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A.M. Lyapunov (1857-1918) and the first page of his thesis
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Dynamic Systems and Stability

Pendulum Equation

Consider the pendulum equation

θ̈(t) + k θ̇(t) +
g

r
sin (θ(t)) = 0

where

θ – an inclination angle,

k – a friction coefficient

r – a length of pendulum,

g – the gravitation
constant.
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Historical Remarks

Unrated Stability

Lyapunov Stability, Asymptotic Stability
(Lyapunov 1892, Zubov 1957, Krasovskii 1959, LaSalle & Lefschetz 1960,
Hahn 1961, Roxin 1965 etc)

Rated Stability

Exponential, Finite-time and Fixed-time Stability
(Erugin 1951, Zubov 1957, Hahn 1961, Roxin 1966, Demidovich 1974,
Bhat & Bernstein 2000, Orlov 2005, Levant 2005, Moulay & Perruquetti
2005, Andrieu et al 2008,Cuz, Moreno, Fridman 2010, Polyakov 2012,...)
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System Description

Model of the System

Consider the differential inclusion

ẋ(t) ∈ F (t, x(t)), t ∈ R; (Sys)

x(t0) = x0, x0 ∈ R (IC)

Assumption

0 ∈ F (t, 0) for t ∈ R

Notation

Φ(t, t0, x0)– Set of all solutions of the Cauchy problem (Sys);

x(t, t0, x0) ∈ Φ(t, t0, x0)– a solution of (Sys)-(IC).
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Weak Stability

Example

Weakly stable system{
ẋ1 = x2

ẋ2 ∈ −
(
k1sign[x1] u k2sign[x2]

)
,
, xi ∈ R,

2 cases

If k1 > k2 > 0 → x1 = 0, x2 = 0 is finite stable equilibrium point

If k2 > |k1| → x1(t) = constant, x2 = 0 is a solution.
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Lyapunov Stability

Definition (Stability, Lyapunov 1892)

The origin of the system (Sys) is said to be Lyapunov stable if ∀ε ∈ R+

and ∀t0 ∈ R : ∃δ = δ(ε, t0) ∈ R+ such that ∀x0 ∈ B(δ)

1 any solution x(t, t0, x0) of Cauchy problem (Sys)-(IC) exists for
t > t0;

2 x(t, t0, x0) ∈ B(ε) for t > t0.
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Uniform Stability and Instability

Definition (Uniform Lyapunov Stability)

If the function δ in Definition of Lyapunov Stability does not depend on t0

then the origin is called uniformly Lyapunov stable.

If ẋ ∈ F (x) is Lyapunov stable, then it is uniform Lyapunov stable

Proposition

If the origin of the system (Sys) is Lyapunov stable then x(t) = 0 is the
unique solution of Cauchy problem (Sys)-(IC) with x0 = 0 and t0 ∈ R.

Definition (Instability)

The origin, which does not satisfy any condition from Lyapunov Stability
definition, is called unstable.
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If ẋ ∈ F (x) is Lyapunov stable, then it is uniform Lyapunov stable

Proposition

If the origin of the system (Sys) is Lyapunov stable then x(t) = 0 is the
unique solution of Cauchy problem (Sys)-(IC) with x0 = 0 and t0 ∈ R.

Definition (Instability)

The origin, which does not satisfy any condition from Lyapunov Stability
definition, is called unstable.

L. Fridman Stability 12 / 34



Uniform Stability and Instability

Definition (Uniform Lyapunov Stability)

If the function δ in Definition of Lyapunov Stability does not depend on t0

then the origin is called uniformly Lyapunov stable.
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If ẋ ∈ F (x) is Lyapunov stable, then it is uniform Lyapunov stable

Proposition

If the origin of the system (Sys) is Lyapunov stable then x(t) = 0 is the
unique solution of Cauchy problem (Sys)-(IC) with x0 = 0 and t0 ∈ R.

Definition (Instability)

The origin, which does not satisfy any condition from Lyapunov Stability
definition, is called unstable.

L. Fridman Stability 12 / 34



Example (Uniformly Lyapunov Stable System)

{
ẋ1 ∈ sign[−x2],
ẋ2 ∈ sign[x1]

, x1, x2 ∈ R
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Definition (Asymptotic attrativity)

The origin of the system (Sys) is said to be asymptotically attractive if
∀t0 ∈ R exists a set U(t0) ⊆ Rn : U(t0) \ 0 is non-empty and ∀x0 ∈ U(t0)

any solution x(t, t0, x0) of Cauchy problem (Sys)-(IC) exists for
t > t0;

lim
t→+∞

‖x(t, t0, x0)‖ = 0.

The set U(t0) is called attraction domain.
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Definition (Asymptotic stability)

The origin of the system (Sys) is said to be asymptotically stable if it is

Lyapunov stable;

asymptotically attractive with an attraction domain U(t0) ⊆ Rn such
that 0 ∈ int(U(t0)) for all t0 ∈ R.
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Asymptotic attractivity may not imply Asymptotic Stability

Example (R.E. Vinograd 1957)

ẋ1 =
x2

1 (x2 − x1) + x5
2(

x2
1 + x2

2

) (
1 +

(
x2

1 + x2
2

)2
)

and

ẋ2 =
x2

2 (x2 − 2x1)(
x2

1 + x2
2

) (
1 +

(
x2

1 + x2
2

)2
)
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Definition (Uniform Asymptotic Attractivity)

The origin of the system (Sys) is said to be uniformly asymptotically
attractive

if it is asymptotically attractive with a time-invariant attraction
domain U ⊆ Rn;

∀R ∈ R+, ∀ε ∈ R+ there exists T = T (R, ε) ∈ R+ such that the
inclusions x0 ∈ B(R) ∩ U and t0 ∈ R imply x(t, t0, x0) ∈ B(ε) for
t > t0 + T .
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Uniform Asymptotic Stability

Definition (Uniform asymptotic stability)

The origin of the system (Sys) is said to be uniformly asymptotically
stable if it is uniformly Lyapunov stable and uniformly asymptotically
attractive with an attraction domain U ⊆ Rn : 0 ∈ int(U).

Proposition (Clarke, Ledyaev, Stern 1998)

Let a set-valued function F : Rn → Rn be defined and
upper-semicontinuous in Rn. Let F (x) be nonempty, compact and convex
for any x ∈ Rn.
If the origin of the system

ẋ ∈ F (x)

is asymptotically stable then it is uniformly asymptotically stable.
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Definition (Exponential stability)

The origin of the system (Sys) is said to be exponentially stable if there
exist an attraction domain U ⊆ Rn : 0 ∈ int(U) and numbers C , r ∈ R+

such that
‖x(t, t0, x0)‖ ≤ C‖x0‖e−r(t−t0), t > t0.

for t0 ∈ R and x0 ∈ U.

The theory of Linear Control Systems deals with exponential stability
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Example (Linear Variable Structure System)

ẋ = −(2− sign[sin(x)])x , x ∈ R, x(t0) = x0

‖x(t, t0, x0‖ ≤ |x0|e−(t−t0), t > t0

4 6 8 10

0

0.5

1

t

‖x
(t
,
t 0
,
x
0
‖

‖x(t, 4, 1)‖
e−(t−4)
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Example (Homogeneous system)

ẋ = −bxeα; x(0) = x0 0 < α < 1 1

1b·eα = | · |α sign[·]
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ẋ = −bxeα; x(0) = x0 0 < α < 1 1

x0 >= 0

⇒ x(t) >= 0 ∀t ∈ [0, t1]
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Mechanical Example

Example (Deceleration of a Cart)
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Finite-time attractivity

Introduce the functional T0 : Wn
[t0,+∞) → R+ ∪ {0} by

T0(y(·)) = inf
τ≥t0:y(τ)=0

τ.

If y(τ) 6= 0 for all t ∈ [t0,+∞) then T0(y(·)) = +∞.
Define the settling-time function of the system (Sys) as

T (t0, x0) = sup
x(t,t0,x0)∈Φ(t0,x0)

T0(x(t, t0, x0))− t0.

Definition (Finite-time attractivity)

The origin of the system (Sys) is said to be finite-time attractive if ∀t0 ∈ R exists
a set V(t0) ⊆ Rn : V (t0) \ {0} is non-empty and ∀x0 ∈ V(t0)

any solution x(t, t0, x0) of Cauchy problem (Sys)-(IC) exists for t > t0;

T (t0, x0) < +∞ for x0 ∈ V(t0) and for t0 ∈ R.

The set V(t0) is called finite-time attraction domain.
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Finite-time Stability (Erugin 1991, Zubov 1957, etc)

Definition (Finite-time stability, Roxin 1966)

The origin of the system (Sys) is said to be finite-time stable if it is
Lyapunov stable and finite-time attractive with an attraction domain
V(t0) ⊆ Rn such that 0 ∈ int(V(t0)) for any t0 ∈ R.

Proposition (Bhat & Bernstein 2000)

If the origin of the system (Sys) is finite-time stable then it is
asymptotically stable and x(t, t0, x0) = 0 for t > t0 + T0(t0, x0).
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Uniform Finite-time Stability (Roxin 1966, Praly 1997, etc)

Definition (Uniform finite-time attractivity)

The origin of the system (Sys) is said to be uniformly finite-time attractive
if

it is finite-time attractive with a time-invariant attraction domain
V ⊆ Rn;

T (t0, x0) is locally bounded on R× V uniformly on t0 ∈ R, i.e.

∀y ∈ V : ∃ε ∈ R+ ⇒ sup
t0∈R,

x0∈{y}uB(ε)⊂V

T (t0, x0) < +∞.

L. Fridman Stability 27 / 34



Uniform Finite-time Stability (Roxin 1966, Praly 1997, etc)

Definition (Uniform finite-time stability (Orlov 2005)))

The origin of the system (Sys) is said to be uniformly finite-time stable if
it is uniformly Lyapunov stable and uniformly finite-time attractive with an
attraction domain V ⊆ Rn : 0 ∈ int(V).

Example

ẋ ∈ −sign[x ], x ∈ R, T (t0, x0) = |x0|
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Time invariance does not imply uniformity of FTS

Example (S.P. Bhat & D. Bernstein 2000)

Denote x i0 =
(
0, −1

i

)T
, i = 1, 2, 3, . . .

x i0 → 0 and T (x i0)→ +∞
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Example

Two uniformly finite-time stable systems Consider two systems2

(I ) ẋ = −bxe
1
2 (1− |x |) ,

(II ) ẋ =

{
−bxe

1
2 for x < 1,

0 for x ≥ 1,

which are uniformly finite-time stable with V = B(1).

T(I )(x0) = ln

(
1 + |x0|

1
2

1− |x0|
1
2

)
T(I )(x0)→ +∞ if x0 → ±1

T(II )(x0) = 2|x0|
1
2 .

T(II )(x0)→ 2 if x0 → ±1

2bxe[ρ] = |x |ρ sign[x ]
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Mechanical Example

Example (Deceleration of a Cart)
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Example (Deceleration of a Cart)

mẍ = −
(
kd + kv ẋ

2
)

sign[ẋ ], t > 0

m – mass

x – position

kd , kv – coefficients of dry and
viscous friction
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Mechanical Example

Example (Deceleration of a Cart)
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ẋ

x0 = 1 x0 = 10 x0 = 100 x0 = 1000 Tmax mẍ = −
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Example

ẋ = −bxe
1
2 − bxe

3
2 , x(0) = x0 > 0

dx√
x (1 + x)

= −dt

z =
√
x ⇒ x = z2 dx = 2zdz

2

∫
dz

1 + z2
= −

∫
dt

2 arctan
√
x = C − t, t = 0 ⇒ C = 2 arctan

√
x0

2 arctan
√
x = 2 arctan

√
x0 − t, ∀x0, t < π
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Fixed-time Stability(Balakrishan 1996, Andrieu et al
2008,Cruz, Moreno, Fridman 2010,...)

Definition (Fixed-time attractivity)

The origin of the system (Sys) is said to be fixed-time attractive if

it is uniformly finite-time attractive with an attraction domain V;

T (t0, x0) is bounded on R× V, i.e.

∃Tmax ∈ R+ such that T (t0, x0) ≤ Tmax if t0 ∈ R, x0 ∈ V

Definition (Fixed-time stability, Polyakov 2012)

The origin of the system (Sys) is said to be fixed-time stable if it is
Lyapunov stable and fixed-time attractive with an attraction domain
V ⊆ Rn : 0 ∈ int(V).
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Fixed-time stability ⇒ NON-Asymptotic estimation &
control

{
ẋ(t) = u(t)
x(t) = x0,

x , u ∈ R
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Fixed-time stability ⇒ NON-Asymptotic estimation &
control

{
ẋ(t) = u(t)
x(t) = x0,

x , u ∈ R

Asymptotic stabilisation:

u(t) = −x(t)

x(t) = e−tx0 → 0 if t → +∞
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Fixed-time stability ⇒ NON-Asymptotic estimation &
control

{
ẋ(t) = u(t)
x(t) = x0,

x , u ∈ R

Finite-Time stabilisation:

u(t) = −bx(t)e0

x(t) = 0 for t ≥ ‖x0‖
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Fixed-time stability ⇒ NON-Asymptotic estimation &
control

{
ẋ(t) = u(t)
x(t) = x0,

x , u ∈ R

Fixed-Time stabilisation:

u(t) = −bx(t)e
1
2 − bx(t)e

3
2

x(t) = 0 for t ≥ π

independently of x0
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Summary

In general case, attractivity does not imply stability.

Strong stability is more preferable for control applications.

Control theory is mainly interested in rated stability.
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