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Preliminaries

UNAM

Consider
x=Ax+B(u+f)

x € R",u € R™, rank(B) = m and (A, B) controllable.

Conventional (Two steps) Sliding Mode design

@ Selection of sliding manifold of order n — m with desired zero
dynamics.

@ Construction of a sliding mode control ensuring the finite time
convergence to selected sliding manifold and with theoretically exact
compensation of perturbations.
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Transformation of the system into regular form.

B — |: Bl :| , Bl c R(n—m)xm’ BZ c Rme
B>

with detB, # 0. The transformation

0] o[ e s
X2

reduce the system to the regular form.

x1 = Auxi+ Ax
Xo = Aoix1+Axpxo+u+f

(A, B) controllable = (A11, A12) controllable.
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Sliding mode dynamics with desired eigenvalues

UNAM

@ Use xp € R™ as virtual control for the first subsystem of
dimension (n — m).
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Sliding mode dynamics with desired eigenvalues
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@ Use xp € R™ as virtual control for the first subsystem of
dimension (n — m).
@ The (n— m) eigenvalues can be chosen using

Xp = —KX1

and selecting K.
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Sliding mode dynamics with desired eigenvalues
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@ Use xp € R™ as virtual control for the first subsystem of
dimension (n — m).
@ The (n— m) eigenvalues can be chosen using

Xp = —KX1

and selecting K.
@ Sliding Mode must be force in

S=x+Kq=0
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Sliding mode dynamics with desired eigenvalues

UNAM

@ Use xp € R™ as virtual control for the first subsystem of
dimension (n — m).

@ The (n— m) eigenvalues can be chosen using
Xp = —KX1

and selecting K.
@ Sliding Mode must be force in

S=x+Kq=0
@ In s = 0 the dynamics is reduced to

x1 = (A1 — A2K)xq
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Standard Relay Sliding Mode Controller

The dynamics of S is given by

S = Apix1 + Agoxa + K(Arrxi + Araxe) + u+

denote
Uegrom = —A21X1 — Azaxo — K(A11x1 + A12x0).

Propose the controller

u = —k(t, x)Sign(S),

where Sign(S)" = [Sign(s1) ... Sign(sm)] and k(t,x) > 0 and
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Relay SMC without ueq,,, compensation,
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_ 1.7
V_§5 S,

v =sT [—ueqnom — k(t, x)Sign(S) + ﬂ
Choosing x; component wise

Y1 = mingx (H,‘(t,x) - ’?f(tvx) - uiaeQHom‘) = V S V1/27

Conclusions
o Compensation of the perturbation 7
@ solutions converges to s = 0 in finite time.

e Coordinates of k(t,x) can be selected component wise.
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Relay SMC with ugg,,, compensation
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U = Ueg,om — K(t,x)Sign(S), V= %STS,

V :ST |:_UEQnom + ue(Jnom - K‘(t’ X)Slgn(s) + ?:|
v =sT [? — r(t, x)Sign(S)]

2 = minese (it ) ~ [(0)l) = V < V"2,

Conclusions
o Compensation of the perturbation
@ solutions converges to s = 0 in finite time.

@ r;i(t,x) are selected component wise, without compensation of

ui,eCInom .
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Comparison with ueq, . compensation and without i
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Figure: The upper plot is the control signal without compensation of ueg, ..

During the transition process, the chattering in control without

compestion is bigger.
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Unit Control

UNAM

s
u= ueqnom - p(t7X)H
control u is discontinuous only in s =0

V :STéa: ST? - p(t7X)||S||7

p(t,x) > ()] = 73 = mines (o) — [F(£.)]]) = V < —3V*

Consequently, s = 0 is reached in finite-time.

Conclusions

@ p(t, x) should compensate the norm of perturbations vector —

Chattering will be bigger than in the relay controllers with component
wise choose of the gains.
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SMC without transformation into regular form
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x=Ax+ B(u+f).

Switching Surface s = Cx, C=[-K In]eR™" det(CB)#0
Sliding mode dynamics $ = CAx + CB(u+ f), x € R",u € R™
Control Law

U = Uegpym — 05180(8), Uegpom = —(CB)1CAx, § > max; x|f(t, x))|

Conclusions
e Condition CB + (CB)T > 0 is restrictive. J
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SMC without transformation into regular form

UNAM

x=Ax+ B(u+f).

Desired surface s = Cx

CB is arbitrary matrix

Virtual sliding surface s* = (CB)s
Control law u = Ueg,,,, — U(x)Sign(s").
Lyapunov function V = %S*Té*,

V =s"Ts* = s*T(CB) ! CAxueg,,, — |s*|U(X)
< |s™| - miny ¢,i|Ui(x) — fi(x, t)]

then V < 0 for Uj(x) suitable.
Ui(x) can be chosen component wise
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Quadratic Minimization

UNAM

@ Quadratic performance index

J= %/OOXT(t)QX(t) o,

ts

where @ is symmetric and positive definite, and ¢ is the time at the
sliding mode is reached.
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Quadratic Minimization
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@ Quadratic performance index

J= %/OOXT(t)QX(t) dt,

ts

where @ is symmetric and positive definite, and ¢ is the time at the
sliding mode is reached.

@ Objetive: minimize the cost function under the assumption that
sliding mode takes place.
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Quadratic Minimization

UNAM

@ Quadratic performance index

J= ;/OOXT(t)QX(t) dt,

ts
where @ is symmetric and positive definite, and t; is the time at the
sliding mode is reached.

@ Objetive: minimize the cost function under the assumption that
sliding mode takes place.

@ The cost function does not impose penalty cost on the control
@ Represents a cost free control problem
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Quadratic Minimization
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@ The state x(ts) is a known initial condition
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Quadratic Minimization
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@ The state x(ts) is a known initial condition
@ x(t) »0ast— o0
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Quadratic Minimization
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@ The state x(ts) is a known initial condition
@ x(t) »0ast— o0

@ @ is transformed and partitioned compatibly with z coordinates.

Qu Q2 ]

T _
T QT = [ QL Qx
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Quadratic Minimization
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@ The state x(ts) is a known initial condition
@ x(t) »0ast— o0

@ @ is transformed and partitioned compatibly with z coordinates.

Qu Q2 ]

T _
TQT, = [ QL Qx

@ the cos J in z coordinates

/= 5/ 21(t) " Quzi(t) + 221(t) " Quazo(t) + 22(t) T Q222(t) dt
ts
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Quadratic Minimization

UNAM

@ The state x(ts) is a known initial condition
@ x(t) »0ast— o0

@ @ is transformed and partitioned compatibly with z coordinates.

Qu Q2
T,.QT, =
QT [ QL @ ]
@ the cos J in z coordinates
_ } > T T T
J= 5 Zl(t) Qllzl(t) + 221(t) 01222(1') + Zz(t) QQQZQ(I') dt
ts

@ If z; is consider as the state vector and z as the virtual control input,
then this expression represents a "traditional” mixed cost LQR
problem
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Quadratic Minimization
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@ To avoid this complication define a new "virtual control” input

. —-1AT
V. .=2+ 022 01221
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Quadratic Minimization
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@ To avoid this complication define a new "virtual control” input
vi=2+ Qo @bz

@ The cost function take the form

1 [ ;.
J:E/ 2] Qz1 4+ v Qv dt
ts

where

Q:=Qu— @12Q%' Q)
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Quadratic Minimization
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@ To avoid this complication define a new "virtual control” input
vi=2+ Qo @bz

@ The cost function take the form

1

o
J= 5/ 2] Qz1 4+ v Qv dt
ts

where
Q= Qu — Q12Q,,' Q)

o Note that @ represents part of the Schur complement of matrix
T.QT,.
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Quadratic Minimization
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o Consider the constraint equation

21(1‘) = Allzl(t) + A1222(t)
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Quadratic Minimization
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o Consider the constraint equation
z1(t) = A11z1(t) + A1222(t)
@ Rewritten the differential equation in term of the virtual control
21(t) = Az (t) + Arav(t)

where
A= A1 — AQy Qb
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Quadratic Minimization
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o Consider the constraint equation
z1(t) = A11z1(t) + A1222(t)
@ Rewritten the differential equation in term of the virtual control
21(t) = Az (t) + Arav(t)

where
A= A1 — AQy Qb

@ The positive definiteness of @ ensures from Shur complement
arguments that Q22 > 0, so that 02_21 exists.
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Quadratic Minimization
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@ Standard LQR optimal state-regulator problem.
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Quadratic Minimization

UNAM

@ Standard LQR optimal state-regulator problem.

@ A necessary condition to ensure a solution to the LQR problem is that
. AL
the pair (A, Q2) is detectable.
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Quadratic Minimization

UNAM

@ Standard LQR optimal state-regulator problem.

@ A necessary condition to ensure a solution to the LQR problem is that
. AL
the pair (A, Q2) is detectable.

@ Riccati equation

PAT 4 AP+ Q - PALQRALP = 0
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Quadratic Minimization
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@ Standard LQR optimal state-regulator problem.

@ A necessary condition to ensure a solution to the LQR problem is that
. AL
the pair (A, Q2) is detectable.

@ Riccati equation
PAT + AP 1 Q — PARQLIALP — 0
@ The matrix parameterizing the hyperplane is

M = Q' QL + QtALP
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