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Sliding Mode Existence Conditions: Scalar Case

Scalar Linear Control

ṡ = −s

s = 0

lim
s→0+

ṡ = 0 lim
s→0−

ṡ = 0

sṡ ≤ 0

It is not enough for Sliding
Mode Existence !!!

Relay Control

ṡ = −sign(s)

s = 0

lim
s→0+

ṡ = −1 lim
s→0−

ṡ = 1

lim
s→0+

ṡ < 0 lim
s→0−

ṡ > 0

sṡ ≤ −|s|

Sufficient conditions for SM
existence
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Sliding Mode Existence Conditions

Vector Control with Zeno Phenomena

ṡ1 = −sign(s1) + 2sign(s2)

ṡ2 = −2sign(s1)− sign(s2)

s2 = 0

s1 = 0
T1 = 1

T2 = 1
3

T3 = 1
9

∞∑
i=1

Ti =
1

1− 1
3

=
3

2
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Piecewise Lyapunov Function I

Motion Equations:

ṡ1 = −sign(s1) + 2sign(s2),

ṡ2 = −2sign(s1)− sign(s2),

Lyapunov Function:

V = sT sign(s), sT = (s1, s2),

sign(s) =

[
sign(s1)
sign(s2)

]
,

Time Derivative

V̇ =
∂V

∂s1
ṡ1 +

∂V

∂s2
ṡ2 = −2.

s2 = 0

s1 = 0
T1 = 1

T2 = 1
3

T3 = 1
9

Sliding Mode Exists in s = 0.
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Piecewise Lyapunov Function II

Motion Equations:

ṡ1 = −2sign(s1)− sign(s2),

ṡ2 = −2sign(s1) + sign(s2),

Lyapunov Function:

V = sTPsign(s), sT = (s1, s2),

sign(s) =

[
sign(s1)
sign(s2)

]
,

P =

[
4 0
0 1

]
,

Time Derivative

V̇ =
∂V

∂s1
ṡ1 +

∂V

∂s2
ṡ2

= −7− 6sign(s1s2) < 0.

Sliding mode dynamics s1 = 0

ṡ1 =ueq − sign(s2),

ṡ2 =ueq + sign(s2)

ueq =sign(s1),

=⇒ ṡ2 =2sign(s2),

s1 = 0 =⇒ s2 →∞ UNSTABLE!!
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Sliding mode dynamics s1 = 0

s1 = 0

V non-differentiable

Sliding Mode

s1 = 0 =⇒ s2 →∞ UNSTABLE!!
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Synthesis of Extended Invariance Principle for DHRS
Equation with Discontinuous Right Hand Side

ẋ = φ(x), x ∈ Rn. (DRHS)

Synthesis of Extended Invariance Principle for DHRS

V (x) > 0 Lipschitz continuous Lyapunov function.

V (x) non-differentiable in S ∈ Rn.

V̇ ≤ 0 ∀ x ∈ {Rn \ S}
V̇ = 0 ∀ x ∈ W ∈ Rn

Origin of (DRHS) for dynamics on S is stable if they exist.

Origin of (DRHS) for dynamics on W is stable if they exist.

(Orlov, TAC 2003)

Origin of (DRHS) is stable.
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Extended Invariance Principle (Orlov, 2003)

Stability in subspace S: ṡ = Gf + GBu

Equivalent to Equation: ṡ = d(x)− αD(x)sign(s)

[sign(s)]T = [sign(s1), . . . , sign(sm)]

Theorem

If D + DT > 0 then there exists α0 > 0 such that sliding mode exists in
manifold s = 0 for α > α0.

The statement of the theorem may be proven using sum of absolute values
of si

V = sT sign(s) > 0

as Lipschitz(not differentiable!) Lyapunov function.
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Unit Control [Gutman and Leitmann, 1976]

ṡ1 =
−s1√
s2

1 + s2
2

,

ṡ2 =
−s2√
s2

1 + s2
2

Advantages

DRHS is discontinuous only in origin.

Solutions reach origin s1 = s2 = 0 in finite time.
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Unit Control phase plane
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Unit Control [Gutman and Leitmann, 1976]

ṡ = Du + d(x), DT + D > 0, λmin(DT + D)− 2‖d(x)‖ > γ > 0.

Unit Controller

u = − s

||s||
,

Quadratic Lyapunov function V = sT s = ‖s‖2

V̇ =− sT
(
D

s

||s||
+ d(x)

)
−
(

s

||s||
D + d(x)

)T

s,

≤−
(
λmin(DT + D)− 2‖d(x)‖

)
||s|| ≤ −γ

√
V
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Unit Control [Gutman and Leitmann, 1976]

Finite time stability

V̇ < −γ
√
V =⇒ dV̇

V
<− γ =⇒ 2

√
V ≤ 2

√
V (s0)− γt

Tes ≤
2

γ

√
V (s0)

Disadvantages

Difficult to implement in computer simulations

Gains of the control should be much bigger since it compensates
perturbations in every channel

If one channel fail, all the controller fails
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Invariance of Sliding Modes

B. Drazenovic,
The invariance conditions in variable
structure systems, Automatica, v.5,
No.3,Pergamon Press, 1969.

ẋ = f (x , t) + B(x , t)u + h(x , t)

h(x , t) is disturbance vector

h(x , t) ∈ range(B)

Matching Condition
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Design of Control Under Uncertainty Conditions

ẋ = f (x , t) + B(x , t)u + h(x , t),

Invariance condition

h(x , t) ∈ range(B),
∃λ(x , t) : h = Bλ, λ ∈ R, then
ẋ = f (x , t) + B(x , t)(u + λ), (∗)

s(x) = 0 is a sliding manifold

Equivalent Control Method:

ṡ = 0 =⇒ ueq :

ṡ = Gf + GB(ueq + λ) = 0, G :=
{
∂s
∂x

}
ueq + λ = −(GB)−1Gf =⇒ (∗)

(∗) =⇒ ẋ = f (x , t)− B(x , t)(GB)−1Gf

does not depend on disturbance h(x , t).
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Design of Control Under Uncertainty Conditions

However, if

∃λ(x , t) : h = Bλ1 + B⊥λ2,
λ1, λ2 ∈ R, then
ẋ = f (x , t) + B(x , t)(u + λ1) + B⊥λ2,

s(x) = 0 is a sliding manifold

Equivalent Control Method:

ṡ = 0 =⇒ ueq :
ṡ = Gf + GB(ueq + λ1) + B⊥λ2 = 0,

G :=
{
∂s
∂x

}
ueq + λ1 = −(GB)−1[Gf + B⊥λ2]
ẋ = f (x , t)− B(x , t)(GB)−1[Gf + B⊥λ2].

In this case invariance does not exists.
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Matched and Unmatched perturbations

Output control for a system with relative degree 2 with unmatched
perturbations

ẋ1 =x2 + f1, f1 6= 0

ẋ2 =u + f2.

if x1 is the output, then

ẍ1 = u + f2 + ḟ1,

Perturbations are matched with
respect to the output x1.
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