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2.1 Control Signal Synthesis: brief history

Back to the 60’s, e.g., Lyapunov control synthesis was
exploited.

Sliding modes or Variable Structure Systems not well
acknowledged. However, the need of discontinuous control
appeared.

Lowe & Rowlands (1974) used ”signal synthesis” for
designing Model Reference Adaptive Control (MRAC).

Devaud & Caron (1975) pioneered use discontinuous SMC
(Sliding Mode Control) in the context Model Reference
Control.

Ambrosino, Celentano & Garofalo (1984) introduced the
term Variable Structure MRAC using only input and
output measurements.

4 / 138
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2.2 A 1965 survey
(L.P.Grayson, Automatica, vol.3, pp. 91-121, 1965)

Technique Plant Procedure Resulting System Literature 

k = A ( n ) x  is asymptotically Choose u to minimize L i nea r ,  t i m e - i n v a r i a n t .  ~ v s K n  [3], ME~OV [4], 
1 stable for all fixed ct allowed, q~(n) = ~o~x "Qxdt Over-all system is optimal. ALEX [5] 

~ = A x  + Bu where ~ = A x  is 
asymptotically stable. 

Choose u, such that [ui[ ~< 1 
to minimize 

¢(u)=~o'x'Qxdt 

Nonlinear, time-invariant. 
The ujs result in relays or 
sa tura t ion  e lements .  A 
regulator. System is optimal. 

BAss [7] 
KALMAN and BEIU'g^M [8] 
G I E S E K I N G  [ 9 ]  

Yc = Ax  + b f (o) where ~ = A x  
is asymptotically stable and 
of(o')~O for o~O. 

Choose a = a ' x  where a= 
--Pb and V=x 'Px .  

Nonlinear,  t ime-invariant 
plant; a linear time-invari- 
ant controller. 
Overall it is a regulator. 

B~ [7] 
o 

Yc = Ax  + b f (¢) where :~ = A x  
is asymptotically stable and 
of(o)=~0 for ~:~0. 

Choose o t o  satisfy b + k o =  
ax--lf(~r) where a--=--Pb 
and V=x 'Px ,  k>~O, l>~O, 
k2+lz~O.  

Nonlinear,  t ime-invariant 
plant; a nonlinear, time- 
invariant controller. 
Overall it is a regulator. 

BASS[7] 

o 

Yc = A x  + b f (o) where ~ = A x  
is arbitrary and f (o)  = sgn a. 

Choose a to satisfy k + k a =  
a" x - [ l - x ' Q x ] f ( a )  where 
a = - - P b ,  V = x ' P x  and A'P 
+ P A = - - Q .  

Time-invariant plant with 
relays. Controller is non- 
linear,  t ime- invar iant .  A 
regulator. 

BAss[7] 
OQ 

,,¢ 

e~ 

O 

~ = f ( x ) + u  where Jr=f  (x) is 
stable, but not asymptotic- 
ally stable. 

Choose u to make system 
asymptotically stable, such 
that the lull are bounded, or 
the time to reach x=O is 
minimized, or the time con- 
is a minimum. 

l (vh 
u~=- ~ (vv)i 

where k'------- VV k 

Linear  or  nonl inear  con- 
trollers. 

L~[10] 
G~I~ [11] O 
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3.1 Simple example: Adaptive roll control of an
aircraft (Lavrestky 2008)

Adaptive Control: Introduction, Overview, and ApplicationsRobust and Adaptive Control Workshop

Adaptive Control: Introduction, 
Overview, and Applications

Eugene Lavretsky, Ph.D.

E-mail: eugene.lavretsky@boeing.com
Phone: 714-235-7736

E. Lavretsky
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3.1.1 System equations

E. Lavretsky

4

Adaptive Control: Introduction, Overview, and ApplicationsRobust and Adaptive Control Workshop

Motivating Example: Roll Dynamics
(Model Reference Adaptive Control)

• Uncertain Roll dynamics:
– p is roll rate,
– is aileron position 
– are unknown damping, aileron effectiveness

• Flying Qualities Model:
– are desired damping, control effectiveness
– is a reference input, (pilot stick, guidance command)
– roll rate tracking error: 

• Adaptive Roll Control:

ailp ailp L p Lδ δ= +

( )m m
m p mp L p L tδ δ= +

( ) ( ) ( )( ) 0p me t p t p t= − →

ˆ ˆ
ail pK p Kδδ δ= +

ailδ

( ),
ailpL Lδ

( ),m m
pL Lδ

parameter adaptation laws

( )
( )( )

( )
ˆ

, , 0
ˆ ail

ail

p p m
p

m

K p p p

K t p p
δ

δ δ

γ
γ γ

γ δ

⎧ = − −⎪ >⎨
= − −⎪⎩

( )tδ

E. Lavretsky
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3.1.2 Block diagram of adaptive roll rate control

E. Lavretsky

5

Adaptive Control: Introduction, Overview, and ApplicationsRobust and Adaptive Control Workshop

Motivating Example: Roll Dynamics
(Block-Diagram)

m

m
p

L
s L

δ

+

ail

p

L
s L

δ

+

ˆ
pK

K̂δ

( )tδ

mp

p
0pe →

parameter adaptation loop

desired flying qualities model roll tracking 
error

unknown plant

• Adaptive control provides Lyapunov stability
• Design is based on Lyapunov Theorem (2nd method)
• Yields closed-loop asymptotic tracking with all remaining 

signals bounded in the presence of system uncertainties
9 / 138
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3.1.3 Adaptive control law

The roll control problem is a particular case of the following
system:

Plant: ẋ = ax + bu

Model reference: ẋm = amxm + bmr

Regressor vector: ωT = [x r ]

Model matching control (unknown):

u∗ = −k∗x + l∗r ; l∗ = bm/b; k∗ = (am + a)/b

Adaptive parameter vector: θT = [l k]

Control parameterization: u := θTω

Output (tracking) error: e = x − xm

Adaptation gain matrix: Γ =

[
γ1 0
0 γ2

]

Adaptation law: θ̇ = −sign(b)Γωe

10 / 138
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3.2 Lyapunov based MRAC design

Lyapunov based design for adaptive control (Parks, 1966)

362 

Liapunov  Redesign of Model  Reference 
Adaptive Control Systems 

PAATRICK C. PARKS 

Abstract-The model  reference  adaptive control system  has 
proved very popular on account of a  ready-made,  but  heuristically 
based,  rule for  synthesizing the adaptive loops-the  so-called 
“M.I.T. rule.” A theoretical  analysis of loops so designed is generally 
very difEcult, but  analyses of quite simple systems  do show that in- 
stability is possible for  certain  system inputs. 

An alternative synthesis  based on Liapunov’s second  method is 
suggested here,  and  is applied to the redesign of adaptive loops con- 
sidered by some other authors who have all used the M.I.T. rule. 
Derivatives of model-system error are sometimes  required, but may 
be avoided in gain adjustment  schemes if the system transfer func- 
tion is “positive real,” using a lemma  due  to K h a n .  

This paper amplifies and  extends  the work of Butchart and Shack- 
cloth reported at  the IFAC (Teddington) Symposium, September, 
1965. 

INTRODUCTION 

HE MODEL reference  system  has  proved  to  be 
one  of  the  most  popular  methods  in  the  growing 
field of adaptive  control,  particularly for practical 

application  to  devices  such  as  autopilots  where  rapid 
adaption  is  required.  This  popularity is undoubtedly 
due  to  a  ready-made,  but heuristically  based,  rule  for 
synthesizing  the  adaptive  loops  due  originally to  Whit- 
aker  et  al. [ l ]  of the  Massachusetts  Institute of Tech- 
nolog>-.  Holl-ever, as  will be  shown,  such  adaptive 
schemes  lead to  unstable  adaption for  certain  t>-pes of 
input signals  passing into  quite simple s>-sten~s.  This is 
not  a  satisfactor>-  feature of such  a  synthesis.  and casts 
doubts on the  stabilitJ-  properties of more  complex SJ-S- 

terns using the “1I.I .T.  rule.” 
rln alternative  synthesis  based  on  Liapunov’s second 

method [ 2 ]  is suggested,  and  is  here  applied  to a num- 
ber of problems  considered  previously by  other  authors. 
Besides  guaranteeing  stability  for  all  kinds of inputs, 
the  Liapunov  method allo1vs high  gains i n  the  adaptive 
loops to  be  used,  and,  often,  considerable  simplification 
of such  loops. The  Liapunov  method  has, of course, 
been used to  a  limited  extent for analysis of adaptive 
control  loops,  notably  by  Leondes  and  Donalson [3]. 

The  present  paper amplifies and  extends  the 11-ork a t  
Southampton  University of Butchart  and  Shackcloth 
[4] in  particular;  it is shon-n that  the use of derivatives 
of error in the  Liapunov  synthesis  may  be  avoided if the 

Manuscript received December 11, 1965; revised April 29, 1966. 
’The author is with the  Department of Aeronautics and -4stro- 

nautics, University of Southampton, England.  He was a Visiting 
Sational Science Foundation Fellow a t  Kansas State I‘niversity, 
Ylanhattan,  Kan., from September, 1965, to >lay, 1966. 

model  transfer  function  is  “positive  real.”  This  interest- 
ing  result  follows  from  a  lemma used by  Kalman in his 
treatment of the LurC problem [7].  

STABILITY ASSLYSES OF SIMPLE  EXAMPLES 
OF THE 3I.I.T. SCHEXE 

Consider the  simple  model  reference  adaptive  control 
system of Fig. 1, where  the  problem  is  to find a  suitable 
adaptive loop to  adjust K c  so that  K c K ,  eventually 
equals  the model  gain K. The  l I . I .T .  rule,  based  on 
minimizing SeVt,  is that  

Kc = - Be(:) ( B ,  constant > 0) 

where 

- K,r (2) = (1 + Ts)  

and is found  by  differentiating  partially  the  transfer 
function 

( K  - K,K,)Y 
e =  

(1 + T s )  

lvith  respect to Kc.  The signal (de/dKc) is usually  gen- 
erated  by  additional  circuitry,  but  here  the signal -0, 
is  all that  is  required effectively,  leading to  the  scheme 
shon-n in Fig. 2 ,  where K c =  B’eB,. 

The  equations of Fig. 2 are 

Ti + e = ( K  - KaKC)y(t))  
Te, + 6 ,  = Kr( t )  i 

K c  = B’e6, 1 I’ 
(1) 

The  analvsis of these  equations  even for simple  inputs 
is quite difficult.  For  example,  suppose that  a  step in- 
pu t  in r ( t )  of magnitude +R is  applied at time t = O ,  
when Om,  0s are zero and K,K, is a t  that  time  not  equal 
to K .  Subsequently, K ,  remains  constant,  but K c  is 
adjusted  according  to (1). 0, will be  given  by 0, 
=KR(l-eexp(-t/T),  and  the  equation for e( t )  is 

Tt? + d + KK,R2B1e(l - exp (-t,!T)) = 0. (2) 

Sow-, the  third coefficient tends  to KK,R2B’ as t--t C O ,  
and  the  equation Te+t+KK,R2B’e=0 is  asymptot- 
ically  stable,  and SO, by  an extension of the Dini- 
Hukuhara  theorem, is (2) ,  and  thus  as t+ xe-0 and 
K,--tK/K,, which is what  one would hope. 

A landmark in modern adaptive control theory.
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3.2.1 MRAC − System equations

For model following a necessary assumption is that the plant be
minimum-phase!

Plant: G (s) = Kp
N(s)
D(s) ; y = W (s)u

Reference Model (SPR): Wm(s) = Km
Z(s)
R(s) ; yM = WM(s)r

Output error: e1 = y − yM

State variable filters (ω1, ω2 ∈ Rn−1)

ω̇1 = Λω1 + gu

ω̇2 = Λω2 + gy

Regressor vector: ωT = [ω1
T ω2

T y r ]

Adaptive parameter vector: θT = [θT1 θ
T
2 θ3θ4]

12 / 138
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3.2.2 Error equations

The output error is denoted e1 = y − yM

The parameter error is θ̃ := θ − θ∗

Error dynamic equations (including filters)

ė = Ae+ρ∗bθ̃Tω, ρ∗ = (θ∗4 )−1 = Kp/Km, e ∈ IR3n−2, e1 = hT e

We arrive at a similar error equation but e ∈ IR1 → e ∈ IR3n−2

Why (3n − 2)? ... to include the state variable filters

e1 = hT e for some h ∈ IR3n−2

{A, b, h} is a nonminimal realization of model WM(s)

13 / 138
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3.4 Lyapunov design, n∗ = 1 I

The (simplified) Kalman-Yakubovitch-Popov Lemma (*)

Let G (s) = C ((sI − A)−1B be a p × p transfer function, where
(A,B) is controllable and (A,C ) is observable. Then G (s) is
strictly positive real iff ∃P = PT > 0, Q > 0 such that

PA + ATP = −Q
PB = C

Choose candidate Lyapunov function V and adaptive law for
V̇ ≤ 0

14 / 138
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3.4 Lyapunov design, n∗ = 1 II

Remarks

Generalization of the KYP to noncontrollable systems was
made by Meyer. We need it because (A, b, h) is
nonminimal.

Fact: ∃θ∗ s.t. plant matches reference model with
u∗ = θ∗Tω with regressor vector ω.

Assumptions: known n, known sign of Kp.

15 / 138
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3.4.1 Adaptive laws, n∗ = 1

The Lyapunov function:

V =
1

2
eTPe +

1

2
θ̃T |ρ∗|Γ−1θ̃ > 0

V̇ = eTPė + |ρ∗|θ̃TΓ−1(θ̇)

Adaptive control law − SISO, n∗ = 1

Control law: u = θTω
Adaptation law: θ̇ = −sign(Kp)Γωe; Γ = ΓT > 0

V̇ = eTP(Ae + bρ∗[θ̃Tω] + |ρ∗|θTΓ−1(−sign(ρ∗))Γωe1

or V̇ = −eTQe + e1ρ
∗[θ̃Tω]− ρ∗θ̃Tωe1;

Thanks to the KYP Lemma:

V̇ = −eTQe ≤ 0 (semidefinite negative)
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3.4.2 MRAC block diagram
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3.4.3 Hidden difficulties of semi-definite V̇

With V (e, θ̃) > 0 but V̇ = −eTQe ≤ 0 (semi-definite) one can
conclude or unconclude:

e(t) ∈ L∞
⋃L2 and θ̃(t) ∈ L∞

ė(t) ∈ L∞
e(t)→ 0

The parameteric error θ̃(t) := (θ − θ∗) may not converge
to zero. It requires Persistency of Excitation or r(t)
sufficiently rich.

In fact,

The adaptation transient can be extremely slow or oscillatory.
Still a rather open problem in adaptive control!

18 / 138
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3.5 MRAC general case of n∗ ≥ 1

Limitation

SPR implies relative degree 1.

Major difficulty of the general case: relative degree ≥ 1.

The Reference Model can not be SPR.

Solution for adaptive control:
Monopoli’s augmented error

Adaptive algorithm analysis and synthesis much more
complicated!
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4. Transforming MRAC to VS-MRAC I

MRAC block diagram
Hidden difficulties of semi-definite V̇
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4.1 Brief history

STATE FEEDBACK: (Devaud & Caron 1975), (Zinober,
El-Ghezawi & Billings, 1982) and references therein.

OUTPUT FEEDBACK:

1 Ambrosino, Celentano & Garofalo (1984): ”Variable
structure model reference adaptive control systems”
(VS-MRAC) first named this technique. However, the
control was ill-defined...

2 Bartolini & Zolezzi (1988): ”The V.S.S. Approach to the
Model Reference Control of Nonminimum Phase Linear
Plants”, a very ambitious objective –Problem: requires a
stringent a priori signal boundedness condition to assure
stability.
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4.2 ACG VS-MRAC (1984)
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4.3 Lyapunov design of VS-MRAC I

From MRAC to VS-MRAC with n∗ = 1

Underlying ideas (Hsu & Costa 1989)

What if the adaptation gain tends to ∞ and the
parameters are defined memoryless?

Then V (e) = 1
2 (eTPe)

...Back to Lyapunov Synthesis Approach!

...But using only output feedback.
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4.3 Lyapunov design of VS-MRAC II

Recall MRAC error equations and KYP lemma.

Error equations (including I/O filters)

ė = Ae+ρ∗bθ̃Tω, ρ∗ = (θ∗4)−1 = Kp/Km, e ∈ IR3n−2, e1 = hT e

We arrive at a similar error equation but
e ∈ IR1 → e ∈ IR3n−2

e1 = hT e for some h ∈ IR3n−2

{A, b, h} is a nonminimal realization of model WM(s)

Chose an SPR model: ∃P, Q > 0 such that
ATP + PA = −Q < 0, Pb = h (KYP Lemma)
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4.3.1 Lyapunov control synthesis I

VS control

Similar to adaptive control law: u =
∑2n

i=1 ψiωi .

Now, instead of adapting the parameters psii with an integral
law, we let them switch.
The switching functions ψi is designed from the Lyapunov
function

V (e) =
1

2
eTPe ,

where P = PT > 0 satisfies the KYP lemma.
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4.3.1 Lyapunov control synthesis II

Calculating dV /dt with respect to error dynamic equations one
has (recall θ∗2n > 0):

V̇ = −eTQe + (θ∗2n)−1
(
u − θ∗Tω

)
e1

= −eTQe + (θ∗2n)−1
2n∑

i=1

(ψi − θ∗i )ωie1 .
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4.3.1 Lyapunov control synthesis III

Now, choosing
ψi = −θ̄i sign(ωie1) ,

where θ̄i > |θ∗i |, ∀i , then

V̇ = −eTQe + (θ∗2n)−1
2n∑

i=1

(
−θ̄i |ωie1|+ θ∗i ωie1

)
.

Since summation above is non-positive, then

V̇ is negative definite!
Exponential stability guaranteed!

V̇ < −eTQe < 0 .
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4.3.1 Lyapunov control synthesis IV

Summarizing:

Lyapunov function candidate: V (e) = 1
2e

TPe

SPR allows: e1 = (Pb)−1e

Upper bounds θ̄i > θ∗i are known

Choose ψi = −θ̄i sign(ωie1)

Conclude V̇ < −eTQe < 0

Remark:

SPR made the ”magic” of sign-indefinite terms being
cancellable!
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4.3.2 Link between MRAC and VS-MRAC

Consider the adaptation law:

µθ̇ = −σθ − Γωe1, µ > 0

with forgetting factor σ/µ > 0 and singular perturbation
µ→ 0+ and “normalized gain”

Γ = diag

[
(σ/µ)θ̄i
|e1ωi |

]

Type σ/µ µ

MRAC 0 1

transition > 0 small

VS-MRAC ∞ 0

This is in agreement with the ”fast forgetting and high
adaptation gain” interpretation of the VS-law.
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4.4 The (output feedback) VS-MRAC, n∗ = 1

Compact form

(Hsu & Araújo 1990)[?]

u = −ρ(ω)sign(e1)

ρ =

[
2n∑

1

θ̄i |ωi | + δ

]

ρ is called “gain” or “modulation” function of the relay
function sign(.), with arbitrary δ > 0.
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4.4.1 Main result

Theorem (Global Stability): For every initial condition,

‖e(t‖ → 0 with at least an exponential rate, independent
of the excitation r(t);

The output error e1(t) = hT e becomes zero after finite
time t1 ≥ t0, in sliding mode.
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4.4.2 Simulation results

Uncertain nonlinear time-varying plant
(Hsu and Costa 1989)

ẋ1 = [1 + a(t)]x2

ẋ2 = sin x1 − 2sin x2 + d(t) + u

ẏm = −2ym + r(t);

y = 6x1 + x2L. Hsu and R. R. Costa 

Figure 7. Simulation results for the non-linear plant (Case 3) with E = 0. x,(O) = 1 (other states 
are zero at t = 0); p = 002; 6 = 10; a = 1; d(t) is a coloured noise with )d(t)) < 5; a(t) = 
+ 0-5 with frequency 10; r( t )  = + 6 with frequency 05. - 

1 .O 2.0 3.0 4.0 
Time (sed 

Figure 8. Simulation results for the non-linear plant (Case 3) with an unmodelled dynamics 
( E  = 002). Other data as in Fig. 7. 

Case 3: Non-linear time-varying plant 

i1 = (1 + a(t))x, 

d ,  = - sin x1 - 2 sin x, + d(t) + u t (Plant) 
&i=6x1 + x 2 - z  

where a(t) = f 0.5 is a square wave with period 0.1, d(t) is a coloured noise with 
Id(t)l< 5 and E is a small non-negative constant. The third equation represents the 
effect of unmodelled dynamics when E > 0. 

= qlV1 + q2Y + q 3 v 2  

1 (Control law) 
(pi = - 
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4.5 VS-MRAC, n∗ ≥ 1

As for MRAC, an augmented error was also proposed by (Hsu
1990) for the VS-MRAC, inspired by:

(Monopoli, 1974)

predicted error and prediction error (Goodwin and Mayne
1987)
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4.4.1 Block diagram, n∗ ≥ 1

knom = k∗ → ε0 = k∗ML(−U0 − L−1u∗) L

-L is an approximation of L = L1 . . . LN ;
-Li = (s + αi ); F−1 = 1/(τs + 1) is an averaging filter.

-ISL: is an ”Ideal Sliding Loop” if ML ∈ SPR
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4.4.2 Global stability/tracking

Partial proof (n∗ = 2) was presented in (Hsu, Araújo,
Costa, 1994) [Hsu, Araújo, and Costa 1994]

The complete stability proof was published in (Hsu,
Lizarralde and Araújo
1997)[Hsu, Lizarralde, and Araújo 1997]

Two fundamental lemmas were developed to this end:
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4.4.3 Fundamental Lemmas I

Lemma 1

Consider the I/O relationship

ε0(t) = M(s)[u + d(t) + π(t)], u = −f (t)sign(ε0)

where M(s) is SPR, d(t), /π(t) are LI (locally integrable),
|π(t)| ≤ Re−at , a > 0. Let x be the state of a stable realization of
M(s). If f (t) is LI and f (t) ≤ |d(t)|, ∀t ≥ 0, then the inequality

‖ε0(t)‖and‖x(t)‖ ≤ [c1‖x(0)‖+ c2R]e−λ1t

holds ∀t ≥ 0 and for positive constants c1, c2, λ1. Moreover, if
f (t) ≤ |d(t)|+ ε, ∀t ≥ 0, for arbitrary ε > 0, then ε0(t) tends to
zero in finite time.

Proof: [Hsu and Costa 1989], (Hsu and Lizarralde 1992).
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4.4.3 Fundamental Lemmas II

Lemma 2

Consider the I/O relationship

ε(t) =
1

s + α
[u + d(t)] + π(t) + β(t), u = −f (t)sign(ε0)

where π(t) is as in Lemma 1 and β ∈ L∞e , are both absolutely
continuous. If f (t) ≥ |d(t)|, ∀t, then with ê(t) := ε(t)− β(t):

|ê(t)| and |ε(t)| ≤ |ê(0)|eαt + 2
[
R e−min(α,λ)t + supt |β|

]

.

Proof: Nontrivial! [Hsu, Lizarralde, and Araújo 1997]
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4.4.3 Fundamental Lemmas III

Lemma 3 (FOAF (*) Lemma)

Consider the stable strictly proper input/output relationship z = W (s)d . Let γ0

be a positive constant satisfying 0<γ0<minj

∣∣Re(pj )
∣∣ (pj are the poles of W (s)),

and d̄(t) be an instantaneous upper bound of d(t), i.e., |d(t)| ≤ d̄(t) ∀t. Then,
there exists a positive constant c1 such that the impulse response w(t) satisfies
|w(t)| ≤ c1γ0e−γ0t and the following inequalities hold

|W ∗ d(t)| ≤ c1
γ0

s + γ0
∗ d̄(t); (1)∣∣z(t)− z0(t)

∣∣ ≤ c1

∣∣∣d̂(t)− d̂(t)0
∣∣∣ ; d̂ = (

γ0

s + γ0
)d̄ (2)

|z(t)| ≤ c1d̂(t) + exp (3)

where z0, d̂0 and “exp” depend on the initial conditions and decay exponentially
to zero with rate γ0 (for a proof see [?]).

(*) First Order Approximation Filter

38 / 138



VSS Summer
Course-2019

Liu Hsu
UFRJ

VS-MRAC,
n∗ ≥ 1

Block diagram,

n∗ ≥ 1

Global stability

Fundamental
Lemmas

Stability Theorems

From theory
to
experiments

ROV DP

Linear vs nonlinear
control

Experimental ROV
P-PI DP

Experimental ROV
VS-MRAC DP

Robot manipulators

Other Applications

MIMO
VS-MRAC

Multivariable
VS-MRAC

UV-MRAC Relative
degree 1

UV-MRAC,
n∗ ≥ 1

hideallsubsections

4.4.3 Fundamental Lemmas IV

Corollary

Consider z = GF (τs)GL(s)d = GF (τs) 1
s+α ḠL(s)d where

GF ,GL are rational, stable, strictly proper, ḠL has positive
impulse response (p.i.r.), α > 0. If τ ∈ [0, τ̄ ] and τ̄ is
sufficiently small, there exists k > 0 such that (2) and (3) hold
with

d̂(t) = kGLd̄(t)
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4.4.4 Stability Theorems I

Theorem 1

Consider the auxiliary errors εi , i = 0, . . . ,N (N = n∗ − 1). Then, with the relay
modulation functions satisfying (i = 0, . . . ,N − 1)

fi ≥
∣∣∣(F−1

1,i L
−1
i+1,N) ∗ (Ū)

∣∣∣ and fN ≥
∣∣∣F−1

1,N ∗ Ud

∣∣∣ ; (4)

the auxiliary errors e′i (i = 0, . . . ,N − 1) tend to zero, at least exp. Moreover,

∣∣e′i (t)
∣∣ , ||xe(t)|| ≤ Π0;

∣∣e′N(t)
∣∣ ≤ 2τκKeNC(t) + Π ;

|πei (t)| , |π0i (t)| ≤ Π0; i = 0, . . . ,N; |βuN(t)| ≤ τKβNC(t) + Π0

where, Π0(t) and Π(t) are exp. decaying terms depending on the initial
conditions, and

C1(t) = sup
t
||ω(t)|| ; C(t) = MθC1(t) + Mred

with some positive constants Mθ,Mred and τ := maxi τi .
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4.4.4 Stability Theorems II

Interpretation of Theorem 1

Basically, Theorem 1 says that all auxiliary errors decay
exponentially to zero, except the last one εN which tends
exponentially to a “small” residual value of order τC (t). But
C (t) depends on the states of the system, so in order to
conclude stability, a further step is Theorem 2.
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4.4.4 Stability Theorems III

Theorem 2: Global stability/tracking for n∗ ≥ 1

Assume that the modulation functions satisfy Theorem 1.
Then, for sufficiently small τ >0, the full error system with
state z is globally exponentially stable with respect to a
residual set of order τ , i.e., there exist positive constants K and
δ such that ∀z(0), ∀t ≥ 0, ||z(t)|| ≤ Ke−δt ||z(0)||+ O(τ).

Proof:
Based on

a small gain argument

a recurrence relation relating the full error state z from time t
to t + T where T is some large enough period
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4.4.4 Stability Theorems IV

This proves stability and convergence to a residual set, the size being

independent of the initial conditions.

43 / 138



VSS Summer
Course-2019

Liu Hsu
UFRJ

VS-MRAC,
n∗ ≥ 1

Block diagram,

n∗ ≥ 1

Global stability

Fundamental
Lemmas

Stability Theorems

From theory
to
experiments

ROV DP

Linear vs nonlinear
control

Experimental ROV
P-PI DP

Experimental ROV
VS-MRAC DP

Robot manipulators

Other Applications

MIMO
VS-MRAC

Multivariable
VS-MRAC

UV-MRAC Relative
degree 1

UV-MRAC,
n∗ ≥ 1

hideallsubsections

The players

(Costa, Araújo, Lizarralde (circa 1995))
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5. From theory to practice I

Block diagram, n∗ ≥ 1
Global stability
Fundamental Lemmas
Stability Theorems

5 From theory to experiments
ROV DP

Linear vs nonlinear control
Experimental of ROV P-PI DP
Experimental ROV P-PI DP

Robot manipulators
Other Applications

6 MIMO VS-MRAC
UV-MRAC Relative degree 1
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5. From theory to practice II

The VS-MRAC was successfully applied to a number of
practical problems.
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5.1 Dynamic Positioning of an ROV I

Dynamic positioning of an ROV is perfect for SMC application
due to model uncertainties and environmental disturbances

Two main publications report the application of the VS-MRAC
to ROV Dynamic Positioning Control:

(da Cunha, Costa and Hsu 1995) – IEEE J. of Ocean
Engineering

(Hsu, Costa, Lizarralde and da Cunha J. 2000) – IEEE
Robotics and Automation Magazine
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5.1 Dynamic Positioning of an ROV II

The Passive Arm

sponders on the work place. In [5], a sonar-based dynamic
positioning system was developed with the main advantage of
being completely installed on-board the ROV. This sonar
tracks passive targets (e.g., metal objects) that are used as land-
marks for positioning the ROV. The positioning error of this
system was of the order of 0.1 m, caused apparently by the
noisy position measurement obtained with the sonar.

Vision systems have potential applications in ROV dynamic
positioning; however, two significant problems have been
hampering their practical use in underwater vehicles [5]: (a)
light is largely attenuated by water and scattered by suspended
particles [6] and (b) vision systems need much signal processing,
thus requiring large computing resources installed on-board the
ROV (e.g., [7, 8]). On the other hand, the PA can be very ac-
curate in the millimeter range, even using mechanical parts and
transducers of moderate cost. This feature makes this system
very attractive for ROV dynamic positioning.

DPSROV has been structured such that complex control
algorithms with stringent resource requirements (e.g., high
sampling rate, large number of mathematical computations
per control cycle) can be implemented with reduced software
development cost. A possible control algorithm for dynamic
positioning is a conventional cascade linear control referred to
as the P-PI. However, this conventional controller may fail to
guarantee a satisfactory dynamic performance because of the
nonlinear and coupled dynamics of the ROV, disturbances,
and parameter variations caused by the addition of extra
equipment or manipulator loading. Variable structure control

(VSC) has been applied successfully to underwater vehicles
(e.g., [2, 9, 10]) in view of its inherent nonlinear design and
robustness to disturbances and parameter variations. Output
feedback is enough for controlling the ROV, but VSC strate-
gies also generally require the velocity measurement, which is
unavailable in most underwater measurement systems. A re-
cently proposed output feedback VS adaptive scheme, named

VS-MRAC, was implemented in the
DPSROV. The VS-MRAC retains the
good robustness characteristics of a conven-
tional VSC without extra velocity sensors
[11], and it has been successfully applied to
robotic manipulators [12] and ROVs [13].

The Dynamic Positioning System

Hardware Description
The DPSROV was designed aiming at easy installation in
most commercially available ROVs. Therefore, the
DPSROV components can be externally attached to the
ROV with minor modifications in both the ROV and the
DPSROV. The main hardware components are described in
the following.

PASSIVE ARM
Precise measurement of the ROV position is crucial for dy-
namic positioning in many underwater inspection and inter-
vention tasks. This can be achieved using a PA measurement
device that is based on a mechanical arm with at least six
unactuated degrees of freedom. The DPSROV operates with
one end of the arm fixed on-board the ROV (in Fig. 1 at PM )
and the other attached magnetically to the underwater struc-
ture at PE through a magnetic base consisting of three electro-
magnets, to comply with the structure surface curvature (more
details are given below). Transducers coupled to each of the
manipulator joints lead to the measurements of ROV position
and attitude through direct kinematics. The PA does not re-
quire actuators during dynamic positioning. However,
low-power actuation might be included in order to facilitate
the operation of attaching the magnets to the underwater
structure. In the present system, this maneuver is achieved
through manual navigation of the ROV, which conducts the
magnetic base to the desired attachment area on the underwa-
ter structure.

The prototype PA has six revolute joints with rigid links.
Joint angles are measured by conductive plastic potentiom-
eters. Each potentiometer is housed in a stainless-steel cylinder
filled with electrically insulating mineral oil. The oil pressure is
equalized to the water pressure by means of flexible mem-
branes. The potentiometer rotary axis passes through an
o-ring and is connected to the PA joint outside the potenti-
ometer housing.

The electromagnetic attachment system (EMAS) is com-
posed of three electromagnets connected through balljoints to
the vertices of a rigid triangular base (see Fig. 2). This arrange-
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The DPSROV components can be externally
attached to the ROV with minor modifications
in both the ROV and the DPSROV.

Underwater
Structure
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6
5
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≈ 0.8 m
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EMAS
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3
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Figure 1. Passive arm.
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5.1 Dynamic Positioning of an ROV III

The ROV-Passive Arm system

ment allows stiff magnetic attraction to some usual surfaces of
underwater structures made of ferromagnetic steel (e.g., plane
boards and large-diameter pipes). To avoid overload and slip-
ping of the magnetic attachment system, buoys were added to
the PA. These buoys are also important to compensate the arm
weight and to preserve the ROV gravity center.

Four principal error sources were identified in the PA sys-
tem: (a) the angular measurement errors, (b) the link flexibil-
ity, (c) the clearance of the joints, and (d) the slipping
displacement of the EMAS. The effects of sources (b)-(d) can
be minimized by an adequate design of the arm. Analyzing the
positioning error caused by the angular measurement errors,
we have concluded that a joint angle measurement with ±0.1°
accuracy results in positioning error smaller than 6 mm for the
PA prototype built at COPPE/UFRJ (see Fig. 3). The two
largest links have 0.8 m in length yielding about 1.6 m
workspace radius.

DATA ACQUISITION AND TELEMETRY SYSTEM
In a former prototype [14], the data acquisition system and
the dynamic positioning computer were installed near the
ROV console in the control room. Each potentiometer sig-
nal of the PA was transmitted to the data acquisition system
through a shielded cable to a distance of about 40 m. Differ-
ential inputs were required for precise measurement since
noise immunity is improved and voltage drop along the
transmission line is compensated.

For larger distances between the ROV and the control sta-
tion, a more reliable solution is to install the data acquisition
system on-board the ROV. Then, digitalized data can be
transmitted to the master computer (on the surface) through a
serial link. This is accomplished by the data acquisition and te-
lemetry (DAT) system shown in Fig. 4.

Figure 5 shows the block diagram of the DAT system. It was
developed to digitalize up to eight joint potentiometer signals.
It is based on industrial-standard boards and modules, except for
the signal-conditioning circuit and the EMAS drive, which
were custom designed specifically for the DAT. The following
aspects were considered to select the DAT hardware:

◆ Compact electronics was selected to allow volume and
weight reduction of the DAT underwater housing (see
Fig. 6). The prototype dimensions are φ134 mm (inter-
nal), φ158 mm (external), and 690 mm (length).

◆ The DAT CPU should have high-computing capability
(speed, available memory, floating-point processing,
etc.) to simplify software development and to allow the
inclusion of new features, such as prefiltering of digita-
lized transducer signals and the computation of the posi-
tion control algorithm.

◆ Circuits must tolerate wide temperature operating range
caused by the difficulty of dissipating the heat generated
inside the DAT housing (0 °C to +50 °C). At large
depths, the ocean water temperature can be near 0 °C.

◆ The DAT should have low power consumption in order
to avoid excessive heating. This led to the selection of
CMOS logic circuits. Other outstanding CMOS fea-
tures are excellent noise immunity (e.g, generated by the
ROV power circuits), large power-supply voltage toler-
ance, and temperature operating range. If higher-power
circuits were used, operating temperatures much higher
than +50 °C could be expected.

◆ To allow real-time data acquisition of the six joint angles
and other data at high sampling rates (hundreds of hertz)
the required data transfer rate is up to 38 kBd. Reliable
communication is carried through a half-duplex RS-485
serial link. The serial line can be a spare twisted pair usu-
ally available in ROV tethers. The inherent noise im-
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Figure 2. Electromagnetic attachment mechanism. Figure 3. The passive arm installed on the MKII ROV.
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5.1 Dynamic Positioning of an ROV IV

ROV Coordinate system

data storage. Multitasking development under DOS has
well-known limitations. On the other hand, a multitasking
real-time operating system is a natural choice to comply to
DPROV requirements. A revised version of DPROV is un-
der development using a real-time Unix operating system:
RT-Linux.

ROV Control
As illustrated in Fig. 7, the ROV considered has only four
propellers ( , , )p p1 4⋅ ⋅ ⋅ , which allow the control of the position
in the horizontal plane (x e , y e ), the depth (ze ), and the head-
ing (ψ). The remaining degrees of freedom [pitch (θ) and roll
(φ) angles] cannot be directly controlled. However, the
metacentric height of the vehicle is sufficiently large to keep
the pitch and roll angles small provided the control system is
adequately designed (e.g., by limiting ROV acceleration).

The ROV control inputs, denoted u j ( j x= , y, z, ψ), are
applied to the command unit of the ROV propellers. In man-
ual control, such inputs are produced by the pilot through a
joystick. Usually, the joystick and the control commands are
related to the body coordinates while the plant outputs are the
position and attitude of the ROV in inertial coordinates. The
problem of working in different coordinate frames can be
solved by either transforming the command signals to body
coordinates or the position error to the body frame [13].

Dynamic Model
A number of ROV dynamic models can be found in the litera-
ture (e.g., [10, 17]). All models have the following general form

M F F

F F BF

� ( , ) ( , )

( ) ( , , )

ν ν ν+ + +
+ =

I W H W

GB C W p

U U

Q P Q V (1)

where M ∈ℜ ×6 6 is the inertia matrix (including ROV mass,
moments of inertia, and added masses), ν = ∈ℜ[ ]U T T TΩ 6 is
the ROV generalized velocity vector [linear (U) and angular (Ω)
velocity in body coordinates],UW (VW ) is the ocean current ve-
locity in body (inertial) coordinates, F I is the generalized inertial
force (including Coriolis and centrifugal terms), FH is the gener-
alized hydrodynamic force (drag), FGB is the gravity and buoy-
ancy generalized force, FC is the generalized tether cable force,
and B ∈ℜ ×6 2 n is the thruster configuration matrix (n is the
number of propellers). All the aforementioned generalized forces
are partitioned as F : [ ]= ∈ℜF MT T T 6 , where F is the force
and M is the moment (both in body coordinates).
F p p pn M Mn

TF F M M: [ ]= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅1 1 is the vector of propeller
thrusts and torques generated by the corresponding motors (fur-
ther discussion about F p is presented in [13]). The ROV inertial
position ( )P and the attitude ( )Q can be calculated from

� ( )η η ν= J , where J is a transformation that de-
pends on the representation of Q (also called Rep-
resentation Jacobian [10]) and η = [ ]P QT T T .

A fairly complete model [Eq. (1)] for an ac-
tual ROV was used for simulation studies of
several control strategies (details can be found in
[17]). This important research phase led
DPSROV hardware development and gave
some confidence in the actual performance [13].
Simulation was used to check the specification
of signal sampling rate and sensor accuracy.

The ROV Control Problem
Strictly speaking, the ROV control problem is
nonlinear and multivariable. However, as in the
case of robot manipulators or spacecrafts [18], the
dynamic model exhibits useful structural proper-
ties inherent to (articulated) rigid body dynamics
and related to energy conservation or dissipation.
Indeed, if the ocean currentVW is zero, then the
terms FI and FH can be written as
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Figure 6. Data acquisition and telemetry system (DAT) housing and
hardware.
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Figure 7. Schematic ROV views and coordinate systems, where O and Oe are the ori-
gins of the body and inertial frames, respectively; P x y ze e e

T= [ ] is the ROV posi-
tion given by the inertial coordinates of O; x, y, and z are the body coordinate axes; xe,
ye, and ze are the inertial coordinate axes (also the inertial coordinates of O); φ, θ, and
ψ are the roll, pitch, and heading Euler angles, respectively; Q T= φ[ ]θ ψ is the ROV
attitude.
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5.1.1 Linear vs nonlinear control algorithms I

P-PI (Proportional-Proportional Integral) linear Control

F FI HC D= =( ) ; ( )ν ν ν ν (2)

where C C T= − (energy conservation) and D( )ν > 0 (dissi-
pation).

Consequently, if one also neglects the disturbance FC

(tether forces), the resulting model becomes analogous to the
usual rigid manipulator equations M q q C q q q g q( )�� ( , �)� ( )+ + = τ
(with �M C− 2 skew-symmetric; q is the joint generalized po-
sition vector) and, in addition, includes a self-stabilizing
dissipative term Dν.

However, in order to extend the results of manipulator
and spacecraft control of [18] to the ROV control problem,
one needs to assume that the vector τ:= BF p is directly ac-
cessible as a control vector. Then, one can naturally extend
the approach of [18] to design globally stable controllers
through adequate linear parameterization
[10].

However, there are several limitations
for such an extension: (a) τ or even F p are
not directly accessible for control [13]. In
fact, they depend dynamically on the truly
accessible control variables u j and also on
the ROV motion relative to the water.
Hence, the validity of the assumption of direct accessibility
of τ or F p needs further assessment. (b) The stability result
may not hold forVW ≠ 0 or FC ≠ 0. (c) Most of the control
algorithms require velocity measurements that can be diffi-
cult to obtain in practice.

Our main objective is to design a controller taking into
account the practical aspects discussed above and assuming
normal ROV operation. The latter means that the pitch and
roll angles are assumed small (φ ≈ °0 and θ ≈ °0 ) and that the
ROV motion is relatively slow such that the forces F I and
FH are small and hence can be considered as unmodeled dis-
turbances.

Since it is desirable to specify performance for each degree of
freedom separately, the following procedure was appropriately
adopted [12, 13]: (1) using an adequate compensator for the
command unit, linearize and decouple, as well as possible, the
system into subsystems such that each control variable actuates
linearly on a single corresponding subsystem; (2) consider the
“uncertain” term due to imperfect compensation as an input
disturbance of each subsystem; (3) control each subsystem by a
single-loop controller as in the decentralized control.

Each subsystem is directly associated with
one degree of freedom of interest. Let the sca-
lars q, u, and d denote a generalized coordinate
of interest, the associated control and the dis-
turbance, respectively, then each subsystem
can be written as [13]:

�� [ ]q K u d= + (3)

where the disturbance d incorporates the “re-
sidual” decoupling error terms and external

forces such as those caused by the tether and the drag. The
meaning of the generalized coordinate q, control signal u, and
gain K depends on the particular degree of freedom and on the
selected decoupling strategy.

Position Control System
The strategy presented in the above section allows us to con-
trol the system [Eq. (3)] with any strategy designed for linear
systems (e.g., [13, 19, 20]). In particular we have selected the
following strategies outlined below [13]:

◆ Linear control.
◆ Adaptive control based on sliding modes (VS-MRAC).

Linear Control
The P-PI controller is composed of two feedback loops [13,

21]: a proportional plus integral velocity feedback (slave loop)
and a proportional position feedback (master loop) (see Fig. 8).

The P-PI was selected in view of the following advantages
with respect to more complex algorithms:

◆ good performance can be achieved according to pre-
vious simulations;

◆ simple design and implementation;
◆ most control engineers are familiar with this class of con-

trollers.
The P-PI controller requires ROV speed, which is not

measured directly by the PA. Velocity could be measured by
additional transducers (e.g., acoustic log). However, this
would increase cost. An alternative is to use velocity estima-
tion from position measurement. We have adopted a classical
and simple solution; that is, each velocity coordinate is esti-
mated by a first-order lead filter with transfer function
L s s sv c( ) / ( / )= +1 ω . The cut-off frequency ωc must be
chosen small enough to reduce high-frequency noise amplifi-
cation. On the other hand, some care must be taken because
closed-loop instability may arise if ωc is too small. The block
diagram in Fig. 8 is used only for control design purpose (for
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It is noteworthy to mention that some
experienced ROV pilots have stressed that

manual control cannot attain a similar
performance.
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Figure 8. Block diagram of the P-PI.
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5.1.1 Linear vs nonlinear control algorithms II

VS-MRAC (n∗ = 3) as applied for ROV DP (Note the noise
filter)
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5.1.1 Linear vs nonlinear control algorithms III
DA CUNHA et al.: DESIGN OF A HIGH PERFORMANCE VARIABLE STRUCTURE POSITION CONTROL OF ROV'S 47 

U 

low-pass 
filter 

4-FOF K'ML 

Fig. 4. RELAY VS-MRAC for a generic coordinate q. 

As can be seen in Table I, the gain K is not constant in 
general. However, one can assume K = K,,, + AK as in 
[20] and include the term AKu in the disturbance d. 

The complete multivariable controller is obtained by ap- 
plying the RELAY VS-MRAC to each coordinate via the IT 
strategy. 

D. The Stability Problem 
In Section III.B, a decoupled form for designing and tuning 

the controllers for each d.0.f. was developed. 
Here some remarks about the stability of the closed loop 

system are given. In order to avoid singularity problems with 
the Euler angles, assume that perfect roll and pitch control has 
been achieved so that $ ( t )  B(t) 0'. The assumption is 
reasonable since in normal ROV operation $ and 0, as already 
mentioned, are kept small. 

Then the ROV coordinates can be reduced to xe, Ye3 z,, and +. This reduction is assumed in what follows (for instance: 

In the PET strategy the stability problem can be formulated 
in terms of ROV equations (simplified according to (5) and 
assuming Fc = 0): 

x T : =  [xe  Ye ze 41). 

Mrovi. + Crov(u)u + Diov(u)u + y r o v ( x )  = ~ T o v  (21) 

Ti,, = Brovz (22) 

For simplicity assume that all ROV d.0.f. can be controlled, 
i.e., B,,, is invertible. Then T i  can be defined as E = 
B;k[-KpT-lx-  K ~ u + g , , , ] ,  where K p  > 0 and K D  2 0 
represent the proportional and derivative gains and grov is the 
gravity compensation. 

Assuming Kp = k p I ,  with positive scalar IC,,  asymptotic 
global stability can be proved from the Lyapunov function V = 
+(vTMroVv + xTKpx) since V = -U~(D~,, + K ~ ) Y  5 0 
and La Salle's theorem can be invoked. 

Therefore a P-PI control system without the integral term 
can be designed with guaranteed Global Asymptotic Stability. 

Unfortunately, no similar result exist for the complete P-PI 
controller, i.e., with the integral term. 

The FT strategy is most commonly used [18], [7], [20]. For 
analysis, the adequate equations are given in the inertial frame 
[7] and have the form 

M*ji + C*x + D*x + g* = B*u (23) 

where x and U are referred to the inertial frame and M* - 2C* 
is skew-symmetric and D* > 0. Then, the PD control 

U = ( B * ) - l ( - K p ~  - KDX + g*] (24) 

yields global asymptotic stability [7], [18]. By the same token, 
VSC can be analyzed. VSC can take into account parameter 
uncertainty and external disturbances. 

Although the VS-MRAC was originally devised for (un- 
certain) linear systems, it was shown to be applicable to 
manipulator control using full nonlinear manipulator model 
[20]. Semi-global (i.e., the stability domain can be arbitrarily 
enlarged as a filter time-constant tends to zero) asymptotic 
exponential stability with respect to a small residual error was 
demonstrated. The technique of [20] can be straightforwardly 
applied to the ROV controlled by the VS-MRAC for each d.0.f. 

Remark: It should be remarked that with the simplified 
RELAY VS-MRAC adopted in the actual application and 
simulations, only local stability holds. 

(IEEE JOE 1995)53 / 138
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5.1.2 Experimental results with 350Kg ROV
(Tatúı-I) P-PI

simplicity, velocity estimation and coordinate conversion
were omitted; for details see [13]).

To improve measurement noise reduction, the DAT sam-
ples joint angles at ≈ 200 Hz in the experiments section, pro-
cesses the sampled signal by a low-pass filter (moving average)
and then sends the down-sampled signal to the master com-
puter at the controller sampling rate (≈ 10 Hz).

Adaptive Variable Structure Control
It is well known that conventional controllers with fixed pa-
rameters may fail to guarantee high dynamic performance of
the overall system when significant changes in the vehicle dy-
namic characteristics and/or unmodeled and unmeasurable
disturbances are present. Such situations may occur, for exam-
ple, by adding extra equipment and/or changing the manipu-
lator position and/or load. Moreover, classical controller

design requires an accurate knowledge of the
plant parameters, at least if an optimized re-
sponse is desired.

During experimental tank tests, we have ver-
ified that the in loco tuning of the P-PI was nec-
essary, partly due to the fact that the plant model
used to compute the controller gains was not
accurate enough in order to guarantee a high
performance. A suitable technique to cope with
such plants and specifications, characterized by a
great deal of uncertainty in both plant and dis-
turbance modeling, is the VSC based on sliding
modes [22]. The remarkable feature of the VSC
is that, once the sliding mode takes place, the
performance of the system becomes insensitive
to parameter variations and disturbances. How-
ever, the VSC design is usually based on mea-
suring the full state of the controlled object.
This means that at least the ROV position and

velocity should be measured.
In order to circumvent the need of velocity measurement,

and in view of the known fact that a usual lead filter to estimate
velocity would destroy the sliding mode, a recently developed
I/O-based VSC technique called VS-MRAC was utilized in
the ROV DP [13]. This controller can be implemented using
only the measurement of ROV position while preserving the
good performance and robustness to parameter uncertainty and
disturbance of the conventional VSC.

The VS-MRAC structure is given in Fig. 9, where
M s K N s D sm m m( ) ( ) / ( )= characterizes the reference model,
the polynomial L s( ) is chosen such that M s L s( ) ( ) has relative
degree n * = 1, and k K Km= / is the high frequency gain mis-
match. The operator L should be an approximation of the op-
erator L s( ).

The main idea in sliding-mode control is to close the error
loop with an appropriate modulated relay (u f t sgn e= ( ) ( )). If the
relative degree of the error loop is n * = 1, an ideal sliding loop
(ISL) [23] is formed and the error tends exponentially to zero.

The 1-d.o.f. ROV model [Eq. (3)] is a system with n * = 2
under the action of a disturbance d t( ). In this case the
VS-MRAC structure introduces a prediction error loop
around the relay in order to guarantee an ISL. The ISL pre-
vents chattering by sustaining high (ideally infinite) switching
frequency. According to [11], ε 0 is the prediction error. Note
that, if L could be made equal to L s( ), the scheme would sim-
ply reduce to the n * = 1 case (the prediction error would be
identically zero), where the operator L would perfectly reduce
the relative degree of the plant creating an ISL around the re-
lay shown in Fig. 9. This gives a rough explanation of how the
VS-MRAC attains its objective (for details refer to [11] and
[23]). One possible implementation of L, used in the
VS-MRAC, is based on cascade VS lead filters [11]. Thus,
each ROV coordinate is controlled by a simplified version of
the VS-MRAC, where the relay modulation signal f 0 has
constant amplitudes [11, 13].
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Figure 9. Block diagram of the VS-MRAC.
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5.1.3 Experimental result of ROV (Tatúı-I)
VS-MRAC DP

To achieve satisfactory performance, the VS-MRAC re-
quires a comparatively high sampling rate (100 Hz in the ex-
periments section). This sampling rate would be impractical
using ordinary long-baseline systems because of quite large
acoustic delays. Similar restriction seems to hold for optical
measurement systems based on image processing. Applica-
tion of sliding-mode techniques in these cases seems there-
fore more difficult. On the other hand, the accuracy and the
high sampling rate that can be achieved with the PA are par-
ticularly adequate for VS-MRAC applications.

Experimental Results
Large ROV
Pool tests were performed with the ROV Tatuí (≈ 290 kg)
made by Consub/Rio de Janeiro [13][14]. Figure 10 and Fig.
11 show P-PI and VS-MRAC performances in a benchmark
trajectory tracking test at constant depth. From A to B the

ROV has to move along its longitudinal axis keeping constant
heading; from B to C it has to move laterally still keeping the
same constant heading; finally, from C to D the ROV has to
move diagonally with simultaneous heading rotation com-
mand (30°), this being a quite difficult task owing to the strong
residual coupling among the degrees of freedom. The total
ROV displacement is 1.7 m completed in 90 seconds.

Comparing the pool test results in Figs. 10-11, it is remark-
able that the VS-MRAC outperforms the P-PI. The superior-
ity of the VS-MRAC is more evident in the tests carried out in
the presence of external disturbances. Another relevant feature
of the VS-MRAC is that it was much simpler to tune than the
P-PI controller.

Small ROV
The complete DPSROV was installed on the MKII ROV.
The MKII is a small ROV (≈ 36 kg) made by Benthos, Inc.
(USA). The preliminary pool tests allowed the adjustment of
the PA buoys, the EMAS, and the controller gains.

Figure 12 shows a trajectory tracking test with the P-PI
controller carried out in a pool. The objective was to track the
ABCDA square trajectory in approximately 80 s. Tracking er-

SEPTEMBER 2000 IEEE Robotics & Automation Magazine 29
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Figure 11. Trajectory tracking tests with the VS-MRAC control algo-
rithm applied to a large ROV. Horizontal x ye e plane view.
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Figure 12. Trajectory tracking tests with the P-PI control algorithm
applied to a small ROV. Vertical z xe e plane view.

Figure 13. MKII and DPSROV being recovered after sea tests at the
Ilha Grande Bay.

Movie
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5.2 Robot manipulator applications I

VS-MRAC extended to the tracking control of robot
manipulators without joint velocity measurements (Hsu
and Lizarralde 1995)

A decentralized VS-MRAC was implemented on a PUMA
560 manipulator

Better results than in the literature

R. Guenther developed the VS-MRAC for Flexible Link
and Rigid Link Electrically Driven manipulators using
cascade control
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5.2 Robot manipulator applications II

Equations of n-link rigid manipulator in joint space

H(q)q̈ + C (q, q̇)q̇ + g(q) = Γ (5)

q∈<n is the vector of joints;

Γ∈<n is the vector of torques;

H(q)∈<n×n is the inertia matrix;

C (q, q̇)q̇ represents the centrifugal and Coriolis torques/forces;

g(q)∈<n is the vector of gravitational torques/forces

OOPS! a nonlinear system!!
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5.2 Robot manipulator applications III

We wish to design a suitable control to ensure that the joint
tracking error

q̃ = q − qd (6)

remains small.
The desired trajectory and derivatives qd(t), q̇d(t) and q̈d(t)
are given.
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5.2 Robot manipulator applications IV

Lagrangian systems are nonlinear.

We need to bring our system to a linear form with nonlinear
disturbances.
The proposed strategy is based on the following ideas:

Using Computed Torque, linearize and decouple into n
subsystems, with the available (nominal) parameter
information;

Regard imperfect compensation as an input disturbance to
each subsystem;

Control each subsystem by means of the I/O VS-MRAC.
This circumvents the problem of velocity measurement.
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5.2 Robot manipulator applications V

Linearization and decoupling is trivial in the case of perfect
parameter knowledge and with position and velocity
measurements. Indeed, using

Γ = H(q)u + Uff (7)

Uff = H(q)q̈d + C (q, q̇)q̇ + g(q) (8)

we obtain from the dynamic equation of the manipulator (5),
the following system

¨̃q = u (9)

where u is the control vector to be designed so as to achieve
asymptotic tracking (q̃ → 0). We can thus control separately
each joint, reduced to simple double integrators.

60 / 138



VSS Summer
Course-2019

Liu Hsu
UFRJ

VS-MRAC,
n∗ ≥ 1

Block diagram,

n∗ ≥ 1

Global stability

Fundamental
Lemmas

Stability Theorems

From theory
to
experiments

ROV DP

Linear vs nonlinear
control

Experimental ROV
P-PI DP

Experimental ROV
VS-MRAC DP

Robot manipulators

Other Applications

MIMO
VS-MRAC

Multivariable
VS-MRAC

UV-MRAC Relative
degree 1

UV-MRAC,
n∗ ≥ 1

hideallsubsections

5.2 Robot manipulator applications VI

Now, when the system parameters are known only nominally
and q̇ is not measured, the feedforward terms of Uff (8) can be
replaced by an approximation, using nominal parameter values
and desired trajectory quantities, i.e.,

Uo
ff = Ho(qd)q̈d + C o(qd , q̇d)q̇d + go(qd) (10)

where the superscript o in H, C and g indicates that nominal
parameters are being used.
Now, the subsytems is reduced disturbed and coupled double
integrators
with the control law given by

Γ = Ho(q)u + Uo
ff (11)

61 / 138



VSS Summer
Course-2019

Liu Hsu
UFRJ

VS-MRAC,
n∗ ≥ 1

Block diagram,

n∗ ≥ 1

Global stability

Fundamental
Lemmas

Stability Theorems

From theory
to
experiments

ROV DP

Linear vs nonlinear
control

Experimental ROV
P-PI DP

Experimental ROV
VS-MRAC DP

Robot manipulators

Other Applications

MIMO
VS-MRAC

Multivariable
VS-MRAC

UV-MRAC Relative
degree 1

UV-MRAC,
n∗ ≥ 1

hideallsubsections

5.2 Robot manipulator applications VII

one obtains from (5), the following system

¨̃q = u + d (12)

where
d = dα + dβ + dγ + dδ (13)

with disturbances terms bounded (elementwise) by:

|dαi | ≤ Kα
1i

∣∣∣∣ ˙̃q
∣∣∣∣+ Kα

2i

∣∣∣∣ ˙̃q
∣∣∣∣2 (14)

|dβi | ≤ δ1i ||u|| (15)

|dγi | ≤ δ2i ||q̈d ||+ δ3i ||q̇d ||2 + δ4i (16)

|dδi | ≤ K δ
1i ||q̈d ||+ K δ

2i ||q̇d ||2 + K δ
3i (17)

where δki , K
δ
ki and Kα

ki are nonnegative constants.
Note that the constants δki tend to zero when nominal values
approach the true values, i.e., H̃ → 0, C̃ → 0 and g̃ → 0.
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5.2 Robot manipulator applications VIII

The controller is designed to generate the control signal ui for
each of the subsystems of (12), namely,

¨̃qi = ui + di (18)

where q̃i , ui and di are the i-th component of q̃, u and d ,
respectively.
As can be observed, the plant (18) has relative degree n∗ = 2.
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5.2 Robot manipulator applications IX

Thus, the VS-MRAC for n∗ = 2 can be applied to each generic
degree of freedom.
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5.2 Robot manipulator applications X
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5.2 Robot manipulator applications XI

Theorem

Consider system MRAC error system with u(t) given by the
VS-MRAC of Fig. 56. Let z(t) be the complete state of the error
system as defined above and let C (t) be defined as

C (t) = MθCω(t) + ||Wd ||Cd(t) (19)

where Cω(t) = supt |ω(t)|; Cd(t) = supt |d(t)| and ||θ∗|| ≤ Mθ.
Then one has

||e|| ≤ τKeC (t) + EXP (20)

Moreover, if the following stability condition

C (t) ≤ K1 ||z(0)||+ K2 (21)

holds ∀z(0), then z(t) is globally exponentially stable with respect to
some small residual set with magnitude of order τ .
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5.2 Robot manipulator applications XII

The proof of (B) invokes the Frobenius-Perron’s Theorem, due
to the residual coupling of the control of each subsystem which
is fortunately of order O(τ).
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5.2 Robot manipulator applications XIII
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5.2 Robot manipulator applications XIV
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5.2 Robot manipulator applications XV
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5.3 Other Applications

A.D. de Araújo (UFRN, Natal) developed several
successful applications with DC and Induction motor
control (a CHESF project 2009).

He proposed several variations of the VS-MRAC, including
adaptive pole placement control with variable structure
(VS-APPC).

Sahjendra N. Singh (UNLV, Las Vegas) and A. D. Araújo:
applications of the VS-MRAC to aerospace and aircraft
problems. One example (2012) is in satellite formation
control.
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The players

(Costa, Lizarralde, Cunha, Araújo (circa 2000))
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6. MIMO VS-MRAC I

Block diagram, n∗ ≥ 1
Global stability
Fundamental Lemmas
Stability Theorems

5 From theory to experiments
Linear vs nonlinear control
Experimental of ROV P-PI DP
Experimental ROV P-PI DP

6 MIMO VS-MRAC
Multivariable VS-MRAC

UV-MRAC Relative degree 1

UV-MRAC, n∗ ≥ 1
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6.1 Multivariable VS-MRAC

References: (Cunha, Hsu, Costa and Lizarralde 2002, 2003,
2006, 2008-FOAF)

Other approaches: (Spurgeon and Edwards 1998), (Emelyanov
et al 1992), (Chien et al 1996), (Bandhiopadhyai 2002
(dicrete-time))

A powerful approach is the High Gain Observer approach for
output feedback SMC (Oh and Khalil 1995, 1997). However,
peaking and noise sensitivity are of concern.
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6.1.1 UV-MRAC n∗ = 1 I

Designs for linear and nonlinear multivariable plants;

Unit vector control;

−Kp Hurwitz uncertain High Frequency Gain (N & S for
sliding!);

Global stability with output feedback.

Remark: First Order Approximation Filters (FOAF) are
instrumental to extend VS-MRAC to nonlinear systems.
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6.1.1 UV-MRAC n∗ = 1 II

Problem statement

Plant

ẋp = Apxp + φ(xp, t) + Bpu , y = Cpxp

xp, φ ∈ IRn, y , u ∈ IRm

Linear subsystem transfer function matrix:

G (s) = Cp(sI − Ap)−1Bp

High frequency gain matrix:

Kp = CpBp
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6.1.1 UV-MRAC n∗ = 1 III

Special assumptions

(A1) Sp is known such that −KpSp is Hurwitz
(relaxes the positive definiteness condition)

(A2) φ(xp, t): piecewise continuous in t and locally
Lipschitz in xp

(A3) ‖φ(xp, t)‖ ≤ kx‖xp‖+ ϕ(y , t) , kx , ϕ ≥ 0 are known

(A1) relaxes a positive definiteness condition. All uncertainty is
expressed as a Hurwitz condition.
It is less conservative than allowing φ = Bξ(t, xp, u) and requiring

‖ξ(t, xp, u)‖ ≤ k1‖u‖+ α(t, xp)

and bounding the gain k1 as made in several other published works
(e.g. (Edwards and Surgeon 1998)).
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6.1.1 UV-MRAC n∗ = 1 IV

Unit Vector control law

u = unom − Sp ρ
e

‖e‖
Modulation (or variable gain) function:

ρ = δ + c1‖ω‖+ c2‖r‖+ c3‖e‖+ φ̂(t)

output feedback!.
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6.1.1 UV-MRAC n∗ = 1 V

Lemma

Consider the MIMO system

ė(t) = AMe(t) + K [u + d(t) + π(t)] , (22)

u = −ρ(e, t) e
‖e‖ , (23)

where AM ,K ∈Rm×m; d(t), π(t) and ρ are LI. If −K is Hurwitz and

ρ(e, t) ≥ δ + ce‖e(t)‖+ (1 + cd )‖d(t)‖ , (24)

where ce , cd ≥ 0 are appropriate constants, and δ ≥ 0 is an arbitrary constant,
then ∃k1, k2, λ1 > 0 such that

‖e(t)‖ ≤ (k1‖e(0)‖+ k2R) exp(−λ1t) . (25)

Therefore, for π(t) ≡ 0 the system is globally exponentially stable. Moreover, if
δ > 0, then the sliding mode at e = 0 is reached after some finite time ts ≥ 0.

Proof: see (Cunha et al, 2003) [Cunha, Hsu, Costa, and Lizarralde 2003].
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6.1.1 UV-MRAC n∗ = 1 VI

Theorem

Theorem 1 If certain assumptions including (A1)–(A3) are
verified, then the The UV-MRAC system is globally
exponentially stable. Moreover, if δ > 0, the output error e(t)
becomes zero after some finite time.

Proof: Application of a Lemma 1 to the nonminimal realization of error equation

and the equations for the transient state of Wd and of the filter that generates d̂ .

The transient state is incorporated to the π term of Lemma 2 of Sec. 4 . �
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6.1.1 UV-MRAC n∗ = 1 VII

Remark: The Hurwitz condition is necessary and sufficient for
UVC.
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6.1.1 UV-MRAC n∗ = 1 VIII

UV-MRAC (n*=1) Block diagram
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6.1.1 UV-MRAC n∗ = 1 IX
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6.1.1 UV-MRAC n∗ = 1 X
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6.1.1 UV-MRAC n∗ = 1 XI

Position control of carts 1 and 2������� ��	
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6.2 UV-MRAC, n∗ ≥ 1

Two options have been proposed:

Generalize the VS-MRAC SISO by using unit vectors
instead of relays

Use High Gain Observers (HGO) to get the necessary
(error) state estimation of uncertain plants.
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6.2.1 UV-MRAC properties, n∗ ≥ 1]

Summary of properties

Applicable for a class of uncertain multivariable nonlinear
systems;

Assumes uniform relative degree n∗ ≥ 1;

Includes nonlinear state dependent and unmatched
disturbances;

Peaking free (in contrast to well known HGO based
design);

Global or semi-global stability with respect to some
residual set.

Reference:(Hsu et al IFAC2005)
Related literature: (Edwards and Spurgeon 1998), (Oh and
Khalil 1995)
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6.2.2 Problem statement

Plant (square system: y , u ∈ IRm

ẋp = Apxp + φ(xp, t) + Bpu

y = Cpxp

Linear subsystem transfer function matrix:

G (s) = Cp(sI − Ap)−1Bp

High frequency gain matrix:

Kp = CpA
n∗−1
p Bp
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6.2.3 Assumptions

(A1) Standard MRAC assumptions for G (s)

(A2) G (s) → known relative degree n∗

(A3) Matrix Sp known such that −KpSp Hurwitz → reduce prior

knowledge of Kp

(A4) φ is locally Lipschitz in xp and piecewise continuous in t

φ(xp, t)‖≤kx‖xp‖+ϕ(y , t) , ∀(xp, t) , with kx , ϕ known

Note: ϕ = ‖y‖2 → finite-time escape is not precluded, a priori
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6.2.3 UV-MRAC Block Diagram, n∗ ≥ 1
IFAC 2005: Unit Vector Control of Uncertain Multivariable Nonlinear Systems 15

UV-MRAC for n∗ > 1

−

+

+

−

+

−

Nonlinear
+

−

Model

Plant

unom e

ê

ε0

L

L−1

r
̺0

u

U0

U0

UN

y

yM
WM

WMLKnom

Sp

̺0
ε0

‖ε0‖

IFAC 2005: Unit Vector Control of Uncertain Multivariable Nonlinear Systems 16

−

+

−

+
ε1εN

F−1
1F−1

N

L−1
1L−1

N

̺1̺N

U0U1UN−1UN ̺1
ε1

‖ε1‖̺N
εN

‖εN‖

• Key idea → prediction error:

ê = WM (s)L(s)Knom
(
U0 − L−1(s)UN

)

where Knom → nominal value of K = KpSp

• Averaging filters F−1
i (τis) → low-pass filters:

(Ui−1)eq ≈ F−1
i (τis) Ui−1
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6.3 VS-MRAC with HGO

Instead of the VS-lead filters of VS-MRAC, it is possible
to use High Gain Observers.

Its is different from using lead compensators.

The distinctive difference is that, observers may form an
Ideal Sliding Loop, even if the plant has unmodeled
dynamics.

Therefore the controller is expected to be less prone to
chattering.
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6.3.1 VS-MRAC with HGO, SISO I

First consider the SISO case.
Model Reference: {AM , BM , CM}, in observer canonical form.
The Model Following error state equation:

ẋe = AMxe + BM
Kp

KM

[
u − θ∗Tω + Wd(s) ∗ d(t) + πe

]

e = CMxe

The high gain observer (smart placement!):

˙̂xe = AM x̂e + BMknomU − [α(ε−1)− aM ]ẽ

ẽ = CM x̂e − e, e = y − yM
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6.3.1 VS-MRAC with HGO, SISO II

The OF SMC law

Control law: u = unom − ρ sign(Sx̂e)

Modulation function:
ρ(t) ≥

∥∥∥(θnom − θ∗)T ω + Wd(s) ∗ d(t)
∥∥∥

x̂e is the estimate of xe (from a HGO).

S is s.t. S(sI − AM)−1BM = WM(s)L(s) is SPR
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6.3.2 Caveat: HGO has peaking

Sliding mode control of uncertain linear systems based on a high gain observer free of peaking 14

Problem: Peaking in the HGO as ε → 0+.

= 0,1ε

ε= 0,05

= 1ε

0,5 1,0

t (s)

Norm of the Estimation Error
8

6

4

2

1

0

IFAC 2005 – Praha July 03–08
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6.3.3 Peaking-free control with ISM via HGO

Sliding mode control of uncertain linear systems based on a high gain observer free of peaking 17

+

−

+

+

+

+
+

−d(t)unom e

ê

ẽ
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S̄(ε)

r

ρ

u

U σ̄

y

yM

Plant

Model

Observer

“Ideal” sliding loop

−ρ sgn(σ̄)

IFAC 2005 – Praha July 03–08

Better robustness than using lead compensators using differentiators? (to be

confirmed theoretically...)
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6.3.4 Experimetal setup

Sliding mode control of uncertain linear systems based on a high gain observer free of peaking 19

Experiment

Rail

A/D

Power amplifier

D/A
system

Data

Motor
voltage

Cart

acquisition

conditioning
Signal

Potenciometer voltage  (10,7   )y

y0

u

IFAC 2005 – Praha July 03–08
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6.3.5 HGO VS-MRAC cart position control

Sliding mode control of uncertain linear systems based on a high gain observer free of peaking 20
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IFAC 2005 – Praha July 03–08
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6.3.6 Conclusion for VS-MRAC with HGO

Sliding mode control of uncertain linear systems based on a high gain observer free of peaking 21

Conclusion

• New algorithm VSC + HGO + State Variable Filters

• The sliding surface is generated using the HGO state.

• Modulation function based on the filters state

• Main result: global exponential stability without peaking

IFAC 2005 – Praha July 03–08
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The players

(Costa, Lizarralde, Cunha, Peixoto (circa 2000))
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7. Binary MIMO MRAC and Passivation
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7.1 Motivation

MRAC leads to continuous control signal but lacks
robustness and can present bad adaptation transient.

UV-MRAC exhibits invariance properties, robustness and
good convergence. Needs infinite switching frequency and
is chattering prone.

B-MRAC acts as a bridge between them and combines
their desirable properties and avoiding their drawbacks.

The B-MRAC consists basically of the conventional MRAC
modified by parameter projection combined with high
adaptation gain.
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7.2 Passivity framework

The Lyapunov based design of MIMO MRAC requires the
SPR passivity condition for the error equation.

This implies a stringent symmetry condition on the high
frequency gain matrix Kp.

A new generalized passivity requires the weaker WSPR
condition.

WSPR does not require Kp to be positive definite
symmetric. It only requires it to have Positive Diagonal
Jordan form (PDJ).
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SPR condition

The system

ẋ = Ax + Bu , (26)

y = Cx , (27)

is Strictly Passive (SPR) if and only if there exist symmetric
and positive definite (SPD) matrices P and Q satisfying

ATP + PA = −Q, (28)

PB = CT . (29)

Then the symmetry condition is easy to verify:

Kp = CB = BTCT > 0

where the matrix Kp is the high frequency gain matrix, deemed
to be SPD.
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WSPR condition

The system satisfies the WSPR condition if besides P, Q,
there exists W SPD, such that

ATP + PA = −Q, (30)

PB = CTW . (31)

Note that W is not used for the control design. Only its
existence is required!

104 / 138



VSS Summer
Course-2019

Liu Hsu
UFRJ

UV-MRAC
properties,

n∗ ≥ 1

Problem statement

Assumptions

UV-MRAC Block
Diagram,

n∗ ≥ 1

VS-MRAC with
HGO

VS-MRAC with
HGO, SISO

Peaking Phenomena

Peaking-free control

Cart position control

Conclusion for
VS-MRAC with
HGO

Binary MIMO
MRAC and
Passivation

Motivation

Passivity framework

MIMO B-MRAC

B-MRAC adaptive
control application

Conclusions

Bibliography

hideallsubsections

PDJ condition

From PB = CTW , it can be noted that

BTPB = BTCTW = (CB)TW

is symmetric and positive definite (SPD).

Given a matrix CB∈ IRm×m, then exist a matrix
W̄ =W̄ T >0, W̄ ∈ IRm×m such that

W̄ (CB) = (CB)T W̄ > 0, (32)

if and only if CB has real and positive eigenvalues and its
Jordan form is diagonal (PDJ).

105 / 138



VSS Summer
Course-2019

Liu Hsu
UFRJ

UV-MRAC
properties,

n∗ ≥ 1

Problem statement

Assumptions

UV-MRAC Block
Diagram,

n∗ ≥ 1

VS-MRAC with
HGO

VS-MRAC with
HGO, SISO

Peaking Phenomena

Peaking-free control

Cart position control

Conclusion for
VS-MRAC with
HGO

Binary MIMO
MRAC and
Passivation

Motivation

Passivity framework

MIMO B-MRAC

B-MRAC adaptive
control application

Conclusions

Bibliography

hideallsubsections

Application of the concept of passivity on MRAC
MIMO

Control objective: To find u(t) such that

e(t) = yp(t)− yM(t).

tends to zero asymptotically for arbitrary CIs.

The concepts of WSPR and WASPR can be applied.

Consider the modified error equation.

ẋe = AKxe + BcKp[u − u∗] ,

eL = Le , (e = Hoxe ),

where AK = Ac − BcKpKLHo

L is chosen so that {AK ,BcKp, LHo} is PDJ.
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Determination of the passifying multiplier L

Consider the factorization Kp = LpDpUp.

The diagonal matrix D0 is chosen.

A lower triangular multiplier matrix L = D0(LpDp)−1 can
be obtained so that

K̄p = LKp = D0(LpDp)−1(LpDp)Up = D0Up,

Then the modified error system

eL = WM(s)LKpũ, ũ = u − u∗, is WSPR.
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7.2 MIMO B-MRAC I

The B-MRAC was proposed by Hsu and Costa in the early 90’s
for SISO systems. Here we extend it to the MIMO case. To
this end, a passivity framework is helpful.

In the MIMO case, the control law can be parametrized in
the followig forms

The projection of a vector is more natural than the
projection of a matrix, then consider.

- Instead of a matrix Θ ∈ IRN×m, a modified vector
θ ∈ IRNm.

- Instead of a vector ω ∈ IRN , a modified matrix
Ω ∈ IRNm×m.
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7.2 MIMO B-MRAC II

Given by

Ω = Im ⊗ ω =



ω

. . .

ω


 , θ = vec(Θ) =



θ1
...
θm


 ,

where θi corresponds to the i-th column of the parameter
matrix Θ.
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B-MRAC MIMO

Thus, the adaptation law B-MRAC MIMO is given by

θ̇ = −σθ − γΩeL,

σ =

{
0, if ‖θ‖ < Mθ or σeq < 0,
σeq, if ‖θ‖ ≥ Mθ and σeq ≥ 0,

σeq =
−γθTΩeL
‖θ‖2

,

where
Mθ > ‖θ∗‖

u(t) = ΘT (t)ω(t) = ΩT (t)θ(t).
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Connection between B-MRAC and Unit Control
Vector

Consider the B-MRAC adaptive law

γ−1θ̇ = −γ−1θσeq − ΩeL

when γ →∞, it can be verified that θ is collinear with ΩeL,
hence θ can be express by

θ = −Mθ
ΩeL
‖ΩeL‖

.

Then, the form of the UVC law can be obtained

u = −Mθ‖ω‖
eL
‖eL‖

.
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7.3 Direct adaptive visual tracking

Direct adaptive visual tracking of planar manipulators.

Fixed camera (plant) with optical axis orthogonal to the
robot workspace.

The camera orientation angle is uncertain with respect to
the coordinates of the robot workspace.

Figure: Representation of the camera-robot system
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Equations of the visual tracking system

Figure: Representation of the camera-robot system

ẋc = Kpu, Kp =

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

]
,

xc ∈ R2 Coordinates of the end-effector of the image
plane.

Kp ∈ R2×2 Rotation matrix.
u ∈ R2 Cartesian control law.
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Equations of the visual tracking system

Figure: Representation of the camera-robot system

ẋm = −λxm + λr(t),

xm ∈ R2 Desired image-plane trajectory.
λ ∈ R A positive constant.
r ∈ R2 An arbitrary reference signal piece-wise and
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Equations of the visual tracking system

Control objective: Find a control law u such that

e = xc − xm → 0 for arbitrary CIs.

Tracking error equation:

ė = −λe + Kpu − λω, ω = r(t)− xc .

Ideal control law:

u∗ = Θ∗Tω = ΩT θ∗, Θ∗T = λKp
−1.
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Determining the passifying matrix L

To turn the error system WASPR is necessary to find a
constant matrix L such that LKp is PDJ.

Kp = Lp Dp Up,

Kp =

[
c −s
s c

]
=

[
1 0
s/c 1

] [
c 0
0 1/c

] [
1 −s/c
0 1

]
,

Defining D0 =

[
α 0
0 β

]
, tem-se

L = D0(LpDp)−1 =

[
α/c 0
−βs βc

]
.
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Parameters of the visual tracking system

System’s parameters

Initial conditions xc(0) =
[
5 5

]T
.

Reference signal r(t) = [10 sin(3t) 10 sin(0.5t)]T .

Model’s constant λ = 1.

Orientation angle φ = 30◦.

Passifying matrix L

Nominal angle φn = 45◦.

D0’s constants α = 5 e β = 1.

Controller’s parameter Mθ

With ‖θ∗‖ =
√

2.

It can be chose Mθ = 3.
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MRAC control with passivation and γ = 5
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Figure: Behavior of the MRAC control with passivation and γ = 5:
(a) Tracking errors e; (b) Plant control signals u;
(c) Adaptive parameters
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B-MRAC control without passivation and γ = 5
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Figure: Behavior of the B-MRAC control without passivation and
γ = 5: (a) Tracking errors e; (b) Plant control signals u;
(c) Adaptive parameters
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B-MRAC control with passivation and γ = 5
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Figure: Behavior of the B-MRAC control with passivation and γ = 5:
(a) Tracking errors e; (b) Plant control signals u;
(c) Adaptive parameters
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B-MRAC control with passivation and γ = 20
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Figure: Behavior of the B-MRAC control with passivation and
γ = 20: (a) Tracking errors e; (b) Plant control signals u;
(c) Adaptive parameters
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UVC without passivation
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Figure: UVC without passivation: (a) Tracking errors e;
(b) Plant control signals u
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B-MRAC control without passivation and γ = 100
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Figure: Behavior of the B-MRAC control without passivation and
γ = 100: (a) Tracking errors e; (b) Plant control signals u
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B-MRAC control with passivation and γ = 100
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Figure: Behavior of the B-MRAC control with passivation and
γ = 100: (a) Tracking errors e; (b) Plant control signals u;
(c) Adaptive parameters
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7.3.1 Conclusions

The B-MRAC was extended for MIMO systems.

The generalized passivity concepts of WSPR and WSPR
were used.

With high adaptive gains B-MRAC’s behavior gets closer
to the UVC’s behavior.

The B-MRAC scheme improves the MRAC’s transient.

The passivation achieves chattering reduction.
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The players

(Barkana, Teixeira, Costa, Assunção, Battistel, Nunes and
Yanque (circa 2012))
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