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Preliminaries

Consider
ẋ = Ax + B(u + f )

x ∈ Rn,u ∈ Rm, rank(B) = m and (A,B) controllable.

Conventional (Two steps) Sliding Mode design

Selection of sliding manifold of order n −m with desired zero
dynamics.

Construction of a sliding mode control ensuring the finite time
convergence to selected sliding manifold and with theoretically exact
compensation of perturbations.
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Transformation of the system into regular form.

B =

[
B1

B2

]
, B1 ∈ R(n−m)×m, B2 ∈ Rm×m

with detB2 6= 0. The transformation[
x1

x2

]
= Tx , T =

[
In−m −B1B

−1
2

0 B−1
2

]
reduce the system to the regular form.

ẋ1 = A11x1 + A12x2

ẋ2 = A21x1 + A22x2 + u + f̃

(A,B) controllable =⇒ (A11,A12) controllable.
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Sliding mode dynamics with desired eigenvalues

Use x2 ∈ Rm as virtual control for the first subsystem of
dimension (n −m).

The (n −m) eigenvalues can be chosen using

x2 = −Kx1

and selecting K .

Sliding Mode must be force in

S = x2 + Kx1 = 0

In s = 0 the dynamics is reduced to

ẋ1 = (A11 − A12K )x1
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Standard Relay Sliding Mode Controller

The dynamics of S is given by

Ṡ = A21x1 + A22x2 + K (A11x1 + A12x2) + u + f̃

denote
ueqnom = −A21x1 − A22x2 − K (A11x1 + A12x2).

Propose the controller

u = −κ(t, x)Sign(S),

where Sign(S)T =
[
Sign(s1) . . . Sign(sm)

]
and κ(t, x) > 0 and
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Relay SMC without ueqnom compensation,

V =
1

2
STS ,

V̇ =ST
[
−ueqnom − κ(t, x)Sign(S) + f̃

]
Choosing κi component wise

γ1 = mint,x
(
κi (t, x)− |f̃i (t, x)− ui ,eqnom |

)
=⇒ V̇ ≤ −γ1V

1/2,

Conclusions

Compensation of the perturbation f̃

solutions converges to s = 0 in finite time.

Coordinates of κ(t, x) can be selected component wise.
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Relay SMC with ueqnom compensation

u = ueqnom − κ(t, x)Sign(S), V =
1

2
STS ,

V̇ =ST
[
−ueqnom + ueqnom − κ(t, x)Sign(S) + f̃

]
V̇ =ST

[
f̃ − κ(t, x)Sign(S)

]
γ2 = mint,x

(
κi (t, x)− |f̃i (t, x)|

)
=⇒ V̇ ≤ −γ2V

1/2,

Conclusions

Compensation of the perturbation f̃

solutions converges to s = 0 in finite time.

κi (t, x) are selected component wise, without compensation of
ui ,eqnom .
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Comparison with ueqnom compensation and without it
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Figure: The upper plot is the control signal without compensation of ueqnom .

During the transition process, the chattering in control without
compestion is bigger.
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Unit Control

u = ueqnom − ρ(t, x)
s

‖s‖
control u is discontinuous only in s = 0

V̇ =sT ṡ,= sT f̃ − ρ(t, x)‖s‖,

ρ(t, x) > ‖f̃ (t, x)‖ =⇒ γ3 = mint,x
(
ρ(t, x)− ‖f̃ (t, x)‖

)
=⇒ V̇ ≤ −γ3V

1/2.

Consequently, s = 0 is reached in finite-time.

Conclusions

ρ(t, x) should compensate the norm of perturbations vector →
Chattering will be bigger than in the relay controllers with component
wise choose of the gains.
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SMC without transformation into regular form

ẋ = Ax + B(u + f ).

Switching Surface s = Cx , C = [−K Im] ∈ Rm×n det(CB) 6= 0
Sliding mode dynamics ṡ = CAx + CB(u + f ), x ∈ Rn, u ∈ Rm

Control Law
u = ueqnom − δSign(s), ueqnom = −(CB)−1CAx , δ > max t,x |f (t, x))|

Conclusions

Condition CB + (CB)T > 0 is restrictive.
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SMC without transformation into regular form

ẋ = Ax + B(u + f ).

Desired surface s = Cx
CB is arbitrary matrix
Virtual sliding surface s∗ = (CB)s
Control law u = ueqnom − U(x)Sign(s∗).
Lyapunov function V = 1

2s
∗T ṡ∗,

V̇ = s∗T s∗ = s∗T (CB)−1CAxueqnom − |s∗|U(x)

≤ |s∗| ·minx ,t,i |Ui (x)− fi (x , t)|

then V̇ < 0 for Ui (x) suitable.
Ui (x) can be chosen component wise
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Quadratic Minimization

Quadratic performance index

J =
1

2

∫ ∞
ts

xT (t)Qx(t) dt,

where Q is symmetric and positive definite, and ts is the time at the
sliding mode is reached.

Objetive: minimize the cost function under the assumption that
sliding mode takes place.

The cost function does not impose penalty cost on the control

Represents a cost free control problem
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Quadratic Minimization

The state x(ts) is a known initial condition

x(t)→ 0 as t →∞
Q is transformed and partitioned compatibly with z coordinates.

TrQT
T
r =

[
Q11 Q12

QT
12 Q22

]
the cos J in z coordinates

J =
1

2

∫ ∞
ts

z1(t)TQ11z1(t) + 2z1(t)TQ12z2(t) + z2(t)TQ22z2(t) dt

If z1 is consider as the state vector and z2 as the virtual control input,
then this expression represents a ”traditional” mixed cost LQR
problem
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Quadratic Minimization

To avoid this complication define a new ”virtual control” input

v := z2 + Q−1
22 QT

12z1

The cost function take the form

J =
1

2

∫ ∞
ts

zT1 Q̂z1 + vTQ22v dt

where
Q̂ := Q11 − Q12Q

−1
22 QT

12

Note that Q̂ represents part of the Schur complement of matrix
TrQT

T
r .
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Quadratic Minimization

Consider the constraint equation

ż1(t) = A11z1(t) + A12z2(t)

Rewritten the differential equation in term of the virtual control

ż1(t) = Âz1(t) + A12v(t)

where
Â := A11 − A12Q

−1
22 QT

12

The positive definiteness of Q ensures from Shur complement
arguments that Q22 > 0, so that Q−1

22 exists.
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Quadratic Minimization

Standard LQR optimal state-regulator problem.

A necessary condition to ensure a solution to the LQR problem is that

the pair (Â, Q̂
1
2 ) is detectable.

Riccati equation

P̂ÂT + ÂP̂ + Q̂ − P̂A12Q
−1
22 AT

12P̂ = 0

The matrix parameterizing the hyperplane is

M = Q−1
22 QT

12 + Q−1
22 AT

12P̂
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