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Introduction DF

DF technique is:

Applied to nonlinear systems where the nonlinear part can be separated from the
linear part.

Based on the hypothesis of law pass filter. i.e. that the input of the nonlinear part is
sinusoidal.

F(σ) W(y)
yσ=Asin(ωt) γ

Nonlinear System

Nonlinear 
Part

Linear 
Part
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Introduction DF

Based on the Fourier series representation of the nonlinearity.

y = F (A sinωt) =
a0

2
+ Σ∞n=1(an cos nωt + bn sin nωt)

a0 =
ω

π

∫ 2π/ω

0

F (A sinωt)dt;

an =
ω

π

∫ 2π/ω

0

F (A sinωt) cos nωtdt;

bn =
ω

π

∫ 2π/ω

0

F (A sinωt) sin nωtdt.
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Introduction DF

Main hypothesis: Linear part is a low pass filter.

Closed loop system, the output can be approximated

y = F (A sinωt) ≈ a0

2
+ Σ∞n=1(a1 cosωt + b1 sinωt)

a2, a3, ... ≈ 0 ; b2, b3, ... ≈ 0

F(σ) W(y)
yσ γ

Nonlinear System

Nonlinear 
Part

Linear 
Part

-1
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Introduction DF

DF is an equivalent complex gain of the nonlinear part

F (σ) = N(A, ω)σ

For symmetric nonlinearities

N(A, ω) =
ω

πA

∫ 2π/ω

0

F (A sinωt) sinωtdt + j
ω

πA

∫ 2π/ω

0

F (A sinωt) cosωtdt
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DF and Harmonic Balance

Harmonic Balance condition

1 + W (jω)N(A, ω) = 0; W (jω) = − 1

N(A, ω)

Identify oscillations
Find frequency ω and amplitude A of the oscillations

(A, ω)

Im

Re

ω

W(j ω)

),(
1
ωAN

−

A
ω1
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Oscillations in SMC systems

NO ONE MODEL TAKES INTO ACCOUNT ALL SYSTEM DYNAMICS!!!
The phenomenon of chattering is caused by the inevitable existence of un-modeled
dynamics.

The principal dynamics are the dynamics of the plant is a model that are used for
controller design.

The un-modeled dynamics are not accounted during the SMC design; delays, actuators,
sensors, etc.

The relative degree increases and the real sliding mode emerges, where the sliding
variable contains a limit cycle (chattering) with finite frequency and finite amplitude.
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DF in SMC

Systems driven by SMC analyzed can be the frequency domain, when the un-modeled
dynamics are taken into account.

DF-HB technique is applied to identify limit cycles (chattering) and estimate their
parameters, amplitude and frequency.

N(A, ω) =
ω

πA

∫ 2π/ω

0

u(t) sinωtdt + j
ω

πA

∫ 2π/ω

0

u(t) cosωtdt

N(A, ω) is the DF of SMC algorithm.
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Conventional SMC: DF Analysis

Figure: Block diagram of a linear system with relay control and ideal sliding

Replace the Laplace variable s by jω,

−σ = Ac sinωct, (1)

ωc is frequency
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Conventional SMC: DF Analysis

Amplitude Ac and Frequency ωc have to satisfy the Harmonic Balance (HB) eq.

G(jω) = − 1

N(A, ω)
. (2)

For conventional SMC N(A, ω) DOES NOT DEPEND ON ω

N(A) =
4Um

πA
(3)

Leonid Fridman lfridman@unam.mx (UNAM) Analysis of Sliding Mode Controllers in the Frequency Domain 11 / 64



Conventional SMC:DF analysis

Example of Ideal SMC

ẋ1 = x2

ẋ2 = −x1 − x2 + u (4)

σ = x1 + x2

with control
u = −sign(σ) (5)

Transfer function

G(s) =
s + 1

s2 + s + 1
(6)

HB eq.

Re [G(jω] = − πA

4Um
(7)
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Conventional SMC: DF analysis

Real part

1− ω + ω2

(1− ω2)2 + ω2
= − πA

4Um

Imaginary part
ω2

(1− ω2)2 + ω2
= 0 (8)

Solution
Ac = 0, ωc →∞ (9)
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Conventional SMC: DF analysis

Figure: Graphical solution of the harmonic balance equation for system G(s)

Phase deficit is 90 grade. Finite time convergence!
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Conventional SMC: DF analysis

Figure: Surface

Phase deficit is 90 grade. Finite time convergence!
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Conventional SMC: DF analysis

Real SMC

Figure: Block diagram of a linear system with Real SMC

D(jω, d)G(jω) = − 1

N(A, ω)
, N(A, ω) =

4Um

πA
(10)

D(jω, d) un-modelled dynamics
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Conventional SMC: DF analysis

Example Real SMC

Plant

ẋ1 = x2;

ẋ2 = −x1 − x2 + u;

Actuator

0.01u̇a = −ua + u;

σ = x1 + x2;

Controller
u = −sign(σ) (11)

Transfer function

D(s, d)G(s) =
s + 1

(0.01s + 1)(s2 + s + 1)
(12)
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Conventional SMC: DF analysis

Figure: Graphical solution of the HB eq for system D(s, d)G(s) plus 1st order actuator

The phase dificit is 0. Only asymptotic converence.
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Conventional SMC: DF analysis

The phase dificit is 0. Only asymptotic converence.

Figure: Zoom
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Conventional SMC: DF analysis

The phase dificit is 0. Only asymptotic converence.

Figure: Surface
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Conventional SMC: DF analysis

Plant plus 2nd order actuator

ẋ1 = x2 ; 0.0001üa = −0.01u̇a − ua + u

ẋ2 = −x1 − x2 + u ; σ = x1 + x2

u = −sign(σ)

Figure: Graphical solution of the HB eq for system D(s, d)G(s) plus 1st order actuator
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Twisting and its DF

Twisting Algorithm

ẍ = u;

u = −c1sign(x)− c2sign(ẋ),

with c1 > c2 > 0.

DF

N(A) = N1 + sN2 =
4

πA
(c1 + jc2),
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Twisting and its DF

HB eq.

W (jω) = πA
−c1 + jc2

4(c2
1 + c2

2 )
,

The phase dificit is arctg(c2/c1). Finite-time convergence
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Terminal Control Law and its DF

Terminal Control Law

ẍ = u;

u = −αsign(ẋ + β|x |ρsign(x)),

with 0.5 < ρ < 1.

Leonid Fridman lfridman@unam.mx (UNAM) Analysis of Sliding Mode Controllers in the Frequency Domain 21 / 64



Super-twisting and its DF

ST algorithm

ẋ = u;

u = −β|σ|1/2sign(σ) + us ,

u̇s = −αsign(σ),

DF

N(A, ω) =
4α

πAjω
+

1.1128β√
A

,
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Super-twisting and its DF

HB eq.

W (jω) = −
0.8986

√
A
β

+ j1.1329 α
β2ω

1 + 1.3092 α2

β2Aω2
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Super-twisting and its DF

Existence of the periodic solutions

Write HB eq. as: N(A) = −W−1(jω),

4γ

πA

1

jω
+ 1.1128

λ√
A

= −W−1(jω). (13)

Consider the real part of both sides

1.1128
λ√
A

= −ReW−1(jω) (14)

Eliminating A from eqs. (13)-(14),

Ψ(ω) =
4γ

πω

1

ImW−1(jω)
−
(

1.1128λ

ReW−1(jω)

)2

= 0. (15)

Eq. (15) has ONLY one unknown variable, ω.
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Super-twisting and its DF

Existence of the periodic solutions

Once ω is obtained from Eq. (15) amplitude, Ac can be computed as:

Ac =
4γ

πωc

1

ImW−1(jωc)
. (16)
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Super-twisting and its DF

Stability of periodic solution

If the following inequality holds then the periodic solution given by Equation (15) is
locally stable:

Re
h1(A, ω)

h2(A, ω) + N(A, ω) ∂ ln W (s)
∂s

|s=jω

< 0, (17)

where h1(A, ω) = 1.1128λ

2A
3
2
− j 4γ

πωA2 , h2(A, ω) = 4γ
πω2A
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Super-twisting and its DF

Stability of periodic solution

Proof:

Assume that the HB eq. holds for small perturbations.

Damped oscillation of the complex frequency jω + (4σ + j∆ω) corresponds to the
modified amplitude (A +4A):

N(A +4A, jω + (4σ + j∆ω))W (jω + (4σ + j∆ω)) = −1. (18)

N(A, ω) is DF of Super-twisting.

Find the conditions when Λ = 4σ/4A is negative.
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Super-twisting and its DF

Stability of periodic solution

Proof(continue):

Take the derivative of (18) with respect to 4A and write an equation for the
amplitude perturbation 4A.{

dN(4A,4σ,∆ω)

d4A
|4A=0W (jω) +

dW (4σ,∆ω)

d4A
|4A=0N(A, ω)

}
4A = 0. (19)

Take derivatives of N and W , and consider them composite functions:

dN(4A,4σ,∆ω)

d4A
|4A=0 = −j 4γω

πA2
− 1.1128λ

2A
3
2

+
4γA

πω2

(
d4σ
d4A

+ j
d4ω
d4A

)
. (20)

dW

d4A
|4A=0 =

dW

ds
|s=jω

(
d4σ
d4A

+ j
d4ω
d4A

)
(21)

Solve eq. (19) for( d4σ
d4A

+ j d4ω
d4A

) and taking account of (20) and (21), an analytical

formula is obtained, where the real part is (17).
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Is It Reasonable to Substitute Discontinuous SMC by Continuous
HOSMC?
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Motivation Example

FOSMC
or STA 

Actuator
(𝜇)

Plant+ꟷ
𝑥 𝑢

𝐹

𝑢−𝑥𝑅 = 0

Plant

ẋ(t) = ū(t) + F (t)

Actuator

ż(t) =

[
0 1
− 1
µ2 − 2

µ

]
z(t) +

[
0
1
µ2

]
u(t)

ū(t) =
[
1 0

]
z(t)

Assumption 1

The parasitic dynamics (Actuator) is not required for the design of the SMC/HOSMC
gains and its effects can be measured by the ATC µ.
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Considered SMC Algorithms and Disturbances

FOSMC

u = −M sign(x)

where M = 1.1δ.

STA [Levant (1993)]

u = −k1|x |1/2 sign(x) + v
v̇ = −k2 sign(x)

where k1 = 1.5
√
L, k2 = 1.1L.

Bounded
&

Lipschitz

Bounded
Not Lipschitz

Not Bounded
Lipschitz

FOSMC
(Discontinuous)

STA
(Continuous)

Reasonable Comparison

Disturbance form

F = α sin(Ωt)

where the upperbounds

|F | ≤ δ = α

|Ḟ | ≤ ∆ = αΩ

are assumed known.
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Simulations Results for Some Values of ATC and Increasing Ω

PPPPPPPControl

Ω
1 10 100

Discontinuous Control

FOSMC

µ = 10−1 1.366×10−1 1.692×10−1 0.934×10−1

µ = 10−2 1.092×10−2 1.361×10−2 1.692×10−2

µ = 10−3 1.064×10−3 1.096×10−3 1.362×10−3

Continuous Control

STA

µ = 10−1 1.243×10−1 8.663×10−1 6.4041

µ = 10−2 9.431×10−4 1.302×10−2 8.694×10−2

µ = 10−3 8.915×10−6 9.445×10−5 1.343×10−3

Table: Sliding-Mode Amplitude Accuracy
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Discussion Aspects

Professor V. Utkin Hypothesis

Simulations confirms that for any value of ATC there exist a bounded disturbance for
which the amplitude of possible oscillations produced by FOSMC is lower than the
obtained applying STA.

Hypothesis 2

It should exists a value of ATC for which the amplitude of chattering produced by
FOSMC and STA are the same.

Hypothesis 3

For any bounded and Lipschitz disturbance, the amplitude of possible oscillations
produced by STA may be less than the obtained using FOSMC if the actuator dynamics
is fast enough.
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Methodology

The parameters that characterizes the chattering of the steady-state behavior of the
nominal system (F = 0) are:

1. Amplitude of periodic motion (A)

2. Frequency of periodic motion (ω)

3. Average power (P)

Dinamically
Perturbed
Systems

Harmonic
Balance
Approach

Describing
Function

Amplitude

Frequency

Averaged
Power
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DF Analysis

Assumption 2 (Low pass filter hypothesis)

The dynamically perturbed system (Actuator-Plant) W (s) has low pass filter
characteristics with respect to the higher harmonics of the output x . Hence the output of
the system converges to a periodic motion [Gelb (1968)], [Boiko (2009)], which can be
well-approximated by its first-harmonic,

x = A sin(ωt),
ẋ = Aω cos(ωt).
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Harmonic Balance Approach

Parameters of a possible periodic motion, amplitude A and frequency ω, can be found by
solving the Harmonic Balance equation (see for example [Gelb (1968)],
[Atherton (1975)])

N(A, ω)W (jω) = −1

where N(A, ω) is the DF of the non-linearity (FOSMC or STA).
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Average Power Approach

Lp-chattering [Levant (2010)]

chattLp (x) =

(∫ T

0

ẋp(τ)dτ

)1/p

Drawbacks

There is no chattering in ideal
sliding-mode motion!

How to compute chattLp ?

⇓

A novel approach: Average Power

P =
1

T

∫ T

0

ẋ2(τ)dτ =
ω

2π

∫ 2π
ω

0

(
Aω cos(ωτ)

)2

dτ =
A2ω2

2
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Preliminaries

Let the dynamically perturbed system (actuator-plant)

W (s) =
1

s(µs + 1)2

FOSMC

u = −M sign(x)

DF

N(A) =
4M

πA

Note: The DF of FOSMC does not

depend on frequency ω.

STA [Levant (1993)]

u = −k1|x |1/2 sign(x) + v
v̇ = −k2 sign(x)

DF [Boiko (2009)]

N(A, ω) =
1.1128k1

A1/2
− j

4k2

πAω
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Chattering Parameters Estimated by HB

FOSMC [?]

A = µ

(
2M

π

)

ω =
1

µ

P =
2M2

π2

Note: The Average Power produced by

FOSMC does not depend on ATC µ.

STA
[?]

A = µ2
(

1
2
· (1.1128k1)2+ 16

π
k2

1.1128k1

)2

ω =
1

µ

(
(1.1128k1)2

(1.1128k1)2+ 16
π

k2

)1/2

P =
µ2

4

(
1
2
· (1.1128k1)2+ 16

π
k2

(1.1128k1)2/3

)3
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Selection of STA Gains to Minimize the Amplitude of Chattering

Minimum Amplitude for each k2 > ∆

k̄1 =
(

16k2
π(1.1128)2

)1/2

= 2.028
√
k2

Proposed STA Gains†

k1 = 2.127
√

∆
k2 = 1.1∆

† Sufficient stability conditions [?] are satisfied:

k1 > 1.449
√

∆
k2 = 1.1∆

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

k1

0

2

4

6

8

10

12

14

16

18

20

A/µ2

X: 2.127

Y: 5.602

Figure: Amplitude as Function of k1
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Selection of STA Gains Minimize the Average Power

Minimum AP for a given k2 > ∆

k̄1 =
(

8k2
π(1.1128)2

)1/2

= 1.434
√
k2

Proposed STA Gains†

k1 = 1.504
√

∆
k2 = 1.1∆

† Sufficient stability conditions [?] are satisfied:

k1 > 1.449
√

∆
k2 = 1.1∆

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

k1

0

2

4

6

8

10

12

14

16

18

20

P/µ2

X: 1.504

Y: 6.62

Figure: Average Power as Function of k1
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Chattering Parameters as Function of µ

00.020.040.060.080.10.120.140.160.180.2

0

0.1

0.2

0.3

A

FOSMC STA

00.020.040.060.080.10.120.140.160.180.2

0

25

50

ω

00.020.040.060.080.10.120.140.160.180.2

µ

0

0.2

0.4

P

X: 0.125

Y: 0.08754

X: 0.1768

Y: 0.2453

Figure: Chattering Parameters as Function of ATC µ
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Amplitude Discussion

Result 1

There exist a value of ATC for which the amplitude of
possible oscillations are the same according with HB
approach,

µ∗ =
8M(1.1128k1)2

π
(

(1.1128k1)2 + 16
π
k2

)2
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Frequency Discussion

Result 2

The frequency of possible
oscillations is always lower
for the STA than the
obtained using FOSMC.

Figure: Graphical Solution of HB equation
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Average Power Discussion

Result 3

There exist a value of ATC for which the average power
are the same according with HB approach,

µ? =
8M(1.1128k1)

π
(

(1.1128k1)2 + 16
π
k2

)3/2
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Comparison Example

Let a matched disturbance F ,

F = α sin(Ωt) ⇒
{
|F | ≤ δ = α

|Ḟ | ≤ ∆ = αΩ

Same Amplitude Order

µ∗ =
8M(1.1128k1)2

π
(

(1.1128k1)2 + 16
π
k2

)2 = 0.125
δ

∆
= 0.125

1

Ω

Considered ATC

µ∗ < µ1 = 0.25
1

Ω
µ∗ > µ2 = 0.0833

1

Ω
Slow actuator Fast actuator
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Simulations for some values of Ω

PPPPPPPControl

Ω
1 10 100

Discontinuous Control

FOSMC

µ
1

1.6326 1.6224×10−1 1.6226×10−2

µ∗ 1.7644×10−1 1.9018×10−2 1.8969×10−3

µ
2

9.4217×10−2 9.4311×10−3 9.4872×10−4

Continuous Control

STA

µ
1

2.2492 2.6933×10−1 2.7061×10−2

µ∗ 1.3229×10−1 1.3516×10−2 1.3518×10−3

µ
2

4.8421×10−2 4.8374×10−3 4.8573×10−4

Table: Sliding-Mode Output Accuracy Increasing the Disturbance Frequency Ω.
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Discussion of Chattering Magnitude

Simulation results confirms:

For any value of disturbance frequency Ω should be a critical value of ATC µ∗ for
which the magnitude of chattering is the same when FOSMC or STA are applied.

If ATC is greater than µ∗ (for example µ1), then

AFOSMC < ASTA

If ATC is lower than µ∗ (for example µ2), then

AFOSMC > ASTA

Leonid Fridman lfridman@unam.mx (UNAM) Analysis of Sliding Mode Controllers in the Frequency Domain 48 / 64



Professor V. Utkin Example

Consider the following case

δ = ∆ = 60 ⇒
{

M = 1.1δ

k1 = 2.127
√

∆ and k2 = 1.1∆

Chattering Parameters Estimated by HB

FOSMC

A = 42.017µ, ω =
1

µ
, P = 882.7102.

STA

A = 336.135µ2, ω =
1

µ
√

2
, P = 28246.93µ2.

Same Amplitude

µ∗ = 0.125

Same Average Power

µ? = 0.1768
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Simulations for some values of µ

PPPPPPPControl

µ
0.2 0.1768 0.125 0.1

Discontinuous Control

FOSMC

A 8.6899 7.6819 5.4312 4.3450

ω 4.8900 5.5317 7.8240 9.7800

P 926.899 926.899 926.899 926.899

Continuous Control

STA

A 13.5615 10.5999 5.2987 3.3911

ω 3.5153 3.9764 5.6242 7.0302

P 1152.394 900.6406 450.360 288.2422

Table: Comparison of Chattering Parameters
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Discussion about the Chattering Parameters Based on HB

HB allows to confirm:

Given δ and ∆ upperbounds of disturbance and time-derivative disturbance, it
should be exist an ATC µ∗ for which the amplitude of possible oscillations are the
same. Also

if
µ > µ∗ ⇒ AFOSMC < ASTA ,
µ < µ∗ ⇒ AFOSMC > ASTA .

Given δ and ∆ upperbounds of disturbance and time-derivative disturbance, it
should be exist an ATC µ? for which the average power are the same. Also

if
µ > µ? ⇒ PFOSMC < PSTA ,
µ < µ? ⇒ PFOSMC > PSTA .
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Average Power: Passivity Approach

Average Power

p̄(t) = ū(t)x(t) ⇒ P̄ =
1

T

∫ T

0

p(τ)dτ =
4A2ω

π

FOSMC

P̄ = µ

(
16M2

π3

)
STA

P̄ = µ3

( [
(1.1128k1)2 + 16

π
k2

]7/2

4π(1.1128k1)3

)
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Selection of STA Gains to Minimize the Average Power

Minimum AP for k2 > ∆

k̄1 =
(

12k2
π(1.1128)2

)1/2

= 1.7563
√
k2

Proposed STA Gains†

k1 = 1.842
√

∆
k2 = 1.1∆

† Sufficient stability conditions [?] are satisfied:

k1 > 1.449
√

∆
k2 = 1.1∆

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

k1
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Y: 27.26

Figure: Average Power as Function of k1
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Tolerance limits

Tolerance limits

The frequency 0 < ωc <∞ and amplitude Ac > 0 are the Tolerance Limits (TL) of the
acceptable limit cycle of the output σ, so that its self-sustained oscillations with the
amplitudes A ≤ Ac and the frequencies ω ≥ ωc yield the acceptable behavior of the
closed loop system.

0
A

Ac
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Practical Stability Margins

Classical stability margins can not be applied

Practical Phase Margin (PPM) and Practical Gain Margin (PGM)
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PGM and PPM

Performance Gain Margin (PGM)

The PGM in the closed loop system controlled by SMC is the maximum additional gain
added to the frequency characteristic of the linear (linearized) plant W (jω), while the
sliding variable σ (which is the output of the closed loop system) exhibits a limit cycle
with marginally reached amplitude A = Ac and/or frequency ω = ωc whatever comes
first.

Performance Fase Margin (PPM)

The PPM in the closed loop system controlled by SMC is the maximal additional phase
shift that can be added to the frequency characteristic of the linear (linearized) plant
W (jω), while the sliding variable σ (which is the output of the closed loop system)
exhibits a limit cycle with marginally reached amplitude A = Ac and/or frequency ω = ωc

whatever comes first.
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PPM via Bode Diagram

ω

ω

arg{W(jω}

|W(jω)|

-180

ωc

PPM1 PPM2

ωAc

Aωc =|W(jωc)|
Ac =|W(j ωAc)|

θAc
θωc

Leonid Fridman lfridman@unam.mx (UNAM) Analysis of Sliding Mode Controllers in the Frequency Domain 57 / 64



PGM via Bode Diagram

ω

ω

arg{W(jω}

|W(jω)|

-180

Ac =|W(jωAc)|

ωAc ωGM

|W(jωGM)|

PGM
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Compensator

Wc(s) =
τs + 1

βτs + 1
,

β attenuation parameter. Wc(s) is phase-lead 0 < β < 1, and is phase-lag β > 1.

Obtain the performance margins of the system controlled by SMC.

Determine the maximum phase-lead angle of compensator as

φm = PSPMc
◦ − PSPMun

◦ + 〈5, 12〉◦,

where PSPMun is the PPM of the uncompensated system, PSPMc is the desired
PSPM and 〈5, 12〉 means an interval.

Obtain the parameter β that satisfies equation

sinφm =
1− β
1 + β

.

Leonid Fridman lfridman@unam.mx (UNAM) Analysis of Sliding Mode Controllers in the Frequency Domain 59 / 64



Compensator

Identify from the amplitude-frequency Bode plot of the uncompensated system the
magnitude that is equal to

−
[

20 log(
1√
β

) + 20 log

(∣∣∣∣− 1

N(Ac , ω)

∣∣∣∣)] ,
and it is associated with the frequency ωm.

Calculate the pole and zero of Wc(jω) as

Zero:
1

τ
= ωm

√
β; Pole:

1

βτ
.

Draw the Bode plot of the system augmented by the compensator, check the
resulting phase margin, and repeat the steps if necessary.
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Compensator
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