Global or semi-global stability with respect to some residual set.

Reference:(Hsu et al IFAC2005) Related literature: (Edwards and Spurgeon 1998), (Oh and Khalil 1995)

6.2.2 Problem statement

VSS Summer Course-2019

> Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$

Problem statement

Assumptions UV-MRAC Block Diagram, $n^* \ge 1$

VS-MRAC wit HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC B MRAC adaptive Plant (square system: $y, u \in \mathbb{R}^m$

$$\dot{x}_{p} = A_{p}x_{p} + \phi(x_{p}, t) + B_{p}u$$

$$y = C_{p}x_{p}$$

Linear subsystem transfer function matrix:

$$G(s)=C_p(sI-A_p)^{-1}B_p$$

High frequency gain matrix:

$$K_p = C_p A_p^{n^* - 1} B_p$$

6.2.3 Assumptions

VSS Summer Course-2019

Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$ Problem statemed

Assumptions

UV-MRAC Block Diagram, $n^* \ge 1$

VS-MRAC with HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC

- (A1) Standard MRAC assumptions for G(s)
- (A2) $G(s) \rightarrow$ known relative degree n^*

(A3) Matrix S_p known such that $-K_pS_p$ Hurwitz \rightarrow reduce prior knowledge of K_p

(A4) ϕ is locally Lipschitz in x_p and piecewise continuous in t

 $\phi(x_p, t) \parallel \leq k_x \parallel x_p \parallel + \varphi(y, t), \ \forall (x_p, t), \ \text{with} \ k_x, \varphi \ \text{known}$

Note: $\varphi = \|y\|^2 \rightarrow$ finite-time escape is not precluded, a priori

6.2.3 UV-MRAC Block Diagram, $n^* \ge 1$

VSS Summer Course-2019

> Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$

Assumptions

UV-MRAC Block Diagram, $p^* \ge 1$

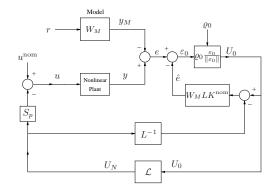
VS-MRAC with HGO

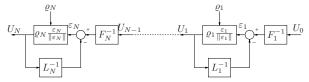
VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC





6.3 VS-MRAC with HGO

VSS Summer Course-2019

Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$ Problem statemer Assumptions UV-MRAC Block Diagram, $n^* \ge 1$

VS-MRAC with HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC

- Instead of the VS-lead filters of VS-MRAC, it is possible to use High Gain Observers.
- Its is different from using lead compensators.
- The distinctive difference is that, observers may form an Ideal Sliding Loop, even if the plant has unmodeled dynamics.
- Therefore the controller is expected to be less prone to chattering.

6.3.1 VS-MRAC with HGO, SISO

VSS Summer Course-2019

Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$ Problem statement Assumptions UV-MRAC Block Diagram, $n^* \ge 1$

VS-MRAC with HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC First consider the SISO case.

Model Reference: $\{A_M, B_M, C_M\}$, in observer canonical form. The Model Following error state equation:

$$\dot{x}_e = A_M x_e + B_M \frac{K_p}{K_M} \left[u - \theta^{*T} \omega + W_d(s) * d(t) + \pi_e \right]$$

$$e = C_M x_e$$

The high gain observer (smart placement!):

$$\dot{\hat{x}}_e = A_M \hat{x}_e + B_M k^{nom} U - [\alpha(\varepsilon^{-1}) - a_M] \tilde{e} \tilde{e} = C_M \hat{x}_e - e, \quad e = y - y_M$$

6.3.1 VS-MRAC with HGO, SISO

VSS Summer Course-2019

Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$ Problem stateme Assumptions UV-MRAC Block Diagram, $p^* \ge 1$

VS-MRAC with HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Passivity framework MIMO B-MRAC

The OF SMC law

- Control law: $u = u^{nom} \rho \operatorname{sign}(S\hat{x}_e)$
- Modulation function: $\rho(t) \ge \left\| \left(\theta^{\text{nom}} - \theta^* \right)^T \omega + W_d(s) * d(t) \right\|$
- \hat{x}_e is the estimate of x_e (from a HGO).
- S is s.t. $S(sI A_M)^{-1}B_M = W_M(s)L(s)$ is SPR

hideallsubsections

П

6.3.2 Caveat: HGO has peaking

VSS Summer Course-2019

> Liu Hsu UFRJ

DV-MIRAC properties, $n^* \ge 1$ Problem stateme Assumptions UV-MRAC Block Diagram, $n^* \ge 1$ VS-MRAC with HGO

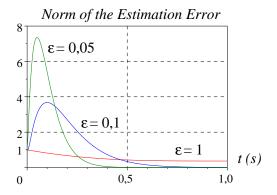
VS-MRAC with HGO, SISO

Peaking Phenomena

Peaking-free control Cart position control

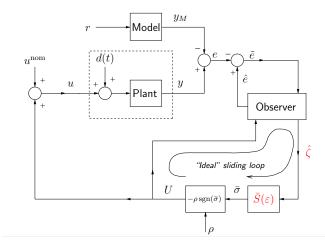
Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC B MPAC adaption



VSS Summer

6.3.3 Peaking-free control with ISM via HGO



Better robustness than using lead compensators using differentiators? (to be confirmed theoretically...)

6.3.4 Experimetal setup

Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$ Problem stateme Assumptions UV-MRAC Blocd Diagram, $n^* \ge 1$

VS-MRAC wit HGO

VS-MRAC with HGO, SISO

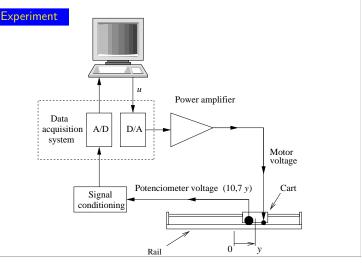
Peaking Phenomena

Peaking-free control

Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC



6.3.5 HGO VS-MRAC cart position control

VSS Summer Course-2019

> Liu Hsu UFRJ

DV-MRAC properties, $n^* \ge 1$ Problem statemed Assumptions UV-MRAC Block Diagram, $n^* \ge 1$

VS-MRAC wit HGO

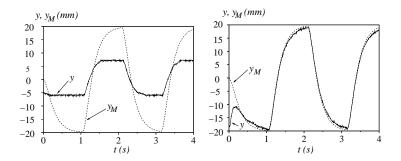
VS-MRAC wit HGO, SISO

Peaking Phenomena Peaking-free control

Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMC MRAC and Passivation Motivation Passivity framework MIMO B-MRAC



Nominal linear control

HGO + VSC + SVF

Nominal cart mass

Augmented cart mass

6.3.6 Conclusion for VS-MRAC with HGO

VSS Summer Course-2019

Liu Hsu UFRJ

- UV-MRAC properties, $n^* \ge 1$ Problem stateme Assumptions
- UV-MRAC Bloc Diagram, $n^* \ge 1$
- VS-MRAC with HGO
- VS-MRAC with HGO, SISO
- Peaking Phenomena Peaking-free control Cart position control
- Conclusion for VS-MRAC with HGO
- Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC

Conclusion

- New algorithm
- VSC + HGO + State Variable Filters
- The sliding surface is generated using the HGO state.
- Modulation function based on the filters state
- Main result: global exponential stability without *peaking*

VSS Summer Course-2019

Liu Hsu UFRJ

VV-MRACproperties, $n^* \ge 1$ Problem stateme Assumptions UV-MRAC Block Diagram, $n^* \ge 1$

VS-MRAC wit HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC

The players

(Costa, Lizarralde, Cunha, Peixoto (circa 2000))

7. Binary MIMO MRAC and Passivation

VSS Summer Course-2019

> Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$

Assumptions

UV-MRAC Blog Diagram, $n^* \ge 1$

VS-MRAC wit HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation

Motivation Passivity framework • UV-MRAC properties, $n^* \geq 1$]

- Problem statement
- Assumptions
- UV-MRAC Block Diagram, $n^* \ge 1$

7 Binary MIMO MRAC and Passivation

- Motivation
- Passivity framework
- MIMO B-MRAC
- B-MRAC adaptive control application
 - Conclusions

Bibliography

7.1 Motivation

VSS Summer Course-2019

Liu Hsu UFRJ

- UV-MRAC properties, $n^* \ge 1$ Problem statement Assumptions UV-MRAC Block Diagram, $n^* \ge 1$
- VS-MRAC with HGO
- VS-MRAC with HGO, SISO
- Peaking Phenomena Peaking-free control Cart position control
- Conclusion for VS-MRAC with HGO

Binary MIMC MRAC and Passivation

Motivation

Passivity framework MIMO B-MRAC

- MRAC leads to continuous control signal but lacks robustness and can present bad adaptation transient.
- UV-MRAC exhibits invariance properties, robustness and good convergence. Needs infinite switching frequency and is chattering prone.
- B-MRAC acts as a bridge between them and combines their desirable properties and avoiding their drawbacks.
- The B-MRAC consists basically of the conventional MRAC modified by parameter projection combined with high adaptation gain.

7.2 Passivity framework

VSS Summer Course-2019

Liu Hsu UFRJ

- UV-MRAC properties, $n^* \ge 1$ Problem stateme Assumptions UV-MRAC Block
- Diagram, $n^* \ge 1$
- VS-MRAC wit HGO
- VS-MRAC with HGO, SISO
- Peaking Phenomena Peaking-free control Cart position control
- Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework

- The Lyapunov based design of MIMO MRAC requires the SPR passivity condition for the error equation.
- This implies a stringent symmetry condition on the high frequency gain matrix K_p.
- A new generalized passivity requires the weaker WSPR condition.
- WSPR does not require K_p to be positive definite symmetric. It only requires it to have Positive Diagonal Jordan form (PDJ).

VSS Summer

Course-2019 Liu Hsu UFRJ

$\mathsf{SPR}\ \mathsf{condition}$

The system

$$\dot{x} = Ax + Bu,$$
 (26)

$$y = Cx,$$
 (27)

is Strictly Passive (SPR) if and only if there exist symmetric and positive definite (SPD) matrices P and Q satisfying

$$A^{T}P + PA = -Q, \qquad (28)$$
$$PB = C^{T}. \qquad (29)$$

Cart position control

VS-MRAC with HGO

Binary MIMC MRAC and Passivation

Passivity framework MIMO B-MRAC Then the symmetry condition is easy to verify:

$$K_p = CB = B^T C^T > 0$$

where the matrix K_p is the high frequency gain matrix, deemed to be SPD.

$\mathsf{WSPR}\ \mathsf{condition}$

VSS Summer Course-2019

Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$ Problem statement Assumptions UV-MRAC Block Diagram, $n^* \ge 1$ (C. MPAC with

VS-MRAC with HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Passivity framework MIMO B-MRAC The system satisfies the WSPR condition if besides P, Q, there exists W SPD, such that

$$A^T P + P A = -Q, \tag{30}$$

$$PB = C^T W. \tag{31}$$

Note that W is not used for the control design. Only its existence is required!

PDJ condition

VSS Summer Course-2019

> Liu Hsu UFRJ

properties, $n^* \ge 1$ Problem statemer Assumptions UV-MRAC Block Diagram, $a^* \ge 1$

VS-MRAC wit HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC • From $PB = C^T W$, it can be noted that

1

$$B^T P B = B^T C^T W = (CB)^T W$$

is symmetric and positive definite (SPD).

Given a matrix $CB \in \mathbb{R}^{m \times m}$, then exist a matrix $\bar{W} = \bar{W}^T > 0$, $\bar{W} \in \mathbb{R}^{m \times m}$ such that

$$\bar{W}(CB) = (CB)^T \bar{W} > 0, \qquad (32)$$

if and only if CB has real and positive eigenvalues and its Jordan form is diagonal (PDJ).

Application of the concept of passivity on MRAC MIMO

VSS Summer Course-2019

> Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$ Problem statemer Assumptions UV-MRAC Block Diagram, $n^* \ge 1$

VS-MRAC wit HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC • Control objective: To find u(t) such that

$$e(t) = y_p(t) - y_M(t).$$

tends to zero asymptotically for arbitrary Cls.
The concepts of WSPR and WASPR can be applied.
Consider the modified error equation.

$$\dot{x_e} = A_K x_e + B_c K_p [u - u^*], \\ e_L = Le, \qquad (e = H_o x_e),$$

where $A_K = A_c - B_c K_p K L H_o$

• L is chosen so that $\{A_K, B_c K_p, LH_o\}$ is PDJ.

Determination of the passifying multiplier L

VSS Summer Course-2019

> Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$ Problem statemen Assumptions UV-MRAC Block Diagram, $n^* \ge 1$

VS-MRAC wit HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC • Consider the factorization $K_p = L_p D_p U_p$.

- The diagonal matrix D_0 is chosen.
- A lower triangular multiplier matrix L = D₀(L_pD_p)⁻¹ can be obtained so that

$$\bar{K}_{\rho} = LK_{\rho} = D_0(L_{\rho}D_{\rho})^{-1}(L_{\rho}D_{\rho})U_{\rho} = D_0U_{\rho},$$

Then the modified error system

$$e_L = W_M(s) L K_p \tilde{u}, \quad \tilde{u} = u - u^*, \text{ is WSPR}.$$

7.2 MIMO B-MRAC

VSS Summer Course-2019

> Liu Hsu UFRJ

properties, $n^* \ge 1$ Problem statement Assumptions UV-MRAC Block Diagram, $n^* \ge 1$

VS-MRAC wit HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC The B-MRAC was proposed by Hsu and Costa in the early 90's for SISO systems. Here we extend it to the MIMO case. To this end, a passivity framework is helpful.

- In the MIMO case, the control law can be parametrized in the followig forms
- The projection of a vector is more natural than the projection of a matrix, then consider.

- Instead of a matrix $\Theta \in {\rm I\!R}^{N imes m}$, a modified vector $\theta \in {\rm I\!R}^{Nm}$.

- Instead of a vector $\omega \in {\rm I\!R}^N$, a modified matrix $\Omega \in {\rm I\!R}^{Nm imes m}.$

7.2 MIMO B-MRAC

VSS Summer Course-2019

Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$ Problem statemer Assumptions UV-MRAC Block Diagram, $n^* \ge 1$

VS-MRAC wit HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC

Given by

$$\Omega = I_m \otimes \omega = \begin{bmatrix} \omega & & \\ & \ddots & \\ & & \omega \end{bmatrix}, \qquad \theta = \operatorname{vec}(\Theta) = \begin{bmatrix} \theta_1 \\ \vdots \\ \theta_m \end{bmatrix},$$

П

where θ_i corresponds to the *i*-th column of the parameter matrix Θ .

B-MRAC MIMO

VSS Summer Course-2019

> Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$ Problem statemen Assumptions UV-MRAC Block Diagram, $n^* \ge 1$

VS-MRAC wit HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC Thus, the adaptation law B-MRAC MIMO is given by

$$\begin{split} \dot{\theta} &= -\sigma\theta - \gamma\Omega e_L, \\ \sigma &= \left\{ \begin{array}{ll} 0, & \text{if } \|\theta\| < M_\theta \text{ or } \sigma_{eq} < 0, \\ \sigma_{eq}, & \text{if } \|\theta\| \ge M_\theta \text{ and } \sigma_{eq} \ge 0, \end{array} \right. \\ \sigma_{eq} &= \frac{-\gamma\theta^T\Omega e_L}{\|\theta\|^2}, \end{split}$$

where

 $M_{ heta} > \| heta^*\|$ $u(t) = \Theta^{T}(t)\omega(t) = \Omega^{T}(t) heta(t).$

Connection between B-MRAC and Unit Control Vector

VSS Summer Course-2019

> Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$ Problem statemen Assumptions UV-MRAC Block Diagram, $n^* \ge 1$

VS-MRAC wit HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC when $\gamma \to \infty$, it can be verified that θ is collinear with Ωe_L , hence θ can be express by

 $\gamma^{-1}\dot{\theta} = -\gamma^{-1}\theta\sigma_{eq} - \Omega e_{l}$

$$\theta = -M_{\theta} \frac{\Omega e_L}{\|\Omega e_L\|}.$$

Then, the form of the UVC law can be obtained

Consider the B-MRAC adaptive law

$$u = -M_{\theta} \|\omega\| \frac{e_L}{\|e_L\|}.$$

7.3 Direct adaptive visual tracking

VSS Summer Course-2019

> Liu Hsu UFRJ

properties, $n^* \ge 1$ Problem statement Assumptions UV-MRAC Block Diagram, $n^* \ge 1$

VS-MRAC wit HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC

- Direct adaptive visual tracking of planar manipulators.
- Fixed camera (plant) with optical axis orthogonal to the robot workspace.
- The camera orientation angle is uncertain with respect to the coordinates of the robot workspace.

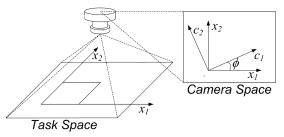


Figure: Representation of the camera-robot system

Equations of the visual tracking system

UV-MRAC properties, $n^* \ge 1$ Problem statemen Assumptions UV-MRAC Block Diagram, $n^* \ge 1$

HGO

VS-MRAC wit HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC

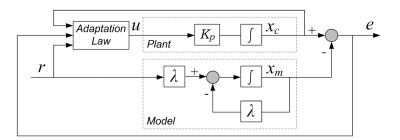


Figure: Representation of the camera-robot system $\dot{x}_{c} = K_{p}u, \qquad K_{p} = \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix},$

 $x_c \in \mathbb{R}^2$ Coordinates of the end-effector of the image plane.

 $K_p \in \mathbb{R}^{2 \times 2}$ Rotation matrix.

 $u \in \mathbb{R}^2$ Cartesian control law.

Equations of the visual tracking system

VSS Summer

properties, $n^* \ge 1$ Problem stateme Assumptions UV-MRAC Block Diagram, $n^* \ge 1$

VS-MRAC wi HGO

VS-MRAC wit HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC

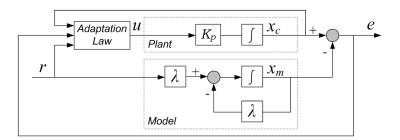


Figure: Representation of the camera-robot system

$$\dot{x}_m = -\lambda x_m + \lambda r(t),$$

 $x_m \in \mathbb{R}^2$ Desired image-plane trajectory. $\lambda \in \mathbb{R}$ A positive constant. $r \in \mathbb{R}^2$ An arbitrary reference signal piece-wise and

Equations of the visual tracking system

VSS Summer Course-2019

Liu Hsu UFRJ

properties, $n^* \ge 1$ Problem statement Assumptions UV-MRAC Block Diagram, $n^* \ge 1$

VS-MRAC wit HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Passivity framework MIMO B-MRAC Control objective: Find a control law u such that

$$e = x_c - x_m \rightarrow 0$$
 for arbitrary CIs.

Tracking error equation:

$$\dot{e} = -\lambda e + K_p u - \lambda \omega, \qquad \omega = r(t) - x_c.$$

Ideal control law:

$$u^* = \Theta^{*T} \omega = \Omega^T \theta^*, \qquad \Theta^{*T} = \lambda K_p^{-1}.$$

Determining the passifying matrix L

VSS Summer Course-2019

> Liu Hsu UFRJ

properties, $n^* \ge 1$ Problem statemen Assumptions UV-MRAC Block Diagram, $n^* \ge 1$

VS-MRAC witl HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC To turn the error system WASPR is necessary to find a constant matrix L such that LK_p is PDJ.

$$\begin{split} \mathcal{K}_{p} &= \mathcal{L}_{p} \quad D_{p} \quad U_{p}, \\ \mathcal{K}_{p} &= \begin{bmatrix} c & -s \\ s & c \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ s/c & 1 \end{bmatrix} \begin{bmatrix} c & 0 \\ 0 & 1/c \end{bmatrix} \begin{bmatrix} 1 & -s/c \\ 0 & 1 \end{bmatrix}, \\ \text{Defining } D_{0} &= \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}, \text{ tem-se} \\ \mathcal{L} &= D_{0} (\mathcal{L}_{p} D_{p})^{-1} = \begin{bmatrix} \alpha/c & 0 \\ -\beta s & \beta c \end{bmatrix}. \end{split}$$

Parameters of the visual tracking system

VSS Summer Course-2019

Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$ Problem statement Assumptions UV-MRAC Block Diagram, $n^* \ge 1$

VS-MRAC with HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC

System's parameters

Initial conditions $x_c(0) = \begin{bmatrix} 5 & 5 \end{bmatrix}^T$. Reference signal $r(t) = [10\sin(3t) \ 10\sin(0.5t)]^T$. Model's constant $\lambda = 1$. Orientation angle $\phi = 30^{\circ}$. Passifying matrix L Nominal angle $\phi_n = 45^\circ$. D_0 's constants $\alpha = 5$ e $\beta = 1$. **Controller's parameter** M_{θ} • With $\|\theta^*\| = \sqrt{2}$. It can be chose $M_{\theta} = 3$.

MRAC control with passivation and $\gamma=5$

Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$ Problem statemed Assumptions UV-MRAC Block Diagram, $n^* \ge 1$

VS-MRAC wit HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC

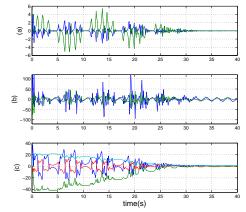


Figure: Behavior of the MRAC control with passivation and $\gamma = 5$: (a) Tracking errors *e*; (b) Plant control signals *u*; (c) Adaptive parameters

VSS Summer Course-2019

B-MRAC control without passivation and $\gamma=5$

Liu Hsu UV-MRAC properties, $n^* \ge 1$ Problem statemed Assumptions UV-MRAC Block Diagram, $n^* \ge 1$ VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC

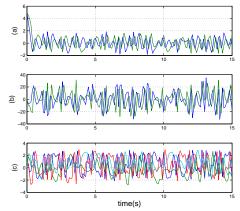


Figure: Behavior of the B-MRAC control without passivation and $\gamma = 5$: (a) Tracking errors *e*; (b) Plant control signals *u*; (c) Adaptive parameters

P MDAC -----

B-MRAC control with passivation and $\gamma=5$

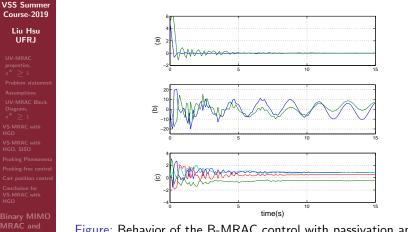


Figure: Behavior of the B-MRAC control with passivation and $\gamma = 5$: (a) Tracking errors e; (b) Plant control signals u; (c) Adaptive parameters

P MPAC adaptive

B-MRAC control with passivation and $\gamma=$ 20

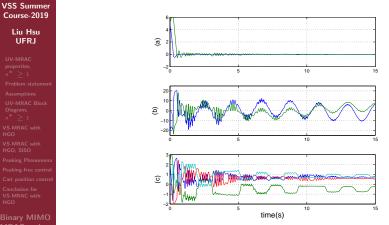


Figure: Behavior of the B-MRAC control with passivation and $\gamma = 20$: (a) Tracking errors e; (b) Plant control signals u; (c) Adaptive parameters

UVC without passivation

VSS Summer Course-2019

Liu Hsu UFRJ

properties, $n^* \ge 1$ Problem statemed Assumptions UV-MRAC Block Diagram, * > 1

VS-MRAC wit HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Passivity framework MIMO B-MRAC

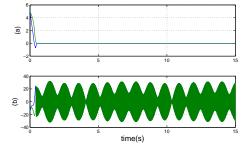
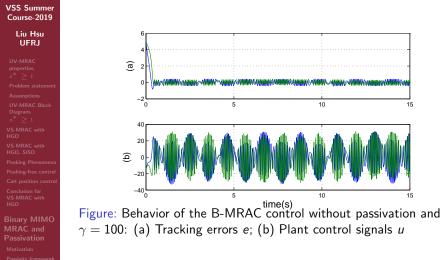


Figure: UVC without passivation: (a) Tracking errors *e*; (b) Plant control signals *u*

P MPAC adaptive

B-MRAC control without passivation and $\gamma=100$



P MPAC adaptive

B-MRAC control with passivation and $\gamma=100$

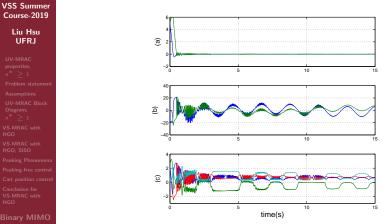


Figure: Behavior of the B-MRAC control with passivation and $\gamma = 100$: (a) Tracking errors *e*; (b) Plant control signals *u*; (c) Adaptive parameters

7.3.1 Conclusions

VSS Summer Course-2019

> Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$ Problem stateme Assumptions UV-MRAC Block Diagram, * > -

VS-MRAC wit HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC

- The B-MRAC was extended for MIMO systems.
- The generalized passivity concepts of WSPR and WSPR were used.
- With high adaptive gains B-MRAC's behavior gets closer to the UVC's behavior.
- The B-MRAC scheme improves the MRAC's transient.
- The passivation achieves chattering reduction.

VSS Summer Course-2019

Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$ Problem statemen Assumptions UV-MRAC Block Diagram, $n^* \ge 1$

VS-MRAC witl HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC

The players

(Barkana, Teixeira, Costa, Assunção, Battistel, Nunes and Yanque (circa 2012))

8. Bibliography I

VSS Summer Course-2019

Liu Hsu UFRJ

- UV-MRAC properties, $n^* \ge 1$ Problem states
- Assumptions UV-MRAC Block Diagram, $n^* \ge 1$
- VS-MRAC with HGO
- VS-MRAC with HGO, SISO
- Peaking Phenomena Peaking-free control Cart position control
- Conclusion for VS-MRAC with HGO
- Binary MIMO MRAC and Passivation Motivation Passivity framework
- P MPAC adaptive

[ACC2009]

- D. R. Mudgett and A. S. Morse. Adaptive stabilization of linear systems with unknown high frequency gains. *IEEE Trans. Aut. Contr.*, 30:549–554, 1985.
- [2] R. D. Nussbaum.

Some results on a conjecture in parameter adaptive control. *Systems & Contr. Letters*, 3:243–246, 1983.

[3] Y. Wu and Y. Zhou.

Output feedback control for MIMO non-linear systems with unknown sign of the high frequency gain matrix.

Int. J. Contr., 77(1):9-18, 2004.

[4] X. Ye, P. Chen, and D. Li.

Descentralised adaptive control for large-scale non-linear systems with unknown high-frequency gain signs.

IEE Proc. Control Theory and Applications, 152(4):387-391, 2005.

[5] T. P. Zhang and S. S. Ge.

Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs.

Automatica, 43:1021-1033, 2007.

[6] M. Fu and B. R. Barmish.

Adaptive stabilization of linear systems via switching control. *IEEE Trans. Aut. Contr.*, 31(12):1097–1103, 1986.

8. Bibliography II

VSS Summer Course-2019

Liu Hsu UFRJ

- UV-MRAC properties, $n^* \ge 1$ Problem statem
- UV-MRAC Block Diagram, $n^* \ge 1$
- VS-MRAC with HGO
- VS-MRAC with HGO, SISO
- Peaking Phenomena Peaking-free control Cart position control
- Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework

MIMU B-MRAC

[7] L. Yan, L. Hsu, R. R. Costa, and F. Lizarralde.

A variable structure model reference robust control without a prior knowledge of high frequency gain sign.

Automatica, 44:1036-1044, 2008.

[8] S. V. Baida. Unit sliding mode control in continuous and discrete-time systems. Int. J. Contr., 57(5):1125-1132, 1993.

 L. Hsu, J. P. V. S. Cunha, R. R. Costa, and F. Lizarralde. Multivariable output-feedback sliding mode control. In X. Yu and J.-X. Xu, editors, Variable Structure Systems: Towards the 21st Century, pages 283–313. Springer-Verlag, 2002.

[10] C. Edwards and S. K. Spurgeon. Sliding Mode Control: Theory and Applications. Taylor & Francis Ltd., 1998.

[11] G. Tao and Ioannou P. A.

A MRAC for multivariable plants with zero residual tracking error. In Proc. IEEE Conf. on Decision and Control, pages 1597–1600, Tampa, 1989.

- [12] C. J. Chien, K. C. Sun, A. C. Wu, and L. C. Fu. A robust MRAC using variable structure design for multivariable plants. *Automatica*, 32(6):833–848, 1996.
- [13] J. P. Hespanha, D. Liberzon, and A. S. Morse. Overcoming the limitations of adaptive control by means of logic-based switching. *Systems & Contr. Letters*, 49:49–65, 2003.

8. Bibliography III

VSS Summer Course-2019

Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$ Problem stateme Assumptions UV-MRAC Block Diagram, $n^* \ge 1$

VS-MRAC wit HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC [14] E. P. Ryan. Adaptive stabilization of multi-input nonlinear systems.

Int. J. of Robust and Nonlinear Control, 3(2):169-181, 1993.

[15] N. Papanikolopoulos and P. Khosla,

Adaptive robotic visual tracking: Theory and experiments, IEEE Transactions on Automation and Control, 38(3):429–445, 1994.

[16] R. Kelly, R. Reyes, J. Moreno and S. Hutchinson,

A two loops direct visual control of direct-drive planar robots with moving target, *Proc. IEEE Conf. Robotics & Automation*, pages 599–604, Detroit, 1999.

[17] E. Zergeroglu, D. M. Dawson, M. S. de Queiroz, and S. Nagarkatti, Robust visual-servo control of robot manipulators in the presence of uncertainty, *Proc. IEEE Conf. Dec. and Contr.*, pages 4137–4142, Phoenix, 1999.

[18] A. Astolfi, L. Hsu, M. Netto, and R. Ortega, Two solutions to the adaptive visual servoing problem, *IEEE Transactions Robotics and Automation*, 18(3):387–392, 2002

[19] A. R. L. Zachi, L. Hsu, R. Ortega and F. Lizarralde,

Dynamic control of uncertain manipulators through immersion and invariance adaptive visual servoing, The International Journal of Robotics Research, 25(11):1149–1159, 2006.

[20] E. D. Sontag and Wang Y.

Output-to-state stability and detectability of nonlinear systems. Systems & Contr. Letters, 29:279–290, 1997.

8. Bibliography IV

VSS Summer Course-2019

> Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$ Problem staten Assumptions

Diagram, $n^* \ge 1$

VS-MRAC wit HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC [21] H. K. Khalil. Nonlinear Systems. Prentice Hall, 3rd edition, 2002.

[22] A. F. Filippov. Differential equations with discontinuous right-hand side. American Math. Soc. Translations, 42(2):199–231, 1964.

[23] Z. P. Jiang, I. Mareels, D. J. Hill, and J. Huang, A unifying framework for global regulation nonlinear output feedback: from ISS to iISS, *IEEE Transactions on Automatic Control*, 49(4):549–562, 2004.

[24] L. Hsu, R. R. Costa, and J. P. V. S. Cunha. Model-reference output-feedback sliding mode controller for a class of multivariable nonlinear systems. *Asian Journal of Control*, 5(4):543–556, 2003.

[25] S. Hutchinson, G. Hager, and P. Corke, A tutorial on visual servo control, *IEEE Transactions Robotics and Automation*, 12(5):651–670, 1996.

[26] A. C. Leite and F. Lizarralde, Application of Tcl/Tk for a robotic system, In Proceedings of 13th Annual Tcl/Tk Conference, pages 1–3, 2006.

[27] R. M. Haralick and L. G. Shapiro, Computer and Robot Vision, volume II, Addison-Wesley Inc., 1993.

8. Bibliography V

VSS Summer Course-2019

Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$ Problem statem Assumptions UV-MRAC Bloc

Diagram, $n^* \ge 1$

VS-MRAC with HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Passivity framework MIMO B-MRAC [28] M. W. Spong and M. Vidyasagar, Robot Dynamics and Control, John Wiley & Sons, 1989.

[IFAC2017]

[Bartolini, Levant, Plestan, Taleb, and Punta(2013)] Bartolini, G., Levant, A., Plestan, F., Taleb, M., and Punta, E. (2013). Adaptation of sliding modes.

IMA J. Mathematical Control and Information, 30(3), 285–300.

[Cunha, Costa, and Hsu 2008] Cunha, J.P.V.S., Costa, R.R., and Hsu, L. (2008). Design of first-order approximation filters for sliding-mode control of uncertain systems. IEEE Trans. Ind. Electronics, 55(11), 4037–4046.

[Cunha, Hsu, Costa, and Lizarralde 2003] Cunha, J.P.V.S., Hsu, L., Costa, R.R., and Lizarralde, F. (2003). Output-feedback model-reference sliding mode control of uncertain multivariable systems. *IEEE Trans. Aut. Contr.*, 48(12), 2245-2250.

[Edwards and Shtessel(2016)] Edwards, C. and Shtessel, Y.B. (2016). Adaptive continuous higher order sliding mode control. Automatica, 65, 183–190.

[Estrada, Plestan, and Allouche(2013)] Estrada, A., Plestan, F., and Allouche, B. (2013). An adaptive version of a second order sliding mode output feedback controller. In Proc. European Contr. Conf., 3228–3233. Zurich, Switzerland.

8. Bibliography VI

VSS Summer Course-2019

Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$ Problem staten Assumptions

UV-MRAC Block Diagram, $n^* \ge 1$

VS-MRAC wit HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Passivity framework MIMO B-MRAC [Filippov(1964)] Filippov, A.F. (1964). Differential equations with discontinuous right-hand side. American Math. Soc. Translations, 42(2), 199–231.

[Hsu, Araújo, and Costa 1994] Hsu, L., Araújo, A.D., and Costa, R.R. (1994). Analysis and design of I/O based variable structure adaptive control. *IEEE Trans. Aut. Contr.*, 39(1), 4–21.

[Hsu, Costa, and Cunha 2003] Hsu, L., Costa, R.R., and Cunha, J.P.V.S. (2003). Model-reference output-feedback sliding mode controller for a class of multivariable nonlinear systems. *Asian J. Contr.*, 5(4), 543–556.

[Hsu, Lizarralde, and Araújo 1997] Hsu, L., Lizarralde, F., and Araújo, A.D. (1997).

New results on output-feedback variable structure model-reference adaptive control: design and stability analysis.

IEEE Trans. Aut. Contr., 42(3), 386-393.

[Hsu, Oliveira, and Cunha] Hsu, L., Oliveira, T.R., and Cunha, J.P.V.S. (2014).

Extremum seeking control via monitoring function and time-scaling for plants of arbitrary relative degree.

In Proc. 13th Int. Workshop on Variable Structure Sys., 1-6. Nantes.

[loannou and Sun(1996)] loannou, P.A. and Sun, J. (1996).

Robust Adaptive Control. Prentice-Hall, Upper Saddle River, NJ.

8. Bibliography VII

VSS Summer Course-2019

> Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$ Problem staten Assumptions

UV-MRAC Bloc Diagram, $n^* \ge 1$

VS-MRAC wit HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control Cart position control

Conclusion for VS-MRAC with HGO

Binary MIMC MRAC and Passivation Motivation Passivity framework MIMO B-MRAC [Khalil(1996)] Khalil, H.K. (1996). Nonlinear Systems. Prentice-Hall, Upper Saddle River, NJ, 2nd edition.

[Moreno, Negrete, Torres-González, and Fridman(2016)] Moreno, J.A., Negrete, D.Y., Torres-González, V., and Fridman, L. (2016). Adaptive continuous twisting algorithm. *Int. J. Contr.*, 89(9), 1798–1806.

[Oliveira, Leite, Peixoto and Hsu(2014)] Oliveira, T.R., Leite, A.C., Peixoto, A.J., and Hsu, L. (2014). Overcoming limitations of uncalibrated robotics visual servoing by means of sliding mode control and switching monitoring scheme. *Asian J. Contr.*, 16(3), 752–764.

[29] Oliveira, T.R., Peixoto, A.J., Nunes, E.V.L., and Hsu, L. (2007). Control of uncertain nonlinear systems with arbitrary relative degree and unknown control direction using sliding modes. *Int. J. Adaptive Contr. Signal Process.*, 21(8/9), 692–707.

[Plestan, Shtessel, Brégeault, and Poznyak(2010)] Plestan, F., Shtessel, Y., Brégeault, V., and Poznyak, A. (2010). New methodologies for adaptive sliding mode control. *Int. J. Contr.*, 83(9), 1907–1919.

[Utkin and Poznyak(2013)] Utkin, V.I. and Poznyak, A.S. (2013).

Adaptive sliding mode control with application to super-twist algorithm: equivalent control method. Automatica, 49(1), 39-47.

8. Bibliography VIII

VSS Summer Course-2019

Liu Hsu UFRJ

- UV-MRAC properties, $n^* \ge 1$ Problem statem Assumptions
- UV-MRAC Blo Diagram, $n^* \ge 1$
- VS-MRAC with HGO
- VS-MRAC with HGO, SISO
- Peaking Phenomena Peaking-free control Cart position control
- Conclusion for VS-MRAC with HGO
- Binary MIMO MRAC and Passivation Motivation
- MIMO B-MRAC

[Yan, Hsu, Costa, and Lizarralde] Yan, L., Hsu, L., Costa, R.R., and Lizarralde, F. (2008). A variable structure model reference robust control without a prior knowledge of high frequency gain sign. *Automatica*, 44(4), 1036–1044.

[Yan, Hsu, and Xiuxia(2006)] Yan, L., Hsu, L., and Xiuxia, S. (2006). A variable structure MRAC with expected transient and steady-state performance. *Automatica*, 42(5), 805–813.

[VSS2016]

- [Bartoszewicz(1989)] A. Bartoszewicz, "A new technique to compensate for disturbance in sliding mode control systems," in Proc. 24th Conf. IEEE Indutrial Electronics Soc., vol. 3, Aachen, August-September 1998, pp. 1708–1711.
- [30] V. I. Utkin, Sliding Modes in Control and Optimization. Springer-Verlag, 1992.
- [31] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.
- [32] A. F. Filippov, "Differential equations with discontinuous right-hand side," American Math. Soc. Translations, vol. 42, no. 2, pp. 199–231, 1964.
- [33] L. Hsu, J. P. V. S. Cunha, R. R. Costa, and F. Lizarralde, "Multivariable output-feedback sliding mode control," in Variable Structure Systems: Towards the 21st Century, X. Yu and J.-X. Xu, Eds. Berlin: Springer-Verlag, 2002, pp. 283–313.
- [34] S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence and Robustness. Prentice-Hall, 1989.

8. Bibliography IX

VSS Summer Course-2019

> Liu Hsu UFRJ

- properties, $n^* \ge 1$ Problem statemed Assumptions UV-MRAC Block Diagram,
- $n^* \ge 1$ VS-MRAC wit
- HGO VS-MRAC with
- Peaking Phenomen Peaking-free contro
- Cart position control
- Conclusion for VS-MRAC with HGO

Binary MIMC MRAC and Passivation Motivation

Passivity framework MIMO B-MRAC

- [35] L. Hsu, F. Lizarralde, and A. D. Araújo, "New results on output-feedback variable structure model-reference adaptive control: design and stability analysis," *IEEE Trans. Aut. Contr.*, vol. 42, no. 3, pp. 386–393, March 1997.
 - [36] T. R. Oliveira, A. Estrada, and L. M. Fridman, "Global exact differentiator based on higher-order sliding modes and dynamic gains for globally stable output-feedback control," in *Proc. IEEE Conf. on Decision and Control*, Osaka, Japan, December 2015, pp. 4109–4114.
- [37] A. Levant, "Higher-order sliding modes, differentiation and output-feedback control," Int. J. Contr., vol. 76, no. 9, pp. 924–941, 2003.
 - [38] A. Levant and M. Livne, "Exact differentiation of signals with unbounded higher derivatives," IEEE Trans. Aut. Contr., vol. 57, no. 4, pp. 1076–1080, April 2012.
 - [39] S. Baev, Y. Shtessel, and I. Shkolnikov, "Nonminimum-phase output tracking in causal systems using higher-order sliding modes," Int. J. of Robust and Nonlinear Control, vol. 18, no. 4–5, pp. 454–467, March 2008.
- [40] T. Gonzalez, J. A. Moreno, and L. Fridman, "Variable gain super-twisting sliding mode control," IEEE Trans. Aut. Contr., vol. 57, no. 8, pp. 2100–2105, August 2012.
- [41] A. Polyakov, D. Efimov, and W. Perruquetti, "Finite-time and fixed-time stabilization: implicit Lyapunov function approach," Automatica, vol. 51, pp. 332–340, January 2015.
- [42] Oliveira T. R., Melo G. T., Hsu L., Cunha J. P. V. S.. Monitoring functions applied to adaptive sliding mode control for disturbance rejection. In: :2684–2689; 2017; Toulouse, France.
- [43] Young K.-K. D., Kokotović P. V., Utkin V. I.. A singular perturbation analysis of high-gain feedback systems. *IEEE Trans. Aut. Contr.*, 1977;22(6):931–938.

8. Bibliography X

VSS Summer Course-2019

Liu Hsu UFRJ

- UV-MRAC properties, $n^* \ge 1$ Problem stateme Assumptions UV-MRAC Block
- Diagram, $n^* \ge 1$
- VS-MRAC with HGO
- VS-MRAC with HGO, SISO
- Peaking Phenomena Peaking-free control Cart position control
- Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC

[RASM2015]

- [Nunes et al. (2009)Nunes, Hsu, and Lizarralde] Nunes, E.V.L., Hsu, L., Lizarralde, F.: Global tracking for uncertain systems using output-feedback sliding mode control. IEEE Trans. Aut. Contr. 54(5), 1141–1147 (2009)
- [Nunes et al.(2011)Nunes, Oliveira, Peixoto, and Hsu] Nunes, E.V.L., Oliveira, T.R., Peixoto, A.J., Hsu, L.: Global exact tracking for uncertain multivariable systems by switching adaptation. In: Proc. of the 18th IFAC World Congress. pp. 3057–3062. Milano (2011)
- [Nunes et al.(2014)Nunes, Peixoto, Oliveira, and Hsu] Nunes, E.V.L., Peixoto, A.J., Oliveira, T.R., Hsu, L.: Global exact tracking for uncertain mimo linear systems by output feedback sliding mode control. Journal of the Franklin Institute 351(4), 2015–2032 (2014)
- [Hsu, Araújo and Costa 1994] L. Hsu, A. D. Araújo, and R. R. Costa, "Analysis and design of I/O based variable structure adaptive control," *IEEE Trans. Aut. Contr.*, vol. 39, no. 1, pp. 4–21, 1994.
- [Hsu, Araújo and Lizarralde 1993] L. Hsu, A. D. Araújo, and F. Lizarralde, "New results on I/O VS-MRAC: Design and stability analysis," in *Proc. American Contr. Conf.*, (San Francisco), pp. 1091–1095, 1993.
- [Hsu and Costa 1989] L. Hsu and R. R. Costa, "Variable structure model reference adaptive control using only input and output measurement: Part I," Int. J. Contr., vol. 49, no. 2, pp. 399–416, 1989.
- [Barkana et al.(2006)Barkana, Teixeira, and Hsu] Itzhak Barkana, Marcelo Carvalho Minhoto Teixeira, and Liu Hsu. Mitigation of symmetry condition in positive realness for adaptive control. *Automatica*, 39(9):1611–1616, 2006.

8. Bibliography XI

VSS Summer Course-2019

Liu Hsu UFRJ

UV-MRAC properties, $n^* \ge 1$ Problem statem Assumptions UV-MRAC Bloc Diagram.

 $n^* \ge 1$

VS-MRAC wit HGO

VS-MRAC with HGO, SISO

Peaking Phenomena Peaking-free control

Conclusion for VS-MRAC with HGO

Binary MIMO MRAC and Passivation Motivation Passivity framework MIMO B-MRAC

[Fradkov(2003)] A. L. Fradkov.

Passification of non-square linear systems and feedback Yakubovich-Kalman-Popov lemma. *European Journal of Control*, 6(1):573–582, 2003.

VSS Summer Course-2019 Liu Hsu UFRJ

Questions?

hideallsubsections

138 / 138