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© Preliminaries
@ Absolute Continuity
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Absolute Continuity

Definition

Let Z be an interval in the real line R. A function f : Z — R is absolutely
continuous on Z if for every positive number ¢, there is a positive number
6 such that whenever a finite sequence of pairwise disjoint sub-intervals
(xk; yk) of Z satisfies

> (v —x) < 6
p

then

D) = fla)l < e
k

The collection of all absolutely continuous functions on Z is denoted
AC(Z).
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Absolute continuity of functions

Equivalent Definitions

@ f is absolutely continuous

@ f has a Lebesgue integrable derivative f' almost everywhere and
F(x) = F(a) + / F(t)dt; Vx € [a; ]
a

© there exists a Lebesgue integrable function g on [a; b] such that

X

f(x)="f(a)+ /g(t)dt; Vx € [a; b]

a
If these equivalent conditions are satisfied then necessarily g = f’ almost

everywhere. Equivalence between (1) and (3) is known as the fundamental
theorem of Lebesgue integral calculus, due to Lebesgue.

v
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Absolute continuity of functions

Q If f,g € AC(Z), then f £ g is absolutely continuous.

@ If Z is a bounded closed interval and f, g € AC(Z), then fg is also
absolutely continuous.

@ If Z is a bounded closed interval, f € AC(Z) and f # 0 then % is
absolutely continuous.

© Every absolutely continuous function is uniformly continuous and,
therefore, continuous. Every Lipschitz-continuous function is
absolutely continuous.

Q If f:Z — R is absolutely continuous, then it is of bounded variation
on [a; b].
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© Preliminaries

@ Upper semi-continuity
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Upper semi-continuity of set-valued functions

Introduce the following distances
p(x,M) = inf |[x—y|, xeR" M CR",
yeM

,O(Ml, Mg) = sup p(X, MQ), M; C Rn, M, C Rn,
xeEM;

In general, the distance p is not symmetric, p(M1, M3) # p(M2, My).
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Upper semi-continuity of set-valued functions

Introduce the following distances
p(x,M) = inf |[x—y|, xeR" M CR",
yeM

,O(Ml, Mg) = sup p(X, MQ), M; C Rn, M, C Rn,
xeEM;

In general, the distance p is not symmetric, p(M1, M3) # p(M2, My).

—p(M, M,)>0

i:, o, —'/’ p(M, M,)=0

M,
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Definition

A set-valued function F : R™1 — 2R™™ is said to be upper
semi-continuous at a point (t*,x*) € R™1 if (¢,x) — (t*, x*) implies

p(F(t,x), F(t*,x*)) — 0.
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Example (Upper semi-continuous set-valued function)

1 ifp>0
signlp] ={  —1 ifp<0
[~1,1] ifp=0

is an upper semi-continuous set-valued function.
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@ Equations with Discontinuous RHS
@ Historical Remarks
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Historical Remarks

Differential Equations with Discontinuous RHS

x(t) = (£, x(t)),
teR, xeR", f:RxR —R"

@ RHS Discontinuous with respect
to the time variable
(Caratheodory 1927)

Constantin Caratheodory
(1873-1950)
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Historical Remarks

Differential Inclusions (Contingent Differential Equations)

x(t) € F(t, x(t)),
teR, x eR", F:RxR — 2~

(Zaremba 1936, Marchaud 1938,
Filippov 1959, Wazawski 1961,
Cellina 1970, Antosiewich 1975,
Tolstonogov 1981, Aubin 1984)

Stanislaw Zaremba
(1863-1942)
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Historical Remarks

Differential Equations with Discontinuous RHS

x(t) = f(t,x(t)), teR, xeR", f:RxR—R"

@ RHS Discontinuous with respect to the state variable (Filippov 1960,
Utkin 1967, Aizerman & Pyatnitskii 1974)

aib

Professors A. Filippov, E. Pyatnitskii, M. Alzerman and V. Utkln
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© Regularization Procedure for ODE with Discontinuous RHS
@ Filippov Solutions
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ODE with Discontinuous RHS

x(t) =f(t,x(t)), teR, xeR" f:RxR—-R" (DiscRHS)
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ODE with Discontinuous RHS

x(t) =f(t,x(t)), teR, xeR" f:RxR—-R" (DiscRHS)

fis piecewise continuous:
Q Rl = U i, where Gj-open
connected sets GiNG #0,i#]; G

QS U 0G; is of measure zero;
j=1

@ f(t,x) is continuous in each G; and
V(t,x) € 0G; : Ifi(t,x) € R"

G,

=" lim  f(tk x5),

(tk,xkK)—(t,x)

(t*,x¥) € G;, (t,x) € IG;
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Filippov Regularization

x(t) € F(t,x(t)), teR (DiffInc)
{f(t,x)} if (t,x) € RTINS,
Ft.x) = { co| U {ff(t,x)}> if (t,x) €S,
JEN(t.x)

N(t,x)={j € {1,2,...,N}: (t,x) € 9G;}.
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Filippov Regularization

x(t) € F(t,x(t)), teR (DiffInc)
{f(t,x)} if (t,x) € RTINS,
Ft.x) = co| U {ff(t,x)}> if (t,x) €S,
JEN(t.x)

N(t,x)={j € {1,2,...,N}: (t,x) € 9G;}.

Definition (Filippov 1960)

An absolutely continuous function x : Z — R" defined on some interval or
segment Z is called a solution of (DiscRHS) if it satisfies the differential
inclusion (Difflnc) almost everywhere on Z.
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lllustration of Filippov regularization
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(a) Switching case. (b) Sliding mode.




lllustration of Filippov regularization

(a) Switching case. (b) Sliding mode.

x(t) = — sign[x(t)] +d(t),t >0, 1 ifp>0
sign[p] =¢ —1 ifp<0
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lllustration of Filippov regularization

(a) Switching case. (b) Sliding mode.

M(t)e - sEnx(0] + d(e), e >0, 1 ifp>0
sign[p] = -1 ifp<O
where x(-) € R, ||d|lc < dp < 1. [-1,1] ifp=0
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© Regularization Procedure for ODE with Discontinuous RHS

@ Utkin Solutions
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Discontinuous Control Systems

Let us consider the system
x(t) = f(t,x(t), u(t, x(t))), t € R, (DisContSys)
where f : R x R"” x R — R", f € C and
u:RXR" = R™ u(t,x) = (ui(t,x), u2(t, ), ..., um(t, x)) 7

is a piecewise continuous feedback control
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Discontinuous Control Systems

Let us consider the system

x(t) = f(t,x(t), u(t, x(t))), t € R, (DisContSys)
where f :R xR" xR™ - R", f € C and
-

u:RxR"—=R"  wu(t,x) = (vi(t, x), ua(t, x),...,um(t,x))

is a piecewise continuous feedback control

Assumption

| \

Each component u;(t, x) is discontinuous only on a surface

Si = {(t,x) € R" : s5i(t, x) = 0},

where functions s; : R™1 — R are smooth, i.e. s; € CH(R™1).
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Utkin Regularization

x(t) = f(t,x(t), U(t,x(t))),t € R,
where U(t,x) = (Ui(t,x), Ua(t,x) ..., Un(t,x))" and

it x), si(t,x) # 0
U,(t X) = . .

5 co lim  wui(t;,x;), lim  ui(t,x)p, si(t,x)=0
(tj,x7)—(£,x) (8.2 (t7,%)—(t,x) (4, %) (£,x)
si(tj,)>0 si(tj,%7) <0

(ValFunc)

The set f(t, x, U(t, x)) is non-convex in general case.

v
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Example (Utkin Regularization)
u(x) = —sign[x] and U(x) = sign[x]

1 ifp>0 1 ifp>0
sign[p] = ¢ —1 ifp<0 , signp] = -1 ifp<0
0 ifp=0 [-1,1] ifp=0
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Equivalent Control (Utkin Solution)

Definition

An absolutely continuous function x : Z — R" defined on some interval or
segment Z is called a solution of (DisContSys) if there exists a measurable
function ueq : Z — R™ such that ueq(t) € U(t, x(t)) and

x(t) = f(t, x(t), ueq(t)) almost everywhere on 7.
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Equivalent Control (Utkin Solution)

Definition

An absolutely continuous function x : Z — R" defined on some interval or
segment Z is called a solution of (DisContSys) if there exists a measurable
function ueq : Z — R™ such that ueq(t) € U(t, x(t)) and

x(t) = f(t, x(t), ueq(t)) almost everywhere on 7.

.t(r)=0&{;+& F s(x)=0k(;+k

(a) Filippov definition. (b) Utkin definition.
Equivalent control (Utkin 1967): s(x) = 0 and 8(59—()f)1f(1f,x, Ueg) =0
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Example (Equivalent Control)

X1 = u 2 u(t) = — sign[xi(t)]
x = (2u* — 1)x
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Example (Equivalent Control)

X1=u u(t) = —sign[x(t)]
Yo = (20 — 1)

Filippov definition

[)'q(t) ] . [ —sign[xi(t)] ]

Xg(t) X2(t)
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Example (Equivalent Control)

)'(1:u
x0 = (2u% — 1)xy

Filippov definition

[)'q(t) ] . [ —sign[xi(t)] ]

Xg(t) X2(t)

Unstable

u(t) = —sign[x1(1)]
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Example (Equivalent Control)

)'(1:u
x0 = (2u% — 1)xy

Filippov definition

[)'q(t) ] . [ —sign[xi(t)] ]

Xg(t) X2(t)

Unstable

u(t) = —sign[x1(1)]

Utkin definition

[0 ] < [ Bkl

—Xg(t)

|
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Example (Equivalent Control)

)'(1:u
x0 = (2u% — 1)xy

Filippov definition

[)'q(t) ] . [ —sign[xi(t)] ]

Xg(t) X2(t)

Unstable

u(t) = —sign[x1(1)]

Utkin definition

[0 ] < [ Bkl

—Xg(t)

Stable

|
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Example (Utkin 1970s)

x1 = 0.3x(t) + xq(t)u(t), u(t) = —sign[x(t)s(t)],
Xo = —0.7x1(t) + 4x3 (t)u(t), s(t) = xi(t) + xo(t),
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Example (Utkin 1970s)

x1 = 0.3x(t) + xq(t)u(t), u(t) = —sign[x(t)s(t)],
Xo = —0.7x1(t) + 4x3 (t)u(t), s(t) = xi(t) + xo(t),

E] -1

hysteresis
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© Regularization Procedure for ODE with Discontinuous RHS

@ Aizerman-Pyatniskii Solutions
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Aizerman-Pyatniskii Regularization (Filippov 1988)

x € co(f(t,x,U(t,x)), teR

Definition

An absolutely continuous function x : Z — R" defined on some interval or
segment Z is called a solution of (DiscRHS) if it satisfies the differential
inclusion (Difflnc) almost everywhere on Z.
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Aizerman-Pyatniskii Regularization (Filippov 1988)

x € co(f(t,x,U(t,x)), teR

Definition

An absolutely continuous function x : Z — R" defined on some interval or
segment Z is called a solution of (DiscRHS) if it satisfies the differential
inclusion (Difflnc) almost everywhere on Z.

J[ﬂﬁul(ﬁi b i s(x)-ﬂk(fl

(a) Filippov (b) Utkin (c) Aizerman-Pyatnitskii
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Presence of fast actuators (Fridman 2001,2002)

Actuators

2nd order actuator
1st order actuator

pnz1 = 2o,

nzy = —221 — U(5)7 NZ2 = —221 - 322 - U(S),

Plant

s=2z, x=u*—u*+PBx, u(s)=sign[s],

L. Fridman Equations with Discontinuous RHS



Presence of fast actuators (Fridman 2001,2002)
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Presence of fast actuators (Fridman 2001,2002)

Actuators

2nd order actuator
1st order actuator

pnz1 = 2o,

nzy = —221 — U(5)7 NZ2 = —221 - 322 - U(S),

Plant

s=2z, x=u*—u*+PBx, u(s)=sign[s],
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Reduced Order System

p=0=z1=—u(s)/2, §=—-u/2, x=(u*— v + B)x,
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Reduced Order System
p=0=z=—u(s)/2, s§=—u/2, x=(u*—u?+p)x,

Sliding Dynamics (Filippov=Utkin)
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1 st order actuator (z(t),s(t)) — 0 Sliding dynamics X = $x = Unstable

2nd order actuator

3 <zo <t> , S0 <t>> — Periodic Solution
I I

= x = —(y— B)x
Could be stable
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Equivalence of Definitions

Theorem (Utkin 1992, Zolezzi 2002)

Let a right-hand side of the system (DiscRHS) be affine with respect to
control:

f(t,x,u(t,x)) = a(t, x) + b(t, x)u(t, x),

where a: R - R” b: R 5 R™™ a3 beCandu:R™ - R™ s
a piecewise continuous function u(t,x) = (u1(t,x),..., un(t,x))", such
that u; has a unique switching surface sj(x) = 0, s; € C1(R").
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Equivalence of Definitions

Theorem (Utkin 1992, Zolezzi 2002)

Let a right-hand side of the system (DiscRHS) be affine with respect to
control:

f(t,x,u(t,x)) = a(t, x) + b(t, x)u(t, x),

where a: R - R” b: R 5 R™™ a3 beCandu:R™ - R™ s
a piecewise continuous function u(t,x) = (u1(t,x),..., un(t,x))", such
that u; has a unique switching surface sj(x) = 0, s; € C1(R").

Definitions of Filippov, Utkin and Aizerman-Pyatnitskii are equivalent iff
det <VTs(x)b(t,x)> £0 if (t,x) €S,

where s(x) = (s1(x), 52(x), -, sm(x)) T, Vs(x) € R™™ s the matrix of
partial derivatives % and S is a discontinuity set of u(t,x).
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Example (Neimark 1961)

x = Ax(t) + cui(t) + buo(t), u1(t) = —sign[xi(t)],
t>0, x(-)=(x(),x()" € R? up(t) = —sign[xq(t)],
AeR>2 p=(0,1)7, c=(1,0)7,
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Example (Neimark 1961)

x = Ax(t) + cui(t) + buo(t), u1(t) = —sign[xi(t)],

t>0, x(-)=(a(),x()" €R? up(t) = —sign[x(t)],

Ac RZXZ’ b= (O, 1)7—’ c = (1,0)7—,
Filippov definition Utkin definition

xe{Ax+(b+c)-Sgnbal X € {Ax} + b-Signlal + c - Signxal-

I‘, X‘,

e %) U, %)

dis, %) | ), x)

%, %)

S x)
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@ Disturbed Systems and Extended Differential Inclusions
@ Disturbances and Differential Inclusions
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Disturbances and Differential Inclusions

Models of sliding mode control systems usually have the form
x(t) = f(t,x(t), u(t,x(t)),d(t)), teR,

x(-) € R" is the vector of system states,

u(-,-) € R™ is the vector of control inputs,

d(-) € R is the vector of disturbances,

the function f : R™m+k+1 s R is assumed to be continuous,

the control function v : R™1 — R™ is piecewise continuous,

the vector-valued function d : R — R is assumed to be locally
measurable and bounded as follows:

d;'nin < d,‘(t) < d;nax

where d(t) = (di(t), da(t),...,dk(t))7, t €R.
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Example (Disturbed sliding mode system)

Consider the simplest disturbed sliding mode system
x(t) = —d1(t) sign[x(t)] + da(t), (Ex1)
where x € R, unknown functions d; : R — R are bounded by

dmin < di(t) < d™>, i=1,2.
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Example (Disturbed sliding mode system)

Consider the simplest disturbed sliding mode system
x(t) = —d1(t) sign[x(t)] + da(t), (Ex1)
where x € R, unknown functions d; : R — R are bounded by
dmin < di(t) < d™>, i=1,2.

Obviously, all solutions of the system (Ex1) belong to a solution set of the
following extended differential inclusion

x(t) € — [dP'™, of>] - Signlx(e)] + [, o] (Ex2)

Stability of the system (Ex2) implies the same property for (Ex1). In
particular, for d™" > max{|d5""|,|d3"®*|} both these systems have
asymptotically stable origin.
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Extended Differential Inclusion
All further considerations deal with the extended differential inclusion

x(t) € F(t,x(t)), teR,

where
F(t,x) = co{f(t,x, U(t,x),D)},

the set-valued function U(t, x) is defined by (ValFunc) and
[d{nin’ d{nax]

dmin7dmax
o | lemiage

[d’r(nin7 dlr(nax]

L. Fridman Equations with Discontinuous RHS



Outline

© Existence of Solutions
@ Existence Conditions
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Local existence conditions

Theorem (Filippov 1960)
Let

e F: G — 2R" be upper semi-continuous at each point of the set
G={(t,x) €ER™ : |t — ty| < aand |x — x| < b,

where a,b € R, typ € R, x9 € R”;
e F(t,x) be nonempty, compact and convex for (t,x) € G;
@ there exists K > 0 such that p(0, F(t,x)) < K for (t,x) € G;
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Local existence conditions

Theorem (Filippov 1960)
Let

e F: G — 2R" be upper semi-continuous at each point of the set
G={(t,x) €ER™ : |t — ty| < aand |x — x| < b,

where a,b € R, typ € R, x9 € R”;
e F(t,x) be nonempty, compact and convex for (t,x) € G;
@ there exists K > 0 such that p(0, F(t,x)) < K for (t,x) € G;

then dx : R — R” - absolutely continuous and defined at least on
[to — a, to + a], « = min{a, b/K}, such that x(ty) = xo and the inclusion

x(t) € F(t,x(t))

holds almost everywhere on [ty — «, to + a.
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On existence of Utkin Solutions

Lemma (Filippov 1959)
Let

@ a function f : R"tm+l s R pe continuous;

o a set-valued function U : R"1 — 2R™ pe defined and
upper-semicontinuous on an open set  x S, where Q C R";

U(t, x) be nonempty, compact and convex for every (t,x) € Z x Q.

a function x : R — R" be absolutely continuous on I, x(t) € Q for
teZ,

x(t) € f(t,x(t), U(t,x(t))) almost everywhere on Z;
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On existence of Utkin Solutions

Lemma (Filippov 1959)
Let

@ a function f : R"tm+l s R pe continuous;

o a set-valued function U : R"1 — 2R™ pe defined and
upper-semicontinuous on an open set  x S, where Q C R";

e U(t,x) be nonempty, compact and convex for every (t,x) € Z x Q.

@ a function x : R — R" be absolutely continuous on I, x(t) € Q for
teZ,

e x(t) € f(t,x(t), U(t,x(t))) almost everywhere on Z;
Then there exists a measurable function ueq : R — R™ such that

Ueg(t) € U(t,x(t)) and x(t) = f(t,x(t), ueq(t))

almost everywhere on T.
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Non-local existence conditions

Theorem (Gelig et al. 1978)

Let a set-valued function F : R™1 — R™1 pe defined and
upper-semicontinuous in R" 1.

Let F(t,x) be nonempty, compact and convex for any (t,x) € R™1.

If there exists a real valued function L : Ry U {0} — Ry U {0} such that

+oo
p(0, F(t,x)) < L(|Ix|}) and /%dr:—koo,
0

then for any (to, xo) € R"! the system (DiffInc) has a solution
x(t) : x(to) = xo defined for all t € R.
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Summary

@ Stability property of ODE with discontinuous RHS depends on
definition of a solution.

@ Stability of Aizerman-Pyatnitskii solutions always implies stability of
Filippov and Utkin solutions.

@ All introduced definitions may be equivalent in the case of affine
control systems with discontinuous input.

@ Analysis of the disturbed systems can be reduced to differential
inclusions.
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