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Absolute Continuity

Definition

Let I be an interval in the real line R. A function f : I → R is absolutely
continuous on I if for every positive number ε, there is a positive number
δ such that whenever a finite sequence of pairwise disjoint sub-intervals
(xk ; yk) of I satisfies ∑

k

(yk − xk) < δ

then ∑
k

|f (yk)− f (xk)| < ε

The collection of all absolutely continuous functions on I is denoted
AC (I).
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Absolute continuity of functions

Equivalent Definitions

1 f is absolutely continuous

2 f has a Lebesgue integrable derivative f ′ almost everywhere and

f (x) = f (a) +

x∫
a

f ′(t)dt; ∀x ∈ [a; b]

3 there exists a Lebesgue integrable function g on [a; b] such that

f (x) = f (a) +

x∫
a

g(t)dt; ∀x ∈ [a; b]

If these equivalent conditions are satisfied then necessarily g = f ′ almost
everywhere. Equivalence between (1) and (3) is known as the fundamental
theorem of Lebesgue integral calculus, due to Lebesgue.
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Absolute continuity of functions

Properties

1 If f , g ∈ AC (I), then f ± g is absolutely continuous.

2 If I is a bounded closed interval and f , g ∈ AC (I), then fg is also
absolutely continuous.

3 If I is a bounded closed interval, f ∈ AC (I) and f 6= 0 then 1
f is

absolutely continuous.

4 Every absolutely continuous function is uniformly continuous and,
therefore, continuous. Every Lipschitz-continuous function is
absolutely continuous.

5 If f : I → R is absolutely continuous, then it is of bounded variation
on [a; b].
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Example

f (x) =

{
0 if x = 0
x sin

(
1
x

)
if x 6= 0

on a finite interval containing the
origin.
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Example

f (x) = |x |1/2

in zero it is not differentiable and the
lateral derivatives do not exist.
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Upper semi-continuity of set-valued functions

Introduce the following distances

ρ(x ,M) = inf
y∈M
‖x − y‖, x ∈ Rn,M ⊂ Rn,

ρ(M1,M2) = sup
x∈M1

ρ(x ,M2), M1 ⊂ Rn,M2 ⊂ Rn,

In general, the distance ρ is not symmetric, ρ(M1,M2) 6= ρ(M2,M1).
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Definition

A set-valued function F : Rn+1 → 2R
n+1

is said to be upper
semi-continuous at a point (t∗, x∗) ∈ Rn+1 if (t, x)→ (t∗, x∗) implies

ρ(F (t, x),F (t∗, x∗))→ 0.
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Example (Upper semi-continuous set-valued function)

sign[ρ] =


1 if ρ > 0
−1 if ρ < 0

[−1, 1] if ρ = 0

is an upper semi-continuous set-valued function.
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Historical Remarks

Differential Equations with Discontinuous RHS

ẋ(t) = f (t, x(t)),

t ∈ R, x ∈Rn, f : R× R→ Rn

RHS Discontinuous with respect
to the time variable
(Caratheodory 1927)

Constantin Caratheodory
(1873-1950)
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Historical Remarks

Differential Inclusions (Contingent Differential Equations)

ẋ(t) ∈ F (t, x(t)),

t ∈ R, x ∈Rn, F : R× R→ 2R
n

(Zaremba 1936, Marchaud 1938,
Filippov 1959, Wazawski 1961,
Cellina 1970, Antosiewich 1975,
Tolstonogov 1981, Aubin 1984)

Stanislaw Zaremba
(1863-1942)
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Historical Remarks

Differential Equations with Discontinuous RHS

ẋ(t) = f (t, x(t)), t ∈ R, x ∈ Rn, f : R× R→ Rn

RHS Discontinuous with respect to the state variable (Filippov 1960,
Utkin 1967, Aizerman & Pyatnitskii 1974)

Professors A. Filippov, E. Pyatnitskii, M. Aizerman and V. Utkin
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ODE with Discontinuous RHS

ẋ(t) = f (t, x(t)), t ∈ R, x ∈ Rn, f : R× R→ Rn (DiscRHS)

f is piecewise continuous:

1 Rn+1 =
N⋃
j=1

Ḡj , where Gj -open

connected sets Gi ∩ Gj 6= ∅, i 6= j ;

2 S
N⋃
j=1

∂Gj is of measure zero;

3 f (t, x) is continuous in each Gj and
∀(t, x) ∈ ∂Gj : ∃f j(t, x) ∈ Rn

f j = lim
(tk ,xk )→(t,x)

f (tk , xk),

(tk , xk) ∈ Gj , (t, x) ∈ ∂Gj
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Filippov Regularization

ẋ(t) ∈ F (t, x(t)), t ∈ R (DiffInc)

F (t, x) =


{f (t, x)} if (t, x) ∈ Rn+1\S,

co

( ⋃
j∈N (t,x)

{
f j(t, x)

})
if (t, x) ∈ S,

N (t, x) = {j ∈ {1, 2, . . . ,N} : (t, x) ∈ ∂Gj}.

Definition (Filippov 1960)

An absolutely continuous function x : I → Rn defined on some interval or
segment I is called a solution of (DiscRHS) if it satisfies the differential
inclusion (DiffInc) almost everywhere on I.
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Illustration of Filippov regularization

Example

ẋ(t)− [x(t)] + d(t), t > 0,

where x(·) ∈ R, ‖d‖C ≤ d0 < 1.
[ρ] =


1 if ρ > 0
−1 if ρ < 0

if ρ = 0
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Discontinuous Control Systems

Let us consider the system

ẋ(t) = f (t, x(t), u(t, x(t))), t ∈ R, (DisContSys)

where f : R× Rn × Rm → Rn, f ∈ C and

u : R× Rn → Rm, u(t, x) = (u1(t, x), u2(t, x), . . . , um(t, x))T

is a piecewise continuous feedback control

Assumption

Each component ui (t, x) is discontinuous only on a surface

Si = {(t, x) ∈ Rn : si (t, x) = 0},

where functions si : Rn+1 → R are smooth, i.e. si ∈ C1(Rn+1).
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Utkin Regularization

ẋ(t) = f (t, x(t),U(t, x(t))), t ∈ R,

where U(t, x) = (U1(t, x),U2(t, x) . . . ,Um(t, x))T and

Ui (t, x) =


{ui (t, x)}, si (t, x) 6= 0

co

 lim
(tj ,xj )→(t,x)
si (tj ,xj )>0

ui (tj , xj), lim
(tj ,xj )→(t,x)
si (tj ,xj )<0

ui (tj , xj)

 , si (t, x) = 0

(ValFunc)
The set f (t, x ,U(t, x)) is non-convex in general case.
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Example (Utkin Regularization)

u(x) = − sign[x ] and U(x) = sign[x ]

sign[ρ] =


1 if ρ > 0
−1 if ρ < 0

0 if ρ = 0
, sign[ρ] =


1 if ρ > 0
−1 if ρ < 0

[−1, 1] if ρ = 0
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Equivalent Control (Utkin Solution)

Definition

An absolutely continuous function x : I → Rn defined on some interval or
segment I is called a solution of (DisContSys) if there exists a measurable
function ueq : I → Rm such that ueq(t) ∈ U(t, x(t)) and
ẋ(t) = f (t, x(t), ueq(t)) almost everywhere on I.

Equivalent control (Utkin 1967): s(x) = 0 and ∂s(x)
∂x f (t, x , ueq) = 0
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Equivalent Control (Utkin Solution)

Definition

An absolutely continuous function x : I → Rn defined on some interval or
segment I is called a solution of (DisContSys) if there exists a measurable
function ueq : I → Rm such that ueq(t) ∈ U(t, x(t)) and
ẋ(t) = f (t, x(t), ueq(t)) almost everywhere on I.

Equivalent control (Utkin 1967): s(x) = 0 and ∂s(x)
∂x f (t, x , ueq) = 0
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Example (Equivalent Control)

ẋ1 = u

ẋ2 = (2u2 − 1)x2

u(t) = − sign[x1(t)]

Filippov definition[
ẋ1(t)
ẋ2(t)

]
∈
[
−sign[x1(t)]

x2(t)

]

Unstable

Utkin definition[
ẋ1(t)
ẋ2(t)

]
∈
[
−sign[x1(t)]
−x2(t)

]

Stable

L. Fridman Equations with Discontinuous RHS 25 / 42



Example (Equivalent Control)
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ẋ2 = (2u2 − 1)x2

u(t) = − sign[x1(t)]

Filippov definition[
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Example (Utkin 1970s)

ẋ1 = 0.3x2(t) + x1(t)u(t),

ẋ2 = −0.7x1(t) + 4x3
1 (t)u(t),

u(t) = − sign[x1(t)s(t)],

s(t) = x1(t) + x2(t),
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Aizerman-Pyatniskii Regularization (Filippov 1988)

ẋ ∈ co(f (t, x ,U(t, x)), t ∈ R

Definition

An absolutely continuous function x : I → Rn defined on some interval or
segment I is called a solution of (DiscRHS) if it satisfies the differential
inclusion (DiffInc) almost everywhere on I.
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Aizerman-Pyatniskii Regularization (Filippov 1988)

ẋ ∈ co(f (t, x ,U(t, x)), t ∈ R

Definition

An absolutely continuous function x : I → Rn defined on some interval or
segment I is called a solution of (DiscRHS) if it satisfies the differential
inclusion (DiffInc) almost everywhere on I.
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Presence of fast actuators (Fridman 2001,2002)

Actuators

1st order actuator

µż1 = −2z1 − u(s),

2nd order actuator

µż1 = z2,

µż2 = −2z1 − 3z2 − u(s),

Plant

ṡ = z , ẋ = u4 − u2 + βx , u(s) = sign[s],
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ṡ = z , ẋ = u4 − u2 + βx , u(s) = sign[s],

L. Fridman Equations with Discontinuous RHS 29 / 42



Presence of fast actuators (Fridman 2001,2002)

Actuators

1st order actuator
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Reduced Order System

µ = 0⇒ z1 = −u(s)/2, ṡ = −u/2, ẋ = (u4 − u2 + β)x ,

Sliding Dynamics (Filippov=Utkin)

L. Fridman Equations with Discontinuous RHS 30 / 42



Reduced Order System

µ = 0⇒ z1 = −u(s)/2, ṡ = −u/2, ẋ = (u4 − u2 + β)x ,
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1 st order actuator (z(t), s(t))→ 0 Sliding dynamics ẋ = βx ⇒ Unstable

2nd order actuator

∃
(

z0

(
t

µ

)
, s0

(
t

µ

))
− Periodic Solution

∃β̄(µ) : ∀β < β̄(µ)∃γ :

−γ =

T∫
0

[
(2z1(τ))4 − (2z2(τ))2

]
dτ

⇒ ẋ = −(γ − β)x

Could be stable
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Equivalence of Definitions

Theorem (Utkin 1992, Zolezzi 2002)

Let a right-hand side of the system (DiscRHS) be affine with respect to
control:

f (t, x , u(t, x)) = a(t, x) + b(t, x)u(t, x),

where a : Rn+1 → Rn, b : Rn+1 → Rn×m, a, b ∈ C and u : Rn+1 → Rm is
a piecewise continuous function u(t, x) = (u1(t, x), . . . , um(t, x))T , such
that ui has a unique switching surface si (x) = 0, si ∈ C1(Rn).

Definitions of Filippov, Utkin and Aizerman-Pyatnitskii are equivalent iff

det
(
∇T s(x)b(t, x)

)
6= 0 if (t, x) ∈ S,

where s(x) = (s1(x), s2(x), ..., sm(x))T , ∇s(x) ∈ Rn×m is the matrix of
partial derivatives ∂si

∂xi
and S is a discontinuity set of u(t, x).
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Example (Neimark 1961)

ẋ = Ax(t) + cu1(t) + bu2(t),

t > 0, x(·) = (x1(·), x2(·))T ∈ R2,

A ∈ R2×2, b = (0, 1)T ,

u1(t) = − sign[x1(t)],

u2(t) = − sign[x1(t)],

c = (1, 0)T ,

Filippov definition

ẋ ∈ {Ax}u (b + c) · sign[x1]

Utkin definition

ẋ ∈ {Ax}u b · sign[x1] + c · sign[x1].
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Disturbances and Differential Inclusions

Models of sliding mode control systems usually have the form

ẋ(t) = f (t, x(t), u(t, x(t)), d(t)), t ∈ R,

x(·) ∈ Rn is the vector of system states,

u(·, ·) ∈ Rm is the vector of control inputs,

d(·) ∈ Rk is the vector of disturbances,

the function f : Rn+m+k+1 → Rn is assumed to be continuous,

the control function u : Rn+1 → Rm is piecewise continuous,

the vector-valued function d : R → Rk is assumed to be locally
measurable and bounded as follows:

dmin
i ≤ di (t) ≤ dmax

i

where d(t) = (d1(t), d2(t), . . . , dk(t))T , t ∈ R.
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Example (Disturbed sliding mode system)

Consider the simplest disturbed sliding mode system

ẋ(t) = −d1(t) sign[x(t)] + d2(t), (Ex1)

where x ∈ R, unknown functions di : R→ R are bounded by

dmin
i ≤ di (t) ≤ dmax

i , i = 1, 2.

Obviously, all solutions of the system (Ex1) belong to a solution set of the
following extended differential inclusion

ẋ(t) ∈ −
[
dmin
1 , dmax

1

]
· sign[x(t)] +

[
dmin
2 , dmax

2

]
. (Ex2)

Stability of the system (Ex2) implies the same property for (Ex1). In
particular, for dmin

1 > max{|dmin
2 |, |dmax

2 |} both these systems have
asymptotically stable origin.
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Extended Differential Inclusion

All further considerations deal with the extended differential inclusion

ẋ(t) ∈ F (t, x(t)), t ∈ R,

where
F (t, x) = co{f (t, x ,U(t, x),D)},

the set-valued function U(t, x) is defined by (ValFunc) and

D =


[
dmin
1 , dmax

1

][
dmin
2 , dmax

2

]
...[

dmin
k , dmax

k

]

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Local existence conditions

Theorem (Filippov 1960)

Let

F : G→ 2R
n

be upper semi-continuous at each point of the set

G = {(t, x) ∈ Rn+1 : |t − t0| ≤ a and ‖x − x0‖ < b,

where a, b ∈ R+, t0 ∈ R, x0 ∈ Rn;

F (t, x) be nonempty, compact and convex for (t, x) ∈ G;

there exists K > 0 such that ρ(0,F (t, x)) < K for (t, x) ∈ G;

then ∃x : R→ Rn - absolutely continuous and defined at least on
[t0 − α, t0 + α], α = min{a, b/K}, such that x(t0) = x0 and the inclusion

ẋ(t) ∈ F (t, x(t))

holds almost everywhere on [t0 − α, t0 + α].
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On existence of Utkin Solutions

Lemma (Filippov 1959)

Let

a function f : Rn+m+1 → Rn be continuous;

a set-valued function U : Rn+1 → 2R
m

be defined and
upper-semicontinuous on an open set I × Ω, where Ω ⊆ Rn;

U(t, x) be nonempty, compact and convex for every (t, x) ∈ I × Ω.

a function x : R→ Rn be absolutely continuous on I, x(t) ∈ Ω for
t ∈ I,

ẋ(t) ∈ f (t, x(t),U(t, x(t))) almost everywhere on I;

Then there exists a measurable function ueq : R → Rm such that

ueq(t) ∈ U(t, x(t)) and ẋ(t) = f (t, x(t), ueq(t))

almost everywhere on I.
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Non-local existence conditions

Theorem (Gelig et al. 1978)

Let a set-valued function F : Rn+1 → Rn+1 be defined and
upper-semicontinuous in Rn+1.
Let F (t, x) be nonempty, compact and convex for any (t, x) ∈ Rn+1.
If there exists a real valued function L : R+ ∪ {0} → R+ ∪ {0} such that

ρ(0,F (t, x)) ≤ L(‖x‖) and

+∞∫
0

1

L(r)
dr = +∞,

then for any (t0, x0) ∈ Rn+1 the system (DiffInc) has a solution
x(t) : x(t0) = x0 defined for all t ∈ R.

L. Fridman Equations with Discontinuous RHS 41 / 42



Summary

Stability property of ODE with discontinuous RHS depends on
definition of a solution.

Stability of Aizerman-Pyatnitskii solutions always implies stability of
Filippov and Utkin solutions.

All introduced definitions may be equivalent in the case of affine
control systems with discontinuous input.

Analysis of the disturbed systems can be reduced to differential
inclusions.
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