Analysis of Sliding Mode Controllers in the Frequency Domain

Leonid Fridman
Ifridman@unam.mx

Facultad de Ingeniería
National Autonomous University of Mexico (UNAM)
(1) Introduction

- Describing Function Method
- Oscillations in SMC systems
(2) DF analysis of conventional SMC and 2-SMC algorithms
- Conventional SMC: DF Analysis
- Twisting Algorithm: DF Analysis
- Terminal Control Law: DF Analysis
- Super-twisting Algorithm: DF Analysis
(3) Tolerance limits and Practical Stability Margins

DF technique is:

- Applied to nonlinear systems where the nonlinear part can be separated from the linear part.
- Based on the hypothesis of law pass filter. i.e. that the input of the nonlinear part is sinusoidal.

- Based on the Fourier series representation of the nonlinearity.

$$
\begin{gathered}
y=F(A \sin \omega t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega t+b_{n} \sin n \omega t\right) \\
a_{0}=\frac{\omega}{\pi} \int_{0}^{2 \pi / \omega} F(A \sin \omega t) d t \\
a_{n}=\frac{\omega}{\pi} \int_{0}^{2 \pi / \omega} F(A \sin \omega t) \cos n \omega t d t \\
b_{n}=\frac{\omega}{\pi} \int_{0}^{2 \pi / \omega} F(A \sin \omega t) \sin n \omega t d t
\end{gathered}
$$

Introduction DF

Main hypothesis: Linear part is a low pass filter.

Closed loop system, the output can be approximated

$$
\begin{aligned}
y=F(A \sin \omega t) & \approx \quad \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{1} \cos \omega t+b_{1} \sin \omega t\right) \\
a_{2}, a_{3}, \ldots \approx 0 & ; \quad b_{2}, b_{3}, \ldots \approx 0
\end{aligned}
$$

Introduction DF

DF is an equivalent complex gain of the nonlinear part

$$
F(\sigma)=N(A, \omega) \sigma
$$

For symmetric nonlinearities

$$
N(A, \omega)=\frac{\omega}{\pi A} \int_{0}^{2 \pi / \omega} F(A \sin \omega t) \sin \omega t d t+j \frac{\omega}{\pi A} \int_{0}^{2 \pi / \omega} F(A \sin \omega t) \cos \omega t d t
$$

DF and Harmonic Balance

Harmonic Balance condition

$$
1+W(j \omega) N(A, \omega)=0 ; \quad W(j \omega)=-\frac{1}{N(A, \omega)}
$$

- Identify oscillations
- Find frequency ω and amplitude A of the oscillations

Oscillations in SMC systems

NO ONE MODEL TAKES INTO ACCOUNT ALL SYSTEM DYNAMICS!!!

The phenomenon of chattering is caused by the inevitable existence of un-modeled dynamics.

The principal dynamics are the dynamics of the plant is a model that are used for controller design.

The un-modeled dynamics are not accounted during the SMC design; delays, actuators, sensors, etc.

The relative degree increases and the real sliding mode emerges, where the sliding variable contains a limit cycle (chattering) with finite frequency and finite amplitude.

Systems driven by SMC analyzed can be the frequency domain, when the un-modeled dynamics are taken into account.

DF-HB technique is applied to identify limit cycles (chattering) and estimate their parameters, amplitude and frequency.

$$
N(A, \omega)=\frac{\omega}{\pi A} \int_{0}^{2 \pi / \omega} u(t) \sin \omega t d t+j \frac{\omega}{\pi A} \int_{0}^{2 \pi / \omega} u(t) \cos \omega t d t
$$

$N(A, \omega)$ is the DF of SMC algorithm.

Conventional SMC: DF Analysis

Figure: Block diagram of a linear system with relay control and ideal sliding

Replace the Laplace variable s by $j \omega$,

$$
\begin{equation*}
-\sigma=A_{c} \sin \omega_{c} t \tag{1}
\end{equation*}
$$

ω_{c} is frequency

Conventional SMC: DF Analysis

Amplitude A_{c} and Frequency ω_{c} have to satisfy the Harmonic Balance (HB) eq.

$$
\begin{equation*}
G(j \omega)=-\frac{1}{N(A, \omega)} \tag{2}
\end{equation*}
$$

For conventional SMC $N(A, \omega)$ DOES NOT DEPEND ON ω

$$
\begin{equation*}
N(A)=\frac{4 U_{m}}{\pi A} \tag{3}
\end{equation*}
$$

Conventional SMC:DF analysis

Example of Ideal SMC

$$
\begin{align*}
\dot{x_{1}} & =x_{2} \\
\dot{x_{2}} & =-x_{1}-x_{2}+u \tag{4}\\
\sigma & =x_{1}+x_{2}
\end{align*}
$$

with control

$$
\begin{equation*}
u=-\operatorname{sign}(\sigma) \tag{5}
\end{equation*}
$$

Transfer function

$$
\begin{equation*}
G(s)=\frac{s+1}{s^{2}+s+1} \tag{6}
\end{equation*}
$$

HB eq.

$$
\begin{equation*}
\operatorname{Re}\left[G(j \omega]=-\frac{\pi A}{4 U_{m}}\right. \tag{7}
\end{equation*}
$$

Conventional SMC: DF analysis

Real part

$$
\frac{1-\omega+\omega^{2}}{\left(1-\omega^{2}\right)^{2}+\omega^{2}}=-\frac{\pi A}{4 U_{m}}
$$

Imaginary part

$$
\begin{equation*}
\frac{\omega^{2}}{\left(1-\omega^{2}\right)^{2}+\omega^{2}}=0 \tag{8}
\end{equation*}
$$

Solution

$$
\begin{equation*}
A_{c}=0, \omega_{c} \rightarrow \infty \tag{9}
\end{equation*}
$$

Conventional SMC: DF analysis

Figure: Graphical solution of the harmonic balance equation for system $G(s)$

Phase deficit is 90 grade. Finite time convergence!

Conventional SMC: DF analysis

Figure: Surface

Phase deficit is 90 grade. Finite time convergence!

Conventional SMC: DF analysis

Real SMC

Figure: Block diagram of a linear system with Real SMC

$$
\begin{equation*}
D(j \omega, \mathbf{d}) G(j \omega)=-\frac{1}{N(A, \omega)}, \quad N(A, \omega)=\frac{4 U_{m}}{\pi A} \tag{10}
\end{equation*}
$$

$D(j \omega, \mathbf{d})$ un-modelled dynamics

Conventional SMC: DF analysis

Example Real SMC

Plant

$$
\begin{aligned}
& \dot{x_{1}}=x_{2} ; \\
& \dot{x_{2}}=-x_{1}-x_{2}+u ;
\end{aligned}
$$

Actuator

$$
\begin{aligned}
0.01 \dot{u}_{a} & =-u_{a}+u ; \\
\sigma & =x_{1}+x_{2} ;
\end{aligned}
$$

Controller

$$
\begin{equation*}
u=-\operatorname{sign}(\sigma) \tag{11}
\end{equation*}
$$

Transfer function

$$
\begin{equation*}
D(s, d) G(s)=\frac{s+1}{(0.01 s+1)\left(s^{2}+s+1\right)} \tag{12}
\end{equation*}
$$

Conventional SMC: DF analysis

Figure: Graphical solution of the HB eq for system $D(s, d) G(s)$ plus 1 st order actuator

The phase dificit is 0 . Only asymptotic converence.

Conventional SMC: DF analysis

The phase dificit is 0 . Only asymptotic converence.

Figure: Zoom

Conventional SMC: DF analysis

The phase dificit is 0 . Only asymptotic converence.

Figure: Surface

Conventional SMC: DF analysis

Plant plus 2nd order actuator

$$
\begin{array}{rcc}
\dot{x}_{1}=x_{2} & ; & 0.0001 \ddot{u}_{a}=-0.01 \dot{u}_{a}-u_{a}+u \\
\dot{x}_{2}=-x_{1}-x_{2}+u & ; & \sigma=x_{1}+x_{2} \\
u & = & -\operatorname{sign}(\sigma)
\end{array}
$$

Conventional SMC: DF analysis

Plant plus 2nd order actuator

$$
\begin{array}{rcc}
\dot{x}_{1}=x_{2} & ; & 0.0001 \ddot{u}_{a}=-0.01 \dot{u}_{a}-u_{a}+u \\
\dot{x}_{2}=-x_{1}-x_{2}+u & ; & \sigma=x_{1}+x_{2} \\
u & = & -\operatorname{sign}(\sigma)
\end{array}
$$

Conventional SMC: DF analysis

Plant plus 2nd order actuator

$$
\begin{array}{rcc}
\dot{x}_{1}=x_{2} & ; & 0.0001 \ddot{u}_{a}=-0.01 \dot{u}_{a}-u_{a}+u \\
\dot{x}_{2}=-x_{1}-x_{2}+u & ; & \sigma=x_{1}+x_{2} \\
u & = & -\operatorname{sign}(\sigma)
\end{array}
$$

Twisting and its DF

Twisting Algorithm

$$
\begin{aligned}
\ddot{x} & =u \\
u & =-c_{1} \operatorname{sign}(x)-c_{2} \operatorname{sign}(\dot{x})
\end{aligned}
$$

$$
\text { with } c_{1}>c_{2}>0
$$

DF

$$
N(A)=N_{1}+s N_{2}=\frac{4}{\pi A}\left(c_{1}+j c_{2}\right)
$$

Twisting and its DF

The phase dificit is $\operatorname{arctg}\left(c_{2} / c_{1}\right)$. Finite-time convergence

Terminal Control Law and its DF

Terminal Control Law

\ddot{x}	$=u ;$
u	$=-\alpha \operatorname{sign}\left(\dot{x}+\beta\|x\|^{\rho} \operatorname{sign}(x)\right)$,

with $0.5<\rho<1$.

Super-twisting and its DF

ST algorithm

$$
\begin{aligned}
\dot{x} & =u \\
u & =-\beta|\sigma|^{1 / 2} \operatorname{sign}(\sigma)+u_{s} \\
\dot{u}_{s} & =-\alpha \operatorname{sign}(\sigma)
\end{aligned}
$$

DF

$$
N(A, \omega)=\frac{4 \alpha}{\pi A j \omega}+\frac{1.1128 \beta}{\sqrt{A}}
$$

Super-twisting and its DF

HB eq.

$$
W(j \omega)=-\frac{0.8986 \frac{\sqrt{A}}{\beta}+j 1.1329 \frac{\alpha}{\beta^{2} \omega}}{1+1.3092 \frac{\alpha^{2}}{\beta^{2} A \omega^{2}}}
$$

Super-twisting and its DF

Existence of the periodic solutions
Write HB eq. as: $N(A)=-W^{-1}(j \omega)$,

$$
\begin{equation*}
\frac{4 \gamma}{\pi A} \frac{1}{j \omega}+1.1128 \frac{\lambda}{\sqrt{A}}=-W^{-1}(j \omega) \tag{13}
\end{equation*}
$$

Consider the real part of both sides

$$
\begin{equation*}
1.1128 \frac{\lambda}{\sqrt{A}}=-\operatorname{Re} W^{-1}(j \omega) \tag{14}
\end{equation*}
$$

Eliminating A from eqs. (13)-(14),

$$
\begin{equation*}
\Psi(\omega)=\frac{4 \gamma}{\pi \omega} \frac{1}{\operatorname{Im} W^{-1}(j \omega)}-\left(\frac{1.1128 \lambda}{\operatorname{Re} W^{-1}(j \omega)}\right)^{2}=0 \tag{15}
\end{equation*}
$$

Eq. (15) has ONLY one unknown variable, ω.

Existence of the periodic solutions
Once ω is obtained from Eq. (15) amplitude, A_{c} can be computed as:

$$
\begin{equation*}
A_{c}=\frac{4 \gamma}{\pi \omega_{c}} \frac{1}{\operatorname{Im} W^{-1}\left(j \omega_{c}\right)} . \tag{16}
\end{equation*}
$$

Stability of periodic solution

If the following inequality holds then the periodic solution given by Equation (15) is locally stable:

$$
\begin{equation*}
\operatorname{Re} \frac{h_{1}(A, \omega)}{h_{2}(A, \omega)+\left.N(A, \omega) \frac{\partial \ln W(s)}{\partial s}\right|_{s=j \omega}}<0 \tag{17}
\end{equation*}
$$

where $h_{1}(A, \omega)=\frac{1.1128 \lambda}{2 A^{\frac{3}{2}}}-j \frac{4 \gamma}{\pi \omega A^{2}}, h_{2}(A, \omega)=\frac{4 \gamma}{\pi \omega^{2} A}$

Stability of periodic solution

Proof:

- Assume that the HB eq. holds for small perturbations.
- Damped oscillation of the complex frequency $j \omega+(\triangle \sigma+j \Delta \omega)$ corresponds to the modified amplitude $(A+\triangle A)$:

$$
\begin{equation*}
N(A+\triangle A, j \omega+(\triangle \sigma+j \Delta \omega)) W(j \omega+(\triangle \sigma+j \Delta \omega))=-1 \tag{18}
\end{equation*}
$$

$N(A, \omega)$ is DF of Super-twisting.

- Find the conditions when $\Lambda=\triangle \sigma / \triangle A$ is negative.

Stability of periodic solution

Proof(continue):

- Take the derivative of (18) with respect to $\triangle A$ and write an equation for the amplitude perturbation $\triangle A$.

$$
\begin{equation*}
\left\{\left.\frac{d N(\triangle A, \triangle \sigma, \Delta \omega)}{d \triangle A}\right|_{\triangle A=0} W(j \omega)+\left.\frac{d W(\triangle \sigma, \Delta \omega)}{d \triangle A}\right|_{\triangle A=0} N(A, \omega)\right\} \triangle A=0 \tag{19}
\end{equation*}
$$

- Take derivatives of N and W, and consider them composite functions:

$$
\begin{gather*}
\left.\frac{d N(\triangle A, \triangle \sigma, \Delta \omega)}{d \triangle A}\right|_{\triangle A=0}=-j \frac{4 \gamma \omega}{\pi A^{2}}-\frac{1.1128 \lambda}{2 A^{\frac{3}{2}}}+\frac{4 \gamma A}{\pi \omega^{2}}\left(\frac{d \triangle \sigma}{d \triangle A}+j \frac{d \triangle \omega}{d \triangle A}\right) . \tag{20}\\
\left.\frac{d W}{d \triangle A}\right|_{\triangle A=0}=\left.\frac{d W}{d s}\right|_{s=j \omega}\left(\frac{d \triangle \sigma}{d \triangle A}+j \frac{d \triangle \omega}{d \triangle A}\right) \tag{21}
\end{gather*}
$$

- Solve eq. (19) for $\left(\frac{d \triangle \sigma}{d \triangle A}+j \frac{d \Delta \omega}{d \triangle A}\right)$ and taking account of (20) and (21), an analytical formula is obtained, where the real part is (17).

Is It Reasonable to Substitute Discontinuous SMC by Continuous HOSMC?

Plant

$$
\dot{x}(t)=\bar{u}(t)+F(t)
$$

Actuator

$$
\begin{aligned}
& \dot{z}(t)=\left[\begin{array}{cc}
0 & 1 \\
-\frac{1}{\mu^{2}} & -\frac{2}{\mu}
\end{array}\right] z(t)+\left[\begin{array}{c}
0 \\
\frac{1}{\mu^{2}}
\end{array}\right] u(t) \\
& \bar{u}(t)=\left[\begin{array}{ll}
1 & 0
\end{array}\right] z(t)
\end{aligned}
$$

Assumption 1

The parasitic dynamics (Actuator) is not required for the design of the SMC/HOSMC gains and its effects can be measured by the ATC μ.

Considered SMC Algorithms and Disturbances

FOSMC

$$
u=-M \operatorname{sign}(x)
$$

where $M=1.1 \delta$.

Reasonable Comparison

STA [Levant (1993)]

$$
\begin{aligned}
u & =-k_{1}|x|^{1 / 2} \operatorname{sign}(x)+v \\
\dot{v} & =-k_{2} \operatorname{sign}(x)
\end{aligned}
$$

where $k_{1}=1.5 \sqrt{L}, k_{2}=1.1 L$.

Disturbance form

$$
F=\alpha \sin (\Omega t)
$$

where the upperbounds

$$
\begin{aligned}
& |\dot{F}| \leq \delta=\alpha \\
& |\dot{F}| \leq \Delta=\alpha \Omega
\end{aligned}
$$

are assumed known.

Simulations Results for Some Values of ATC and Increasing Ω

Table: Sliding-Mode Amplitude Accuracy

Professor V. Utkin Hypothesis

Simulations confirms that for any value of ATC there exist a bounded disturbance for which the amplitude of possible oscillations produced by FOSMC is lower than the obtained applying STA.

Hypothesis 2

It should exists a value of ATC for which the amplitude of chattering produced by FOSMC and STA are the same.

Hypothesis 3

For any bounded and Lipschitz disturbance, the amplitude of possible oscillations produced by STA may be less than the obtained using FOSMC if the actuator dynamics is fast enough.

Methodology

The parameters that characterizes the chattering of the steady-state behavior of the nominal system ($F=0$) are:

1. Amplitude of periodic motion (A)
2. Frequency of periodic motion (ω)
3. Average power (P)

Assumption 2 (Low pass filter hypothesis)

The dynamically perturbed system (Actuator-Plant) $W(s)$ has low pass filter characteristics with respect to the higher harmonics of the output x. Hence the output of the system converges to a periodic motion [Gelb (1968)], [Boiko (2009)], which can be well-approximated by its first-harmonic,

$$
\begin{aligned}
x & =A \sin (\omega t) \\
\dot{x} & =A \omega \cos (\omega t)
\end{aligned}
$$

Parameters of a possible periodic motion, amplitude A and frequency ω, can be found by solving the Harmonic Balance equation (see for example [Gelb (1968)], [Atherton (1975)])

$$
N(A, \omega) W(j \omega)=-1
$$

where $N(A, \omega)$ is the DF of the non-linearity (FOSMC or STA).
L_{p}-chattering [Levant (2010)]

$$
\operatorname{chatt}_{L_{p}}(x)=\left(\int_{0}^{T} \dot{x}^{p}(\tau) d \tau\right)^{1 / p}
$$

Drawbacks

- There is no chattering in ideal sliding-mode motion!
- How to compute chatt $\iota_{L_{p}}$?
\Downarrow

A novel approach: Average Power

$$
\mathrm{P}=\frac{1}{T} \int_{0}^{T} \dot{x}^{2}(\tau) d \tau=\frac{\omega}{2 \pi} \int_{0}^{\frac{2 \pi}{\omega}}(A \omega \cos (\omega \tau))^{2} d \tau=\frac{A^{2} \omega^{2}}{2}
$$

Preliminaries

Let the dynamically perturbed system (actuator-plant)

$$
W(s)=\frac{1}{s(\mu s+1)^{2}}
$$

FOSMC

$$
u=-M \operatorname{sign}(x)
$$

DF

$$
N(A)=\frac{4 M}{\pi A}
$$

Note: The DF of FOSMC does not depend on frequency ω.

STA [Levant (1993)]
$u=-k_{1}|x|^{1 / 2} \operatorname{sign}(x)+v$
$\dot{v}=-k_{2} \operatorname{sign}(x)$

DF [Boiko (2009)]

$$
N(A, \omega)=\frac{1.1128 k_{1}}{A^{1 / 2}}-j \frac{4 k_{2}}{\pi A \omega}
$$

Chattering Parameters Estimated by HB

FOSMC [?]

$$
\begin{aligned}
A & =\mu\left(\frac{2 M}{\pi}\right) \\
\omega & =\frac{1}{\mu} \\
P & =\frac{2 M^{2}}{\pi^{2}}
\end{aligned}
$$

Note: The Average Power produced by FOSMC does not depend on ATC μ.

STA

[?]

$$
\begin{aligned}
& A=\mu^{2}\left(\frac{1}{2} \cdot \frac{\left(1.1128 k_{1}\right)^{2}+\frac{16}{\pi} k_{2}}{1.1128 k_{1}}\right)^{2} \\
& \omega=\frac{1}{\mu}\left(\frac{\left(1.1128 k_{1}\right)^{2}}{\left(1.1128 k_{1}\right)^{2}+\frac{16}{\pi} k_{2}}\right)^{1 / 2} \\
& P=\frac{\mu^{2}}{4}\left(\frac{1}{2} \cdot \frac{\left(1.1128 k_{1}\right)^{2}+\frac{16}{\pi} k_{2}}{\left(1.1128 k_{1}\right)^{2 / 3}}\right)^{3}
\end{aligned}
$$

Selection of STA Gains to Minimize the Amplitude of Chattering

Minimum Amplitude for each $k_{2}>\Delta$
$\bar{k}_{1}=\left(\frac{16 k_{2}}{\pi(1.1128)^{2}}\right)^{1 / 2}=2.028 \sqrt{k_{2}}$

Proposed STA Gains ${ }^{\dagger}$

$$
\begin{aligned}
& k_{1}=2.127 \sqrt{\Delta} \\
& k_{2}=1.1 \Delta
\end{aligned}
$$

\dagger Sufficient stability conditions [?] are satisfied:

$$
\begin{aligned}
& k_{1}>1.449 \sqrt{\Delta} \\
& k_{2}=1.1 \Delta
\end{aligned}
$$

Figure: Amplitude as Function of k_{1}

Selection of STA Gains Minimize the Average Power

Minimum AP for a given $k_{2}>\Delta$

$$
\bar{k}_{1}=\left(\frac{8 k_{2}}{\pi(1.1128)^{2}}\right)^{1 / 2}=1.434 \sqrt{k_{2}}
$$

Proposed STA Gains ${ }^{\dagger}$

$$
\begin{aligned}
& k_{1}=1.504 \sqrt{\Delta} \\
& k_{2}=1.1 \Delta
\end{aligned}
$$

\dagger Sufficient stability conditions [?] are satisfied:

$$
\begin{aligned}
& k_{1}>1.449 \sqrt{\Delta} \\
& k_{2}=1.1 \Delta
\end{aligned}
$$

Figure: Average Power as Function of k_{1}

Chattering Parameters as Function of μ

Figure: Chattering Parameters as Function of ATC μ

Amplitude Discussion

Result 1

There exist a value of ATC for which the amplitude of possible oscillations are the same according with HB approach,

$$
\mu^{*}=\frac{8 M\left(1.1128 k_{1}\right)^{2}}{\pi\left(\left(1.1128 k_{1}\right)^{2}+\frac{16}{\pi} k_{2}\right)^{2}}
$$

Frequency Discussion

Result 2

The frequency of possible oscillations is always lower for the STA than the obtained using FOSMC.

Figure: Graphical Solution of HB equation

Result 3

There exist a value of ATC for which the average power are the same according with HB approach,

$$
\mu^{\star}=\frac{8 M\left(1.1128 k_{1}\right)}{\pi\left(\left(1.1128 k_{1}\right)^{2}+\frac{16}{\pi} k_{2}\right)^{3 / 2}}
$$

Comparison Example

Let a matched disturbance F,

$$
F=\alpha \sin (\Omega t) \quad \Rightarrow \quad\left\{\begin{array}{l}
|F| \leq \delta=\alpha \\
|\dot{F}| \leq \Delta=\alpha \Omega
\end{array}\right.
$$

Same Amplitude Order

$$
\mu^{*}=\frac{8 M\left(1.1128 k_{1}\right)^{2}}{\pi\left(\left(1.1128 k_{1}\right)^{2}+\frac{16}{\pi} k_{2}\right)^{2}}=0.125 \frac{\delta}{\Delta}=0.125 \frac{1}{\Omega}
$$

Considered ATC

$$
\begin{array}{cc}
\mu^{*}<\mu_{1}=0.25 \frac{1}{\Omega} & \mu^{*}>\mu_{2}=0.0833 \frac{1}{\Omega} \\
\text { Slow actuator } & \text { Fast actuator }
\end{array}
$$

Simulations for some values of Ω

Discontinuous Control					
FOSMC	$\boldsymbol{\mu}_{\boldsymbol{1}}$	1.6326	1.6224×10^{-1}	1.6226×10^{-2}	
	$\boldsymbol{\mu}^{*}$	1.7644×10^{-1}	1.9018×10^{-2}	1.8969×10^{-3}	
	$\boldsymbol{\mu}_{\mathbf{2}}$	9.4217×10^{-2}	9.4311×10^{-3}	9.4872×10^{-4}	

Continuous Control					
STA	$\boldsymbol{\mu}_{\mathbf{1}}$	2.2492	2.6933×10^{-1}	2.7061×10^{-2}	
	$\boldsymbol{\mu}^{*}$	1.3229×10^{-1}	1.3516×10^{-2}	1.3518×10^{-3}	
	$\boldsymbol{\mu}_{\mathbf{2}}$	4.8421×10^{-2}	4.8374×10^{-3}	4.8573×10^{-4}	

Table: Sliding-Mode Output Accuracy Increasing the Disturbance Frequency Ω.

Discussion of Chattering Magnitude

Simulation results confirms:

- For any value of disturbance frequency Ω should be a critical value of ATC μ^{*} for which the magnitude of chattering is the same when FOSMC or STA are applied.
- If ATC is greater than μ^{*} (for example μ_{1}), then

$$
A_{\text {FOSMC }}<A_{\text {STA }}
$$

- If ATC is lower than μ^{*} (for example μ_{2}), then

$$
A_{\mathrm{FOSMC}}>A_{\mathrm{STA}}
$$

Professor V. Utkin Example

Consider the following case

$$
\delta=\Delta=60 \quad \Rightarrow \quad\left\{\begin{array}{l}
M=1.1 \delta \\
k_{1}=2.127 \sqrt{\Delta} \quad \text { and } \quad k_{2}=1.1 \Delta
\end{array}\right.
$$

Chattering Parameters Estimated by HB

- FOSMC

$$
A=42.017 \mu, \quad \omega=\frac{1}{\mu}, \quad P=882.7102
$$

- STA

$$
A=336.135 \mu^{2}, \quad \omega=\frac{1}{\mu \sqrt{2}}, \quad P=28246.93 \mu^{2}
$$

Same Amplitude

$$
\mu^{*}=0.125
$$

Same Average Power

$$
\mu^{\star}=0.1768
$$

Simulations for some values of μ

Discontinuous Control						
FOSMC	\mathbf{A}	8.6899	7.6819	5.4312	4.3450	
	$\boldsymbol{\omega}$	4.8900	5.5317	7.8240	9.7800	
	\mathbf{P}	926.899	926.899	926.899	926.899	
Continuous Control						

STA	\mathbf{A}	13.5615	10.5999	5.2987	3.3911
	$\boldsymbol{\omega}$	3.5153	3.9764	5.6242	7.0302
	\mathbf{P}	1152.394	900.6406	450.360	288.2422

Table: Comparison of Chattering Parameters

Discussion about the Chattering Parameters Based on HB

HB allows to confirm:

- Given δ and Δ upperbounds of disturbance and time-derivative disturbance, it should be exist an ATC μ^{*} for which the amplitude of possible oscillations are the same. Also

$$
\begin{array}{ll}
\mu>\mu^{*} & \Rightarrow \quad A_{\text {FOSMC }}<A_{\text {STA }} \\
\mu<\mu^{*} & \Rightarrow \quad A_{\text {FOSMC }}>A_{\text {STA }} .
\end{array}
$$

- Given δ and Δ upperbounds of disturbance and time-derivative disturbance, it should be exist an ATC μ^{\star} for which the average power are the same. Also
if

$$
\begin{aligned}
\mu>\mu^{\star} & \Rightarrow P_{\text {FOSMC }}<P_{\text {STA }} \\
\mu<\mu^{\star} & \Rightarrow \quad P_{\text {FOSMC }}>P_{\text {STA }} .
\end{aligned}
$$

Average Power

$$
\bar{p}(t)=\bar{u}(t) x(t) \quad \Rightarrow \quad \bar{P}=\frac{1}{T} \int_{0}^{T} p(\tau) d \tau=\frac{4 A^{2} \omega}{\pi}
$$

FOSMC

$$
\bar{P}=\mu\left(\frac{16 M^{2}}{\pi^{3}}\right)
$$

STA

$\bar{P}=\mu^{3}\left(\frac{\left[\left(1.1128 k_{1}\right)^{2}+\frac{16}{\pi} k_{2}\right]^{7 / 2}}{4 \pi\left(1.1128 k_{1}\right)^{3}}\right)$

Selection of STA Gains to Minimize the Average Power

Minimum AP for $k_{2}>\Delta$

$$
\bar{k}_{1}=\left(\frac{12 k_{2}}{\pi(1.1128)^{2}}\right)^{1 / 2}=1.7563 \sqrt{k_{2}}
$$

Proposed STA Gains ${ }^{\dagger}$

$$
\begin{aligned}
& k_{1}=1.842 \sqrt{\Delta} \\
& k_{2}=1.1 \Delta
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& k_{1}>1.449 \sqrt{\Delta} \\
& k_{2}=1.1 \Delta
\end{aligned}
$$
\]

Figure: Average Power as Function of k_{1}

Tolerance limits

The frequency $0<\omega_{c}<\infty$ and amplitude $A_{c}>0$ are the Tolerance Limits (TL) of the acceptable limit cycle of the output σ, so that its self-sustained oscillations with the amplitudes $A \leq A_{c}$ and the frequencies $\omega \geq \omega_{c}$ yield the acceptable behavior of the closed loop system.

Practical Stability Margins

Classical stability margins can not be applied

Practical Phase Margin (PPM) and Practical Gain Margin (PGM)

PGM and PPM

Performance Gain Margin (PGM)

The PGM in the closed loop system controlled by SMC is the maximum additional gain added to the frequency characteristic of the linear (linearized) plant $W(j \omega)$, while the sliding variable σ (which is the output of the closed loop system) exhibits a limit cycle with marginally reached amplitude $A=A_{c}$ and/or frequency $\omega=\omega_{c}$ whatever comes first.

Performance Fase Margin (PPM)

The PPM in the closed loop system controlled by SMC is the maximal additional phase shift that can be added to the frequency characteristic of the linear (linearized) plant $W(j \omega)$, while the sliding variable σ (which is the output of the closed loop system) exhibits a limit cycle with marginally reached amplitude $A=A_{c}$ and/or frequency $\omega=\omega_{c}$ whatever comes first.

PPM via Bode Diagram

PGM via Bode Diagram

$$
W_{c}(s)=\frac{\tau s+1}{\beta \tau s+1}
$$

β attenuation parameter. $W_{c}(s)$ is phase-lead $0<\beta<1$, and is phase-lag $\beta>1$.

- Obtain the performance margins of the system controlled by SMC.
- Determine the maximum phase-lead angle of compensator as

$$
\phi_{m}=P S P M_{c}^{\circ}-P S P M_{u n}^{\circ}+\langle 5,12\rangle^{\circ},
$$

where $P S P M_{u n}$ is the $P P M$ of the uncompensated system, $P S P M_{c}$ is the desired $P S P M$ and $\langle 5,12\rangle$ means an interval.

- Obtain the parameter β that satisfies equation

$$
\sin \phi_{m}=\frac{1-\beta}{1+\beta}
$$

Compensator

- Identify from the amplitude-frequency Bode plot of the uncompensated system the magnitude that is equal to

$$
-\left[20 \log \left(\frac{1}{\sqrt{\beta}}\right)+20 \log \left(\left|-\frac{1}{N\left(A_{c}, \omega\right)}\right|\right)\right]
$$

and it is associated with the frequency ω_{m}.

- Calculate the pole and zero of $W_{c}(j \omega)$ as

$$
\text { Zero: } \frac{1}{\tau}=\omega_{m} \sqrt{\beta} \text {; Pole: } \frac{1}{\beta \tau} \text {. }
$$

- Draw the Bode plot of the system augmented by the compensator, check the resulting phase margin, and repeat the steps if necessary.

Compensator

Figure: Uncompensated and compensated system $W_{c 2} W_{a}=\frac{s+46.28}{s+154.27} \frac{e^{-0.01 s}}{s^{2}+3 s+8}, 2-\mathrm{SMC}$
D.P. Atherton, Nonlinear Control Engineering-Describing Function Analysis and Design, Van Nostrand Reingold: New York and London, 1975.
I. Boiko, Frequency-Domain Analysis and Design, Birkhäuser Basel, 2009.
A. Gelb and W.E. Vander Velde, Multiple-Input Describing Functions and Nonlinear System Design, McGraw Hill, 1968.
A. Levant, Sliding order and sliding accuracy in sliding mode control, International journal of control, vol. 58, no.6, pp. 1247-1263, Taylor \& Francis, 1993.
A. Levant, Robust exact differentiation via sliding mode technique, Automatica, vol. 34, no.3, pp. 379-384, Elsevier, 1998.
A. Levant, Chattering analysis, Automatic Control, IEEE Transactions on, vol. 55, no.6, pp. 1380-1389, 2010.
U. Pérez and L. Fridman. When it is reasonable to implement the discontinuous sliding-mode controllers instead of the continuous ones: Frequency Domain Criteria. International Journal of Robust and Nonlinear Control, 2019, v.29(3),pp. 810-828
U. Pérez-Ventura and L. Fridman, Design of Super-Twisting control gains: a Describing Function based methodology., 2019, Automatica, 99(2019) pp.175-180
. Boiko, L. Fridman, M. I. Castellanos. Analysis of Second Order Sliding Mode Algorithms in the Frequency Domain. IEEE Transaction on Automatic Control. 49 (6), pp. 946-950, 2004.
V. Utkin, Discussion Aspects of High Order Sliding Mode Control, Automatic Control, IEEE Transactions on, vol. 61, pp. 829-833, IEEE, 2016.
I. Boiko, L. Fridman. Analysis of Chattering in Continuous Sliding-Mode Controllers. IEEE Transaction on Automatic Control, 50 (9), pp. 1442-1446, 2005.
I. Boiko, L. Fridman, A. Pisano, E. Usai. Analysis of chattering in systems with second order sliding modes. IEEE Transactions on Automatic Control, Vol. 52, No. 11, 2007, pp. 2085-2102.

[^0]: \dagger Sufficient stability conditions [?] are satisfied:

