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Abstract

The paper surveys mathematical tools required for stability and convergence analysis of modern sliding
mode control systems. Elements of Filippov theory of differential equations with discontinuous right-hand
sides and its recent extensions are discussed. Stability notions (from Lyapunov stability (1982) to fixed-time
stability (2012)) are observed. Concepts of generalized derivatives and non-smooth Lyapunov functions are
considered. The generalized Lyapunov theorems for stability analysis and convergence time estimation are
presented and supported by examples from sliding mode control theory.
© 2014 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

During the whole history of control theory, a special interest of researchers was focused on systems
with relay and discontinuous (switching) control elements [1-4]. Relay and variable structure control
systems have found applications in many engineering areas. They are simple, effective, cheap and
sometimes they have better dynamics than linear systems [2]. In practice both input and output of a
system may be of a relay type. For example, automobile engine control systems sometimes use A-sensor
with almost relay output characteristics, i.e. only the sign of a controllable output can be measured [5].
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In the same time, terristors can be considered as relay “actuators” for some power electronic
systems [6].

Mathematical backgrounds for a rigorous study of variable structure control systems were
presented in the beginning of 1960s by the celebrated Filippov theory of differential equations
with discontinuous right-hand sides [7]. Following this theory, discontinuous differential
equations have to be extended to differential inclusions. This extension helps us to describe,
correctly from a mathematical point of view, such a phenomenon as sliding mode [3,8,6]. In spite
of this, Filippov theory was severely criticized by many authors [9,10,3], since it does not
describe adequately some discontinuous and relay models. That is why, extensions and
specifications of this theory appear rather frequently [10,11]. Recently, in [12] an extension of
Filippov theory was presented in order to study Input-to-State Stability (ISS) and some other
robustness properties of discontinuous models.

Analysis of sliding mode systems is usually related to a specific property, which is called
finite-time stability [13,3,14—16]. Indeed, the simplest example of a finite-time stable system is
the relay sliding mode system: x = —sign[x],x € R, x(0) =x. Any solution of this system
reaches the origin in a finite time 7'(xp) = |xo| and remains there for all later time instants.
Sometimes, this conceptually very simple property is hard to prove theoretically. From a
practical point of view, it is also important to estimate a time of stabilization (settling time). Both
these problems can be tackled by Lyapunov Function Method [17-19]. However, designing a
finite-time Lyapunov function of a rather simple form is a difficult problem for many sliding
mode systems. In particular, appropriate Lyapunov functions for second order sliding mode
systems are non-smooth [20-22] or even non-Lipschitz [23-25]. Some problems of a stability
analysis using generalized Lyapunov functions are studied in [26-29].

One more extension of a conventional stability property is called fixed-time stability [30]. In
addition to finite-time stability it assumes uniform boundedness of a settling time on a set of
admissible initial conditions (attraction domain). This phenomenon was initially discovered in
the context of systems that are homogeneous in the bi-limit [31]. In particular, if an
asymptotically stable system has an asymptotically stable homogeneous approximation at the O-
limit with negative degree and an asymptotically stable homogeneous approximation at the
+oo—limit with positive degree, then it is fixed-time stable. An important application of this
concept was considered in the paper [32], which designs a uniform (fixed-time) exact
differentiator based on the second order sliding mode technique. Analysis of fixed-time stable
sliding mode system requires applying generalized Lyapunov functions [30,32].

The main goal of this paper is to survey mathematical tools required for stability analysis of
modern sliding mode control systems. The paper is organized as follows. The next section presents
notations, which are used in the paper. Section 3 considers elements of the theory of differential
equations with discontinuous right-hand sides, which are required for a correct description of sliding
modes. Stability notions, which frequently appear in sliding mode control systems, are discussed in
Section 4. Concepts of generalized derivatives are studied in Section 5 in order to present a
generalized Lyapunov function method in Section 6. Finally, some concluding remarks are given.

2. Notations

® R is the set of real numbers and R=R U {—o0} U {400}, R, ={xeR: x>0} and
R, =R, U {4+00}.

® 7 denotes one of the following intervals: [a, b], (a,b), [a,b) or (a,b], where a,b e R,a<b.

® The inner product of x,y € R" is denoted by (x,y) and llxIl = /{x, x).
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® The set consisting of elements x;,xy, ..., x, is denoted by {xj,x2, ..., x,}.
@ The set of all subsets of a set M =R" is denoted by 2M.
@ The sign function is defined by

1 if p>0,
sign [p]=¢ —1 if p<O0, (1)
a if p=0,

where e R: —1 <0< 1. If 6=0 we use the notation sign[p].
® The set-valued modification of the sign function is given by

{1} if p>0,
sign[p] =< {—1} if p<0, 2)
[-1,1] if p=0.

o % = |x|* sign[x] is a power operation, which preserves the sign of a number x € R.
® The geometric sum of two sets is denoted by “+7, i.e.
M;+M; = U o +xl (3)
x; € M,x, € My
where M; = R" M, = R".
® The Cartesian product of sets is denoted by x .
@ The product of a scalar y € R and a set M= R" is denoted by “-” :
yM=M-y= U {»}. )
xeM

TN

@ The product of a matrix A € R™" and a set M= R" is also denoted by

A-M= J {Ax). (5)
xeM

® 02 is the boundary set of Q< R".

® B(r)={xeR": llxll <r} is an open ball of the radius r € R, with the center at the origin.
Under introduced notations, {y}+B(¢) is an open ball of the radius £>0 with the center at
yeR"

® int(£2) is the interior of a set QS R", i.e. x €int(Q) iff Ire R, : {x} + B(r)= L.

® Let k be a given natural number. Ck(Q) is the set of continuous functions defined on a set
Q< R", which are continuously differentiable up to the order .

o If V(-)eC' then VV(x)=(aV/dxy,...,0V/ox,) . If s: R*">R", s(:)=(51(), ..., 5m(-))",
si(-) € C! then Vs(x) is the matrix R™ " of the partial derivatives 0s;/ 0x;.

e W7 is the set of vector-valued, componentwise locally absolutely continuous functions,
which map Z to R".

3. Discontinuous systems, sliding modes and disturbances
3.1. Systems with discontinuous right-hand sides

The classical theory of differential equations [33] introduces a solution of the ordinary
differential equation (ODE)

x=f(tx), f:RxR'->R" (6)
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as a differentiable function x : R— R", which satisfies Eq. (6) on some segment (or interval)
7 = R. The modern control theory frequently deals with dynamic systems, which are modeled by
ODE with discontinuous right-hand sides [6,34,35]. The classical definition is not applicable to
such ODE. This section observes definitions of solutions for systems with piecewise continuous
right-hand sides, which are useful for sliding mode control theory.

Recall that a function f : R"*! - R" is piece-wise continuous iff R"™! consists of a finite
number of domains (open connected sets) G; C R”H,j =1,2,...,N; G; N Gj=¢ for i #j and
the boundary set S = Uf’: ,0G; of measure zero such that f(¢, x) is continuous in each G; and for
each (t*,x*) € dG; there exists a vector f/(*,x*), possibly depended on j, such that for any
sequence (#,xX) € G; : (5, xX) - (*,x*) we have f(**,x*)—f/(t*,x*). Let functions f’:
R - R" be defined on 0G; according to this limiting process, i.e.

Fi(t,x) :( li)m( )f(tk,xk), (. x e Gj, (t,x) € 0G;.
X

tk xk) — (1,

3.1.1. Filippov definition
Introduce the following differential inclusion:

x e K[f(t,x), teR, (7
(1, x)} if (t,x) e R"I\S,
il x) = co< U {ff(z,x)}> it (1,0 €S, ®
jeN(tx)

where co(M) is the convex closure of a set M and the set-valued index function N :
R 212N defined on S indicates domains G;, which have a common boundary point
(t,x) e S, ie.

N(t,x)={je{l,2,....,N} : (t,x) € 0G}}.
For (t,x) € S the set K[f](¢,x) is a convex polyhedron.

Definition 1 (Filippov [7, p. 50]). An absolutely continuous function x : Z—R" defined on
some interval or segment 7 is called a solution of Eq. (6) if it satisfies the differential inclusion
(7) almost everywhere on 7.

Consider the simplest case when the function f(z, x) has discontinuities on a smooth surface
S ={xeR": s(x) =0}, which separates R" on two domains Gt = {xe R" : 5(x)>0} and G~ =
{xe R": s(x)<0}.

Let P(x) be the tangential plane to the surface S at a point x € S and

fft,x)= lim f(t,x) and f~(t,x)= lim f(,x)
x;—xx; € GT xioxx €G
For x € S the set K[f](z,x) defines a segment connecting the vectors f*(z,x) and £~ (z,x) (see
Fig. 1(a), (b)). If this segment crosses P(x) then the cross point is the end of the velocity vector,
which defines the system motion on the surface S (see Fig. 1(b)). In this case the system (7) has
trajectories, which start to slide on the surface S according to the sliding motion equation

X ZfO(ta X), (9)
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Fig. 1. Geometrical illustration of Filippov definition. (a) Switching case and (b) sliding mode case.

where the function

(Vs(),f~ (8,200 T (t,) + (V). /(8,200 ~ (2, %)
<VS(X),f+([, )C) _f7 (t’ X)>
is the velocity vector defined by a cross-point of the segment and the plane P(x), i.e. f(t,x) =
uft(t,x) + (1 —p)f ~ (t,x) with € [0, 1] such that (Vs(x), uf T (t,x) + (1 —pu)f ~ (¢, x)) = 0.
If Vs(x)f uf ~(t,x) + (1 —p)f 7 (t,x) for every u€[0,1] then any trajectory of Eq. (7) comes
through the surface (see Fig. 1(a)) resulting an isolated “switching” in the right-hand side of Eq. (6).
Seemingly, Filippov definition is the most simple and widespread definition of solutions for
ODE with being discontinuous by x right-hand sides. However, this definition was severely
criticized by many authors [9,3,10] since its appearance in 1960s. In fact, it does not cover
correctly many real-life systems, which have discontinuous models. Definitely, contradictions to
reality usually are provoked by model inadequacies, but some problems can be avoided by
modifications of Filippov definition.

folt,x) = (10)

Example 1. Consider the discontinuous control system

{ )271 =1u,
u= —sign[x], (11)

Xy = (euz + €2|M| —S))Cz,

where x,x; € R are system states, ¢ € R, is some small parameter 0<e <1, u € R is the relay
control with the sign function defined by Eq. (1).

If we apply Filippov definition only to the first equation of Eq. (11), we obtain the following
sliding motion equation x; =0 for x; =0, which implicitly implies u=0 for x; =0. So, the
expectable sliding motion equation for Eq. (11) is

X1 =0,
for x; = 0. (12)

X2 = —é&x,

However, considering Filippov definition for the whole system (11) we derive

f+(xls-x2)= (82)(2) fOl" X1 — +O
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X1,X2) = for x; > —0
1 = or X
f ( b ) !

and the formula (10) for s(x) = x; gives another sliding motion equation:

T\ (Vs (620)(x) + (Vs f T 0)f ~(6x) [0
X ) (Vs(),fT(t,x) —f ~ (1,x)) \ e

E°Xp
From the practical point of view the sliding motion equation (12) looks more realistic. Indeed,
in practice we usually do not have ideal relays, so the model of switchings like Eq. (1) is just
a “comfortable” approximation of real “relay” elements, which are continuous functions
(or singular outputs of additional dynamics [36]) probably with hysteresis or delay effects. In this
case, a “real” sliding mode is, in fact, a switching regime of bounded frequency. An average
value of the control input

1 t
|u|average = |u(7")| dr, t>1y:x; (IO) =0
11—ty fo

in the “real” sliding mode is less than 1, particulary |ulgyerqee < 1 — € (see [36] for details). Hence,

ElUlyerage + €Ul aerage — € < — & and the system (11) has asymptotically stable equilibrium point

(x1,x2) =0 € R?, but Filippov definition quite the contrary provides instability of the system.
Such problems with Filippov definition may appear if the control input u is incorporated to the

system (11) in nonlinear way. More detailed study of such discontinuous models is presented in [11].

This example demonstrates two important things:

e Filippov definition is not appropriate for some discontinuous models, since it does not
describe a real system motion.

® Stability properties of a system with discontinuous right-hand side may depend on a definition
of solutions.

Remark 1 (On Filippov regularization). The regularization of the ODE system with
discontinuous right-hand side can also be done even if the function f(z,x) in Eq. (6) is not
piecewise continuous, but locally measurable. In this case the differential inclusion (7) has the
following right-hand side [7]:

K[flx)=( (1 cof(t {x}+BO)\N),

5>0 u(N) =0

where the intersections are taken over all sets N C R" of measure zero (u(N) = 0) and all §>0,
co(M) denotes the convex closure of the set M.

3.1.2. Utkin definition (equivalent control method)

The modification of Filippov definition, which delivers an important impact to the sliding
mode control theory, is called the equivalent control method [3].

Consider the system

x =f(t,x,u(t,x), teR, (13)
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where f : R x R" x R™ - R" is a continuous vector-valued function and a piecewise continuous
function

wiRx R >R, u(t,x) = (ur(t, %), uz(t, %), ..., un(t,))"
has a sense of a feedback control.

Assumption 1. Each component u;(z, x) is discontinuous only on a surface
Si={(t,x) e R" : s;(t,x) =0},

where functions s; : R"*! - R are smooth, i.e. s; € C'(R"").

Introduce the following differential inclusion:
xef(t,x, Klulz,x), teR, (14)
where

K[u](t,x) = (K[u11(t, x), ..., K[u,](t, x))",
{ui(tvx)}o si(tsx) # 0)

(15)

Klu](t,x) = im (6. Hm (1 (4 %) —

co (Ijl}'g}_{)u,(t],x]),w}/l)rﬁr(lmu,(t],x]) , si(t,x)=0.
si(1j)>0 5i(tj.5)<0

The set f(t, x, K[u](t, x), ..., K[u,](t, x)) is non-convex in general case [11].

Definition 2. An absolutely continuous function x : Z — R" defined on some interval or segment
Z is called a solution of Eq. (13) if there exists a measurable function u,, : Z—R" such that
Ueq(t) € K[u](t, x(¢)) and X (1) = f(t, x(1), ue,(t)) almost everywhere on Z.

The given definition introduces a solution of the differential equation (13), which we call
Utkin solution, since it follows the basic idea of the equivalent control method introduced by
Utkin [3, p. 14] (see also [7, p. 54]).

Obviously, for (¢,x(1))¢S we have u,,(t) = u(t, x(r)). So, the only question is how to define
u.4(t) on a switching surface. The scheme presented in [3] is based on resolving of the equation
§(t,x) = 0s/ot + VT s(x)f (,x, u.,) = 0 in algebraic way. The obtained solution u,,(z,x) is called
equivalent control [3].

In order to show a difference between Utkin and Filippov definitions we consider the system (13)
with u € R (m=1) and a time-invariant switching surface S = {x € R" : s(x) = 0}.

Denote

+ . —_ .
u"(t,x)= Iim wu(t,x;)) and u” (t,x)= Iim  u(t,x;
()= lim () (9= lim ()

fr,x)y=ft,x,u"(t,x)) and f~(t,x)=f(t,x,u” (t,x)).
The sliding mode existence condition
Juel0,1]: Vsx) L pf = (t,x) + (1= p)f *(1,%)

is the same for both definitions.
The sliding motion equation obtained by Filippov definition has the form (9) recalled here by

X ZfO(t’ X),
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(Vs(),f ~ (200 T (t,x) + (V). f 7 (6, 2))f ~ (1, %)
<VS(X),f+(I,.X) _f_ (ta )C)) .

The corresponding vector (%, x) is defined by a cross-point of the tangential plane at the point
xe€ S and a segment connecting the ends of the vectors f1(z,x) and £~ (¢, x) (see Fig. 3(a)).

Utkin definition considers a set K[u](z, x), which is the convex closure of a set of limit values
of a discontinuous control function u(t,x). For different u;,us, us, ... € K[u](t,x) the vectors
f(t, x,uy), f(t,x,u2), f(t,x,u3), ... end on an arc connecting the ends of the vectors f*(¢,x) and
f7(t,x) (see Fig. 3(b)). In this case the vector f(t,x,u,,) defining the right-hand side of the
sliding motion equation is derived by a cross-point of this arc and a tangential plane at the point
x € S (see Fig. 3(b)), i.e.

X=f(t,x,u,(t,x)), xe8, (16)
where ue(t,x) € K[u](t,x) : Vs(x) L f(t, X, uey(t, x)).

Sometimes Utkin definition gives quite strange, from mathematical point of view, results, but
they are very consistent with real-life applications.

f()(t’x) =

Example 2 (Filippov [7]). Consider the system

X =Ax+ bu; + cupy, u; =sign[x;], up=sign[x;], (17)
where x=(x1,%,...,x,) € R",Ae R™" ¢,beR",c#b. Filippov definition provides the
inclusion

i € {Ax}+(b + ¢) - sign[x], (18)

where + is the geometric (Minkovski) sum of sets (see Eq. (3)), @ is the set-valued modification of
the sign function (see Eq. (2)) and the product of a vector to a set is defined by Eq. (5).
If the functions u; and u, are independent control inputs, then Utkin definition gives

i € {Ax}b - signfx ]+ - signfv]. (19)

The right-hand sides of Egs. (18) and (19) coincide if the vectors ¢ and b are collinear, otherwise
Filippov and Utkin definitions generate different set-valued mappings.
For example, if x= (x;,x)” € R?, A=0, b=(—1,0)" and ¢ = (0, —1)", then

(a) Filippov definition gives
1
K@ =[~1.1]- (1)

for x; =0, i.e. K[f](x) is a segment connecting the points (— 1, — 1) and (1, 1) (see Fig. 2(a));
the corresponding sliding motion equation is
x=0 forx =0
(b) Utkin definition generates the square box, i.e. K[f](x)=[—1,1]x[—1,1] for x; =0
(see Fig. 2(b)), so sliding motion equation has the form

. 0
X = oy (1) for x; =0,

where u,, : R—R is an arbitrary locally measurable function such that [u.,(f)| <1 for
every t € R.
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a X2 b x2
o) w0, x,)
U x) | u, x)
0 X, 0 X,
U (%, %,)
[, x)

Fig. 2. Example of (a) Filippov’s and (c) Utkin’s sets.

Control inputs u; and u, are independent and relay elements are not identical in practice. They
cannot switch absolutely synchronously. This admits a motion of the system along the switching
line x; = 0. In this case, Utkin definition is more adequate to reality than Filippov one.

3.1.3. Aizerman—Pyatnickii definition
The Aizerman—Pyatnickii definition covers solutions of both definitions considered above by
means of introduction of the following differential inclusion:

i ecof(t,x, K[ul(t,x)), teR, (20)
for the system (13).

Definition 3 (Aizerman—Pyatnickii definition, Aizerman and Pyatnitskii [10] and Filippov
[7, p- 55]). An absolutely continuous function x : Z — R" defined on some interval or segment 7
is called a solution of Eq. (6) if it satisfies the differential inclusion (20) almost everywhere on Z.

Returning to the example considered above for u € R (m = 1) Aizerman—Pyatnickii definition
gives the inclusion

X € Fu(t,x) = co{f o(£, %), [ (2, X, ey (1, X))},

which describes the motion of the discontinuous system (13) in a sliding mode (see Fig. 3(c) with
fo € Fsu(t, ).

A criticism of Aizerman—Pyatnickii definition is related to nonuniqueness of solutions even for
simple nonlinear cases. However, if some stability property is proven for Aizerman—Pyatnickii
definition, then the same property holds for both Filippov and Utkin solutions.

The affine control system is the case when all definitions may be equivalent.

Theorem 1 (Zolezzi [37, Theorem 14, p. 44]). Let a right-hand side of the system (6) be affine
with respect to control:

f(t,x)=a(t, x) + b(t, x)u(t, x),

where a : R" S R" is a continuous vector-valued function, b : R™' - R™™ s a continuous
matrix-valued function and u: R —>R" is a piecewise continuous function u(t,x)=
(ur(t,%), ..., un(t,x))", such that u; has a unique time-invariant switching surface si(x)=
0,s; € CH(RM).

Definitions of Filippov, Utkin and Aizerman-Pyatnitskii are equivalent iff

det(V s(x)b(t,x)) #0 if (t,x) € S, (21)
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where s(x) = (s1(x), 52(x), ..., sm(x))", Vs(x) € R™™ is the matrix of partial derivatives 0s;/0x;
and S is a discontinuity set of u(t, x).

The present theorem has the simple geometric interpretation for the single input system. The
affine control system is linear with respect to the control input, which is the only discontinuous
term of the right-hand side of the system (6). In this case all regularization procedures provide the
set-valued extension depicted in Fig. 3(a). The condition (21) excludes non-uniqueness of this
set-valued extension for multi-input case. For example, the system considered in Example 17 is
affine, but it does not satisfy the condition (21).

3.2. System disturbances and extended differential inclusion

Some modifications of presented definitions of solutions are required again if a model of a
dynamic system includes disturbances into considerations. For example, the paper [12] extends
Filippov definition to discontinuous disturbed systems. It demonstrates that the presented
extension is useful for ISS analysis.

The present survey is mostly oriented on sliding mode control systems. The robustness of
sliding mode control systems (at least theoretically) is related to invariance of qualitative
behavior of closed-loop system on matched disturbances with some a priori known maximum
magnitude [3,8,6]. This property usually allows reducing a problem of stability analysis of a
disturbed discontinuous sliding mode control system to a similar problem presented for an
extended differential inclusion. The idea explained in the next example was also used in papers
[15,38].

Example 3. Consider the simplest disturbed sliding mode system

x = —d (1)signx] + da (1), (22)
where x € R, unknown functions d; : R— R are bounded by

dM < di(t) <d™, i=1,2, (23)

and the function sign[x] is defined by Eq. (1).

Fig. 3. The sliding motion for different definitions. (a) Filippov definition, (b) Utkin definition and (c) Aizerman—
Pyatnickii definition.
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Obviously, all solutions of the system (22) belong to a solution set of the following extended
differential inclusion:

ke —[d",dP™] - signfx] + [d5"™, d5*™]. (24)

Stability of the system (24) implies the same property for Eq. (22). In particular, for
d" >max{|d5"|, |d5™|} both these systems have asymptotically stable origins.

This example shows that the conventional properties, like asymptotic or finite stability,
discovered for differential inclusions may provide “robust” stability for original discontinuous
differential equations. That is why, in this paper we do not discuss “robust” modifications of
stability notions for differential inclusions.

Models of sliding mode control systems usually have the form

x=f(t,x,u(t,x),d(t), teR, (25)

where x € R”" is the vector of system states, u € R™ is the vector of control inputs, d € R¥ is the
vector of disturbances, the function f : R™""***+!1  R" is assumed to be continuous, the control
function u: R"' SR is piecewise continuous, the vector-valued function d: R— R is
assumed to be locally measurable and bounded as follows:

dM < di(t) < d™, (26)

where d(t) = (d(1), d»(0), ..., di (1), t € R.
All further considerations deal with the extended differential inclusion

xeF(,x), teR, 27)

where F(t,x) = co{f (¢, x, K[u](t,x), D)}, the set-valued function K[u](z,x) is defined by Eq. (15)
and

D={(d,dp,....,d)" e R* : d; e [d™™,d™™),i=1,2,...,k}. (28)

The same extended differential inclusion can be used if the vector d (or its part) has a sense of
parametric uncertainties.

3.3. Existence of solutions

Let us recall initially the classical result of Caratheodory about the existence of solutions for
ODEs with right-hand sides, which are discontinuous on time.
Theorem 2 (Coddington and Levinson [33, Theorem 1.1, Chapter 2]). Let the function
g:RxR'->R"
(t,%) = g(1, %)
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be continuous by x in Q={xo}+ B(r),re Ry,xo € R" for any fixed t €L =[ty—a,ty + d],
ae Ry, 1ty € R and it is measurable by t for any fixed x € Q. If there exists an integrable function
m:R—>R such that If(t,x)Il <m(t) for all (t,x)eZ x 2 then there exist an absolutely
continuous function x : R—R" and a number b € (0, a] such that x(ty) = xy and the equality

x(1) = g(1, x(1))

holds almost everywhere on [ty —b, to + b].

Introduce the following distances:
p(x,M)=inf Ix—yll, xeR", McR",
yeM

p(M,Mp) = sup p(x,Mp), M, SR", MycR". (29)
XE M[
Remark, the distance p(M;, M;) is not symmetric, i.e. p(M;, M;) # p(M;, M) in the general
case.

Definition 4. A set-valued function F : R™ -2%"" is said to be upper semi-continuous at a
point (%, x*) € R"™ if (¢, x) - (¥, x*) implies

p(F(t,x), F(t*,x*)) = 0.

For instance, the function sign[x] defined by Eq. (2) is upper semi-continuous.

Theorem 3 (Filippov [7, p. 77]). Let a set-valued function F : G—2%" be defined and upper
semi-continuous at each point of the set

G={(t,x) e R : |t—19| <a and | x—xoll <b}, (30)

where a,be R, ty) € R,xy € R". Let F(t,x) be nonempty, compact and convex for (t,x) € G.

If there exists K>0 such that p(0, F(t,x)) <K for (t,x) € G then there exists at least one
absolutely continuous function x: R—R" defined at least on the segment [ty—a,ty+ a],
a=min{a, b/K}, such that x(ty) = xo and the inclusion x(t) € F(t,x(t)) holds almost everywhere
on [ty—a,ty + a].

Filippov and Aizerman—Pyatnickii set-valued extensions of the discontinuous ODE (see
formulas (7) and (20)) and the extended differential inclusion (27) satisfy all conditions of
Theorem 3 implying local existence of the corresponding solutions.

The existence analysis of Utkin solutions is more complicated in general case. Since the
function f(t,x,u) is continuous, then for any measurable bounded function ug : Z — R™ the
composition f(t, x, uy(z)) satisfies all conditions of Theorem 2 and the equation x = f(z, x, u(t))
has an absolutely continuous solution xy(f), but uy(f) may not belong to the set K[u](z, xo(r)).

In some cases, the existence of Utkin solution can be proven using the celebrated Filippov’s
lemma.

Lemma 1 (Filippov [39, p. 78]). Let a function f : R"™ ' SR be continuous and a set-
valued function U : R"™™' 2% be defined and upper-semicontinuous on an open set T x ,
where Q< R". Let U(t,x) be nonempty, compact and convex for every (t,x) €T x Q. Let a
Sfunction x: R—R" be absolutely continuous on I, x(t)e Q2 for teT and x(t) €f(t,x(1),
U(t,x(1))) almost everywhere on T.
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Then there exists a measurable function u., : R—R"™ such that u..(t) e U(t,x(t)) and
x(t) = f(t,x(t), ueq(t)) almost everywhere on I.

If the differential inclusion (14) has a convex right-hand side then Theorem 3 together with
Lemma 1 results local existence of Utkin solutions. If the set-valued function f(¢, x, K[u](z, x)) is
non-convex, the existence analysis of Utkin solutions becomes very difficult (see [11] for the
details).

Some additional restrictions to right-hand sides are required for a prolongation of solutions. In
particular, the famous Winter’s theorem (see, for example, [40, p. 515]) about a non-local
existence of solutions of ODE can be expanded to differential inclusions.

Theorem 4 (Gelig et al. [41, p. 169]). Let a set-valued function F : R"™"' >R be defined
and upper-semicontinuous in R"™'. Let F(t,x) be nonempty, compact and convex for any
(t,x) e R,

If there exists a real valued function L : RT U {0} - R" U {0} such that

L(r)

then for any (o, xo) € R""! the system (27) has a solution x(t) : x(ty) = xo defined for all t € R.

+o0 1
p(0,F(t,x)) < L(lIxIl) and / —— dr= + oo,
0

Based on Lyapunov function method, the less conservative conditions for prolongation of
solutions are given below.

4. Stability and convergence rate

Consider the differential inclusion (27) for ¢ > t, with an initial condition
x(to) = Xo, (31)

where xo € R" is given.

Cauchy problem (27), (31) obviously may not have a unique solution for a given 7y € R and a
given xo € R". Let us denote the set of all solutions of Cauchy problem (27), (31) by ®(ty, xy) and
a solution of Egs. (27), (31) by x(t, ty, x9) € D(to, xp).

Nonuniqueness of solutions implies two types of stability for differential inclusions (27): weak
stability (a property holds for a solution) and strong stability (a property holds for all solutions)
(see, for example, [27,13,7]). Weak stability is usually not enough for robust control purposes.
This section observes only strong stability properties of the system (27). All conditions presented
in definitions below are assumed to be held for all solutions x(t, ty, xo) € P(tg, X0).

4.1. Lyapunov, asymptotic and exponential stability

The concept of stability introduced in the famous thesis of Lyapunov [17] is one of the central
notions of the modern stability theory. It considers some nominal motion x*(t,ty,xo) of a
dynamic system and studies small perturbations of the initial condition x,. If they imply small
deviations of perturbed motions from x*(,1,xo) then the nominal motion is called stable.
We study different stability forms of the zero solution (or, equivalently, the origin) of the
system (27), since making the change of variables y=x—x* we transform any problem of
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stability analysis for some nontrivial solution x*(z,7* x}) to the same problem for the zero
solution.

Assume that 0 € F(z,0) for t € R, where F(z,x) is defined by Eq. (27). Then the function
xp() = 0 belongs to a solution set &(t, 1, 0) for any 7y € R.

Definition 5 (Lyapunov stability). The origin of the system (27) is said to be Lyapunov stable if
for Ve e Ry and Vi) € R there exists 6 = (¢, tp) € Ry such that for Vxy € B(d)

(1) any solution x(t, ty, xp) of Cauchy problem (27), (31) exists for 7> t;
(2) x(t,to,x0) € B(e) for t>tg.

If the function 6 does not depend on #, then the origin is called uniformly Lyapunov stable. For
instance, if F(z,x) is independent of ¢ (time-invariant case) and the zero solution of Eq. (27) is
Lyapunov stable, then it is uniformly Lyapunov stable.

Proposition 1. If the origin of the system (27) is Lyapunov stable then x(t) =0 is the unique
solution of Cauchy problem (27), (31) with xo =0 and ty € R.

The origin, which does not satisfy any condition from Definition 5, is called unstable.

Definition 6 (Asymptotic attractivity). The origin of the system (27) is said to be asymptotically
attractive if for Vy € R there exists a set U(tp) = R" : 0 € int(U(ty)) such that Vxy € U(ty)

@ any solution x(#, 7y, xo) of Cauchy problem (27), (31) exists for > fo;
® lim,_, o llx(, 29, x0) Il =0.

The set U(ty) is called attraction domain.

Finding the maximum attraction domain is an important problem for many practical control
applications.

Definition 7 (Asymptotic stability). The origin of the system (27) is said to be asymptotically
stable if it is Lyapunov stable and asymptotically attractive.

If U(ty) = R" then the asymptotically stable (attractive) origin of the system (27) is called
globally asymptotically stable (attractive).

Requirement of Lyapunov stability is very important in Definition 7, since even global
asymptotic attractivity does not imply Lyapunov stability.

Example 4 (Vinograd [42, p. 433] or Hahn [43, p. 191]). The system
x%(xz—xl) +x§ . x%(xz—le)
T 2L e sy oy ad k= 2 | 2\
(7 +x3)(1 4+ (x7 +x3)) (7 +x3)(1 4+ (x7 +x3)°)
has the globally asymptotically attractive origin. However, it is not Lyapunov stable, since this
system has trajectories (see Fig. 4), which start in arbitrary small ball with the center at the origin

and always leave the ball B(&y) of a fixed radius &y € R, (i.e. Condition 2 of Definition 5 does
not hold for ¢ € (0, &))).

X1
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X

0
Fig. 4. Example of Vinograd [42].

The uniform asymptotic stability can be introduced by analogy with uniform Lyapunov
stability. It just requests more strong attractivity property.

Definition 8 (Uniform asymptotic attractivity). The origin of the system (27) is said to be
uniformly asymptotically attractive if it is asymptotically attractive with a time-invariant
attraction domain / = R" and for VR € R,, Ve € R, there exists T = T(R, €) € R, such that the
inclusions xo € B(R) N U and 1y € R imply x(t, 1y, x9) € B(e) for t >ty + T.

Definition 9 (Uniform asymptotic stability). The origin of the system (27) is said to be
uniformly asymptotically stable if it is uniformly Lyapunov stable and uniformly asymptotically
attractive.

If U/ = R" then a uniformly asymptotically stable (attractive) origin of the system (27) is called
globally uniformly asymptotically stable (attractive). Uniform asymptotic stability always
implies asymptotic stability. The converse proposition also holds for time-invariant systems.

Proposition 2 (Clarke et al. [44, Proposition 2.2, p. 78]). Let a set-valued function F : R" — R"
be defined and upper-semicontinuous in R". Let F(x) be nonempty, compact and convex for any
x € R". If the origin of the system

x € F(x)

is asymptotically stable then it is uniformly asymptotically stable.

Frequently, an asymptotic stability of a closed-loop system is not enough for a “good” quality
of control. A rate of transition processes also has to be adjusted in order to provide a better
performance to a control system. For this purpose some concepts of “rated” stability can be used
such as exponential, finite-time or fixed-time stability.

Definition 10 (Exponential stability). The origin of the system (27) is said to be exponentially
stable if there exist an attraction domain &/ =R" : 0 € int(i/) and numbers C, r € R, such that

Ix(t, t0, x0) || < Clixglle =10 ¢>p,. (32)

for tp € R and xp e U.

The inequality (32) expresses the so-called exponential convergence (attractivity) property.
The linear control theory usually deals with this property [19].
Exponential stability obviously implies both Lyapunov stability and asymptotic stability.
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4.2. Finite-time stability

Introduce the functional T : Wy, . ., — R, U {0} by the following formula:

To(y(+) = inf 7.

T>1p:y(r) =0

If y(z) # 0 for all ¢ € [ty, +00) then Ty(y(-)) = + oo.
Let us define the settling-time function of the system (27) as follows:

T(to, x0) = sup To(x(t, to, X0)) —to, (33)

X(t,t0,%0) € P(to,%0)

where @(1y,xo) is the set of all solutions of the Cauchy problem (27), (31).

Definition 11 (Finite-time attractivity). The origin of the system (27) is said to be finite-time
attractive if for V7 € R there exists a set V(7o) =R" : 0 € int(V(#y)) such that Yxy € V(¢o)

@ any solution x(t, ty, xp) of Cauchy problem (27), (31) exists for > ty;
® T(ty,x0)< + oo for xy € V(ty) and for 1y € R.

The set V(1) is called finite-time attraction domain.

It is worth to stress that the finite-time attractivity property, introduced originally in [14], does
not imply asymptotic attractivity. However, it is important for many control applications. For
example, antimissile control problem has to be studied only on a finite interval of time, since
there is nothing to control after missile explosion. In practice, Lyapunov stability is additionally
required in order to guarantee a robustness of a control system.

Definition 12 (Finite-time stability, Roxin [13] and Bhat and Bernstein [14]). The origin of the
system (27) is said to be finite-time stable if it is Lyapunov stable and finite-time attractive.

If V(tp) = R" then the origin of Eq. (27) is called globally finite-time stable.

Example 5. Consider the sliding mode system

2
x=— —=sign[x] + [2zx|, 1>1), xeR,

Jz

which, according to Filippov definition, is extended to the differential inclusion

2
ie — —— signfxH{26x]), >ty xeR, (34)
T

Jz

where 7y € R. It can be shown that the origin of this system is finite-time attractive with an
. . 2
attraction domain V() = B(e'o(1 —erf(|9]))), where

2 Z
erf(z):\/—E/ e_Tzdr, zeR
0

is the so-called Gauss error function. Moreover, the origin of the considered system is Lyapunov
stable (for Ye>0 and for Vi) € R we can select 6 = 6(tp) = min{e, e‘g(l —erf(|tp]))}), so it is
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finite-time stable. In particular, for 7o >0 the settling-time function has the form
T(t0,x0) = erf ~(lxole ™" + erf(0)) ~ 1o,

where erf ~!(-) denotes the inverse function to erf(-).

Proposition 1 implies the following property of a finite-time stable system.

Proposition 3 (Bhat and Bernstein [14, Proposition 2.3]). If the origin of the system (27) is
finite-time stable then it is asymptotically stable and x(t, ty,xo) = 0 for t >ty + To(to, xo)-

A uniform finite-time attractivity requests an additional property for the system (27).

Definition 13 (Uniform finite-time attractivity). The origin of the system (27) is said to be
uniformly finite-time attractive if it is finite-time attractive with a time-invariant attraction
domain V<= R" such that the settling time function T(ty,xo) is locally bounded on R x V
uniformly on tp € R, i.e. for any yeV there exists €€ R, such that {y}+B()=V and

SUPy, e R, xy e (y}4-Bley I (10, X0) < + 00.
Definition 14 (Uniform finite-time stability, Roxin [13] and Orlov [15]). The origin of the

system (27) is said to be uniformly finite-time stable if it is uniformly Lyapunov stable and
uniformly finite-time attractive.

The origin of Eq. (27) is called globally uniformly finite-time stable if V = R".

Obviously, a settling-time function of time-invariant finite-time stable system (27) is independent
of 1y, i.e. T = T(xp). However, in contrast to asymptotic and Lyapunov stability, finite-time stability
of a time-invariant system does not imply its uniform finite-time stability in general case.

Example 6 (Bhat and Bernstein [14, p. 756]). Let a vector field f : R*> — R? of a time-invariant
system be defined on the quadrants

Q={xeRM\0}:x, >0, »»>0}, Qy={xeR?:x <0, x>0}

Q]][I{)CE Rzixlﬁo, )C2<0}, Q]VZ{XE Rz:x1>0, )C2<0}

as shown in Fig. 5. The vector field f is continuous, f(0)=0 and x=(x;,x) =
(rcos (), rsin (0))", r>0, 0 [0, 2x). In [14] it was shown that this system is finite-time stable.
Moreover, it is uniformly asymptotically stable, but it is not uniformly finite-time stable. For the
sequence of the initial conditions xf, =(0,—-1/ i)T, i=1,2,... we have (see [14] for the details)

xb—0 and T(x))— + oco.

T2

f=rcosf—v/Zsinb 9:—\/§

=0 7=—/T cosf
Qrr Qr
T

.
Qrrr L. . Qv

.=—T . 2
Q 0 11:—\/517272
P= .

To=0

Fig. 5. Example of Bhat and Bernstein [14].
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So, for any open ball B(r), »>0, with the center at the origin we have

sup T(xp) = + oo.
xo € B(r)

Uniform finite-time stability is the usual property for sliding mode systems [15,38]. The
further considerations deals mainly with this property and its modifications.

4.3. Fixed-time stability

This subsection discusses a recent extension of the uniform finite-time stability concept, which
is called fixed-time stability [30]. Fixed-time stability asks more strong uniform attractivity
property for the system (27). As it was demonstrated in [32,30], this property is very important
for some applications, such as control and observation with predefined convergence time.

In order to demonstrate the necessity of more detailed elaboration of uniformity properties of
finite-time stable systems let us consider the following motivating example.

Example 7. Consider two systems

—x172 for x<1,
0 for x> 1,

M &= —1x), D x:{

which are uniformly finite-time stable with the finite-time attraction domain V = B(1). Indeed,
the settling-time functions of these systems are continuous on V:

1+ |xo|'?

T(1(x0) = 111( 7 > . Tan(xo) = 2lxo| /2.

1 —|xo
So, for any ye)V we can select the ball {y}+B(¢)<V, where e=(1—|y|)/2, such that
SUDy, ¢ (y14Be) Ty(x0) < + oo and SUDy, e (14 B(S)T(u)(xo) < + oo.

On the other hand, T )(xp) = + o0 if xo— £ 1, but Ty (x9) =2 if xo— £ 1. Therefore, these
systems have different uniformity properties of finite-time attractivity with respect to the domain
of initial conditions.

Definition 15 (Fixed-time attractivity). The origin of the system (27) is said to be fixed-time
attractive if it is uniformly finite-time attractive with an attraction domain ) and the settling time
function T(tg,x0) is bounded on R x V, i.e. there exists a number T, € Ry such that
T(to,x0) < Tax if 1o € R and xp € V.

Systems (I) and (II) from Example 7 are both fixed-time attractive with respect to attraction
domain B(r) if r € (0, 1), but the system (I) loses this property for the maximum attraction
domain B(1).

Definition 16 (Fixed-time stability, Polyakov [30]). The origin of the system (27) is said to be
fixed-time stable if it is Lyapunov stable and fixed-time attractive.

If V=R" then the origin of the system (27) is called globally fixed-time stable. Locally
differences between finite-time and fixed-time stability are questionable. Fixed-time stability
definitely provides more advantages to a control system in a global case [32,30].
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Example 8. Consider the system
= —x/2 —x[3/2], xeR, t>r1,

which has solutions defined for all # > ¢#,:

t—1
( ) sign(xo) tan > (arctan(IXOll/z) - TO) . 1< 1o+ 2arctan(fxo] V),
x(, 1o, Xo) =
0, 1> 1o + 2arctan(|xo|'/?).

Any solution x(z, 7y, x9) of this system converges to the origin in a finite time. Moreover, for any
xo € R, tp € R the equality x(z, ty, xo) = 0 holds for all t > ¢y + =, i.e. the system is globally fixed-
time stable with T« = 7.

5. Generalized derivatives

The celebrated Second Lyapunov Method is founded on the so-called energetic approach to
stability analysis. It considers any positive definite function as a possible energetic characteristic
(energy) of a dynamic system and studies evolution of this “energy” in time. If a dynamic system
has an energetic function, which is decreasing (strongly decreasing or bounded) along any
trajectory of the system, then this system has a stability property and the corresponding energetic
function is called Lyapunov function.

For example, to analyze asymptotic stability of the origin of the system

x=f(t,x), feCR"™) reR,, xeR" (35)

it is sufficient to find a continuous positive definite function V(-) such that for any solution x(z) of
the system (35) the function V(x(¢)) is decreasing and tending to zero for t— 4+ oco. The
existence of such function guarantees asymptotic stability of the origin of the system (35) due to
Zubov’s theorem (see [26,40]).

If the function V(x) is continuously differentiable then the required monotonicity property can
be rewritten in the form of the classical condition [17]:

V(x) = VIV(x)f(r,x) <0. (36)

The inequality (36) is very usable, since it does not require knowing the solutions of Eq. (35) in
order to check the asymptotic stability. From the practical point of view, it is important
to represent monotonicity conditions in the form of differential or algebraic inequalities like
Eq. (36).

Analysis of sliding mode systems is frequently based on non-smooth or even discontinuous
Lyapunov functions [13,27,45,20,24], which require consideration of generalized derivatives and
generalized gradients in order to verify stability conditions. This section presents all necessary
backgrounds for the corresponding non-smooth analysis.

5.1. Derivative numbers and monotonicity

Let Z be one of the following intervals: [a, b], (a.,b), [a, b) or (a, b], where a,b e R,a<b.
The function ¢ : R— R is called decreasing on Z iff

Vi, el : nh<th = (p([1)2§0(12).
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Let KK be a set of all sequences of real numbers converging to zero, i.e.
{hy}e K <= h,—0, h,#0.
Let a real-valued function ¢ : R— R be defined on Z.
Definition 17 (Natanson [46, p. 207]). A number

Dyyp(t) = lim LUT ) =00

n——+00 hn ’

{h,yeK:t+h,eT

is called derivative number of the function ¢(r) at a point ¢ € Z, if finite or infinite limit exists.
The set of all derivative numbers of the function ¢(z) at a point t € Z is called contingent
derivative:

Dxp()= U {(Dpye()} =R.
{ha} € K

A contingent derivative of a vector-valued function ¢ : R—R" can be defined in the same
way. If a function ¢(¢) is differentiable at a point r € Z then Dyp(t) = {¢(1)}.

Lemma 2 (Natanson [46, p. 208]). If a function ¢ : R— R is defined on T then

(1) the set Dxp(t) <R is nonempty for any t € T;
(2) for any teT and for any sequence {h,} €WK :t+ {h,} €T there exists a subsequence
{hw} S{h,} such that finite or infinite derivative number Dy, ,1¢(t) exists.

Remark, Lemma 2 remains true for a vector-valued function ¢ : R— R".

Inequalities y<0, y <0, y>0, y> 0 for y e R" are understood in a componentwise sense. If
for Yy € Dk(t) we have y <0 then we write D @(t) <0. Other ordering relations <, >, > for
contingent derivatives are interpreted analogously.

The contingent derivative also helps us to prove monotonicity of a non-differentiable function.

Lemma 3 (Natanson [46], p. 266). If a function ¢ : R— R is defined on T and the inequality
Dy (1) <0 holds for all t € I, then ¢(t) is decreasing function on Z and differentiable almost
everywhere on I.

Lemma 3 requires neither the continuity of the function ¢(t) nor the finiteness of its derivative
numbers. It gives a background for the discontinuous Lyapunov function method.

Example 9. The function ¢(7) = —r—sign,[7] has a negative contingent derivative for all € R
and for any ¢ € [— 1, 1], where the function sign, is defined by Eq. (1). Indeed, Dy (1) = { — 1}
for t #0, Dxp(0)={—o0} if e (—1,1) and Dp(0)={—o00, —1}ifae{—1,1}.

The next lemma simplifies the monotonicity analysis of nonnegative functions.

Lemma 4. If

(1) the function ¢ : R— R is nonnegative on Z;
(2) the inequality Dq(t) <0 holds for t € I : ¢(t) # 0;
(3) the function ¢(t) is continuous at any t €L : ¢(t) =0;
then @(t) is decreasing function on Z and differentiable almost everywhere on T.
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Proof. Suppose the contrary: 31,1, € Z : t; <t and 0 < (1) < ().

If ¢(ty) # 0 for all ¢ € [t1,1,] then Lemma 3 implies that the function ¢(¢) is decreasing on
[t1,12] and (1) = @(12).

If there exists ¢ € [t;,12] such that ¢(tp) =0 and ¢(f)>0 for all € (ty, ;] then Lemma 3
guarantees that the function ¢(7) is decreasing on (f, #;]. Taking into account the condition (3)
we obtain the contradiction ¢(t) < ¢(t)) =0.

Finally, let there exists a point * € (11,1,] such that ¢(*)>0 and any neighborhood of the
point r* contains a point o € [t;,1*] : @(tg) =0. In this case, let us select the sequence
h, = t, —t* <0 such that ¢(z,) =0 and t, - * as n— oo. For this sequence we obviously have
o(t* + hy) — (%) i —o(t*)
— = lim ———= =

hy, n— o0 n

Dypyp(t1) = lim + oo0.

This contradicts to the condition (2). O

Absolutely continuous functions are differentiable almost everywhere. Monotonicity
conditions for them are less restrictive.

Lemma S (Szarski [47, p. 13]). If a function ¢ : R— R defined on 1 is absolutely continuous
and ¢(t) <0 almost everywhere on T then ¢(t) is decreasing function on T.

Lemma below shows relations between solutions of a differential inclusion (27) and its
contingent derivatives.

Lemma 6 (Filippov [7, p. 70]). Let a set-valued function F : R"™' 2% be defined, upper-
semicontinuous on a closed nonempty set 2 € R and the set F(t,x) be nonempty, compact and
convex for all (t,x) € Q.

Let an absolutely continuous function x : R—R" be defined on T and (t,x(t)) e Q if te I.
Then

(1) € F(t,x(1)) } Dyx(t) S F(t, x(1))

almost everywhere on T everywhere on T.

5.2. Dini derivatives and comparison systems

The generalized derivatives presented above are closely related with well-known Dini
derivatives (see, for example, [47]).

® Right-hand upper Dini derivative:

t+h)—
o0t h

® Right-hand lower Dini derivative:

D, (t) = lim infw.
h—0*

® Left-hand upper Dini derivative:

D~ o(t) = lim Supw_
h—0" h
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® Left-hand lower Dini derivative:

ffp(t + h)—fp(t).

D@0 =1im in h

Obviously, D, () < D% e(t) and D _@(t) < D~ ¢(t). Moreover, definitions of lim sup and
lim inf directly imply that all Dini derivatives belong to the set D ¢(f) and
D™ (1) <0,
<
ORI Dt op(t) <0.

D _ (1) >0,
Do) 20 = {D+(Z)(t) > 0.

Therefore, all further results for contingent derivative can be rewritten in terms of Dini
derivatives.

Theorem 5 (Denjoy-Young—Saks Theorem, Bruckner [48, p. 65]). If ¢ : R—> R is a function
defined on an interval I, then for almost all t € T Dini derivatives of ¢(t) satisfy one of the
following four conditions:

® (1) has a finite derivative;

® DT p(t) =D _ (1) is finite and D~ p(t) = + 0o, D p(t) = —o0;
® D~ ¢(t) =D, (1) is finite and DT p(t) = + 00, D_@(t) = —o0;
® D~ p(t)=D"p(t)= + 00, D_¢(t) = D, ¢(t) = — 0.

This theorem has the following simple corollary, which is important for some further
considerations.

Corollary 1. If ¢ : R >R is a function defined on I, then the equality Dykp(t) = {— o0}
(Dko(t) = {400}) may hold only on a set AST of measure zero.

Consider the system
y=gty), @LY)eR’, g: R >R, (37

where a function g(f,y) is continuous and defined on a set G=(a,b) x (y;,y),
a,b,y;,y, € R:a<b,y, <y,.In this case the system (37) has the so-called right-hand maximum
solutions for any initial condition y(#p) = yy, (t0,yy) € G (see [47, Remark 9.1, p. 25]).

Definition 18. A solution y*(7,f0,y,) of the system (37) with initial conditions
Y¥(t0) = Yo, (t0, o) € G is said to be right-hand maximum if any other solution y(, to, y,) of the
system (37) with the same initial condition satisfies the inequality

y(t’ tOsy()) < y*(t’ t()?yO)

for all r € Z, where 7 is a time interval on which all solutions exist.

Now we can formulate the following comparison theorem.
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Theorem 6 (Szarski [47, p. 25]). Let

(1) the right-hand side of Eq. (37) be continuous in a region G;

(2) y*(t,t0,y0) be the right-hand maximum solution of Eq. (37) with the initial condition
¥(to) = o, (t0,Y0) € G, which is defined on [ty,ty + a), a € Ry;

(3) a function V : R—> R be defined and continuous on [ty,to + f), pe Ry, (t,V(t)) € G for
t € [to, o + p) and
then V(o) <yo, DV(1) <g(t, V(1) for 1 € (10,10 + ),

V(t) <y*(t,to,y,) for t € [to,to + min{a, B}).

Theorem 6 remains true if Dini derivative DV is replaced with some other derivative D, D™,
D_ or Dk (see [47, Remark 2.2, p. 11]).

5.3. Generalized directional derivatives of continuous and discontinuous functions

Stability analysis based on Lyapunov functions requires calculation of derivatives of positive
definite functions along trajectories of a dynamic system. If Lyapunov function is non-
differentiable, a concept of generalized directional derivatives (see, for example, [28,49,50]) can
be used for this analysis. This survey introduces generalized directional derivatives by analogy
with contingent derivatives for scalar functions.

Let M(d) be a set of all sequences of real vectors converging to d € R", i.e.

mteMd) < v,—»d, v,eR"

Let a function V : R" — R be defined on an open nonempty set Q< R" and d € R".

Definition 19. A number

- Vx+ hyve) = V()
D vV, s = 1 4
o)) VO, d) = lim I

{h,} e K, {v,} e M(d) : x + h,v, € 2

is called directional derivative number of the function V(x) at the point x € £ on the direction
d € R", if finite or infinite limit exists.

The set of all directional derivative numbers of the function V(x) at the point x € 2 on the
direction d € R" is called directional contingent derivative:

Dy iy V(x) = U {Diny, 1 V(x, d)}.
) € .7} € M(@)

Similar to Lemma 2 it can be shown that if x € Q then the set Dy ji(4) V(x) is nonempty for any
function V defined on an open nonempty set Q< R" and any d € R". A chain rule for the
introduced contingent derivative is described by the following lemma.

Lemma 7. Let a function V : R" - R be defined on an open nonempty set Q< R" and a function
x : R—R" be defined on I, such that x(t) € Q if t € T and the contingent derivative Dy x(t) = R"
is bounded for all te T.
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Then the inclusion

DxVx()s U Drm@V®)
d & Dyx(t)

holds for all te T.
Proof. Since x(t) € Q2 for t € Z then Lemma 2 implies that Dy V(x(¢)) is nonempty for any r € Z.
Let Dy, V(x(1)) € D V(x(1)) be an arbitrary derivative number, i.e. by Definition 17 the finite or
infinite limit
_ V(x(t + hy)) = V(x(D))
lim

n—00 h, ’

{hyelK:t+h, el

exists.
Consider now the sequence:
x(t + hn) _x(t)
V= ———=.
hn
Lemma 2 and inequality |Dkx(f)]< + oo imply that there exist finite d € Dyx(f) and a

subsequence {/,/} of the sequence {A,} such that v,, —d. Hence,
v hy)) =V 1% hy))—V

D{hn}V(x([)) = lim (x(t + n)) (x(t)) — lim (x(t"‘ n )) (X(t))

n

—00 ]’ln n'—00 hn’

1% By vy)—V
— m () + hvi) = V() Dy V). o

n' — oo l’ln/

The proven lemma together with Lemmas 6 and 4 implies the following corollary, which is
useful for a non-smooth Lyapunov analysis.

Corollary 2. Let a set-valued function F : R"™ - 2% be defined and upper-semicontinuous on
T x Q and the set F(t,x) be nonempty, compact and convex for any (t,x) € L x £, where Q< R"
is an open nonempty set.

Let x(t,ty,x0) be an arbitrary solution of Cauchy problem (27), (31) defined on [ty,ty + @),
where tg € L,xy € 2 and a € R,. Let a function V : R" > R be nonnegative on Q.

If the inequality Dp oV (x) <0 holds for every te1 and every xe Q: V(x)#0 then the
Sfunction of time V(x(t,ty,xy)) is decreasing on [ty, ty + a), where

DF(f’x) V(x) = U DK,M((J) V(x) (38)
d € F(t,x)

5.4. Clarke's gradient of Lipschitz continuous functions

Let a function V : R" >R be defined and Lipschitz continuous on an open nonempty set.
Then, by Rademacher theorem [51], its gradient exists almost everywhere on £ and for each
x € Q the following set can be constructed:

VeV(x)=co U { lim VV(xk)}, (39)
{0} € M(x):3VV(x) LKk X

which is called Clarke's generalized gradient of the function V(x) at the point x € Q2. The set

V¢ V(x) is nonempty, convex and compact for any x € 2 and the set-valued mapping VV :

R* 2% is upper-semicontinuous on £ (see [50, Proposition 2.6.2, p. 70]).
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The formula (39) gives a procedure for calculation of the generalized gradient of a function.
The next lemma presents a chain rule for Clarke’s generalized gradient.

Lemma 8 (Moreau and Valadier [52, Theorem 2, p. 336]). Let a Lipschitz continuous function
V i R" > R be defined in an open nonempty set Q< R" and an absolutely continuous function
x: R—>R" be defined on I such that x(t) € Q for every t€ L.

Then there exists a function p:R—R" defined on T such that p(t) e VcV(x(t)) and
V(x(1)) = pT (1)x(t) almost everywhere on T.

Lemmas 8 and 5 imply the following corollary.

Corollary 3. Let a set-valued function F : R - 2% be defined and upper-semicontinuous on
T x Q and a set F(t,x) be nonempty, compact and convex for any (t,x) € I x £, where Q< R"
is an open nonempty set. Let x(t,ty,xo) be an arbitrary solution of Cauchy problem (27), (31)
defined on [to, to + ), where to € I,x9 € 2 and a € Ry. Let a function V : R" - R be defined
and Lipschitz continuous on €.

If the inequality DE(I,X)V(x) <0 holds almost everywhere on I for every x € Q then the
Sfunction of time V(x(t,ty,x0)) is decreasing on [to, ty + a), where

D, ,Vvw= U U {'d (40)

de F(tx)p e VeV(x)

If the function V : R" - R is continuously differentiable then the usual total derivative

View®= U (V'V(a) (41)
d € F(t,x)
can be used for monotonicity analysis instead of Clarke’s or contingent derivative. In this case we
have Dy V(x) = D, V(X) = V i (%)

6. Lyapunov function method and convergence rate

Lyapunov function method is a very effective tool for analysis and design of both linear and
nonlinear control systems [19]. Initially, the method was presented for “unrated” (Lyapunov and
asymptotic) stability analysis [17]. A development of control theory had required to study a
convergence rate together with a stability properties of a control system. This section observes
the most important achievements of the Lyapunov function method related to a convergence rate
estimation of sliding mode systems.

6.1. Analysis of Lyapunov, asymptotic and exponential stability

The continuous function W : R" — R defined on R” is said to be positive definite ifft W(0) =0
and W(x)>0 for x € R"\{0}.

Definition 20. A function V : R" >R is said to be proper on an open nonempty set Q< R" :
0 € int(R2) iff

(1) it is defined on 2 and continuous at the origin;
(2) there exists a continuous positive definite function V : R" — R such that

V(x)<V(x) forxe.
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A positive definite function W : R" >R is called radially unbounded if W(x)— + oo for
lxIl - 4 oo.

Definition 21. A function V : R" — R is said to be globally proper iff it is proper on R" and the
positive definite function V : R" — R is radially unbounded.

If V is continuous on £2, then V (x) = V(x) for x € £2 and Definition 21 corresponds to the usual
notion of proper positive definite function (see, for example, [44]).

For a given number r € R and a given positive definite function W : R" — R defined on (2 let
us introduce the set

HW,r)={xeQ: Wk)<r}

which is called the level set of the function W.
Theorems on Lyapunov and asymptotic stability given below are obtained by a combination of
Zubov's theorems (see, for example, [40, pp. 566-568]) with Corollary 2.

Theorem 7. Let a function V : R" - R be proper on an open nonempty set Q<R" : 0 € int(£2)
and

DrinV(x) <0 for teR and x € Q\{0}. 42)
Then the origin of the system (27) is Lyapunov stable.

Proof. Since V(x) is proper, then there exists continuous positive definite function V(x) such that
V(x) < V(x) for all xe Q.

Let h=sup, ¢ g, 5ol and Me) =infy ey = £V (x)>0, where €€ (0, h].

The function V(x) is continuous at the origin, so 36 € (0, ¢) : V(x) <A(¢) if x € B(5). Moreover,
Bo)<U(e) =1(V,A(¢)) N B(e).

Let #p € R and x € U(e) (in partial case xy € 3(5)). The system (27) satisfies Theorem 3 and it
has solutions, which can be continued up to the boundary of £2. Consider an arbitrary solution
x(t,19,x0) of Eq. (27). The inequality (42) and Corollary 2 imply that the function of time
V(x(t, 19, x0)) is decreasing for t>t, i.e. V(x(¢, tg, X)) < V(xp) <A(€).

In this case, x(¢,19,x) € B(e) for t>t,. Indeed, otherwise there exists r*>t:
x(r*, 1, x0) Il = &, s0 V(x(*, 10, x0)) = V (x(t*, 10, X0)) = A(&).

The proven property also implies that even if a solution of Eq. (27) with 7y € R and xy € U(¢)
was initially defined on finite interval [to, ) + a),a € R, it can be prolonged for all >17,. O

Asymptotic stability requires analysis of an attraction set. Lyapunov function approach may
provide an estimate of this set.

Theorem 8. Let a function V : R" — R be proper on an open nonempty set Q< R" : 0 € int(£2),
a function W : R"— R be a continuous positive definite and
DryoV(x) < —W(x) for teR and x € \{0}.
Then the origin of the system (27) is asymptotically stable with an attraction domain
U=1(v,Ah)) N Bh), 43)
where A(h) = infy e gr:c) =1V (x) and h < sup, c g 5ol

If V is globally proper and £ = R" then the origin of the system (27) is globally asymptotically
stable U = R").
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Proof. Theorem 7 implies that an arbitrary solution x(z, 7o, xo) of Eq. (27) with 7y € R and
xo €U(e) is defined for all t>fy and x(t,19,x0) € B(¢), where e€(0,h] and U(e)=
I1(V,A(€)) N B(e). Moreover, the function of time V(r) = V(x(z, o, x9)) is decreasing for all
t>1p. So, in order to prove asymptotic stability we just need to show that y=0, where
p=inf;>, V(7).

Suppose a contradiction, i.e. u>0.

The function V(x) is continuous at the origin, so there exists r>0 such that V(x)<u for all
x € B(r). Since u>0 then x(t, ty, xo)¢ B(r) for all 1> 1.

Introduce the following compact set @ = {x € R" : r < llxIl < &}. Since W(x) is continuous and
positive definite, then we have Wy = inf, c g W(x) > 0.

The inequality D,V (x) < — W(x) and the exclusion x(z, 1, xo)¢ B(r) imply Dy V()< — W
for all > 1.

Since V(r) is decreasing then it is differentiable almost everywhere on [fo, 7o + 4], where
A =V(x0)/Wy. Hence (see, for example, [53, p. 111]),

fo+A
V(tg +A4)—V(tp) < / V(z)dr < —Wod = —V(1p),
to
ie. V(tog+A4) <0<pu. This contradicts our supposition. So, V(x(t,?,x9))—0 or equivalently
x(t, tg, xo) = 0 if t— + o0.
If the function V is globally proper then global asymptotic attractiveness follows from
lim,_, { ,oA(£) = + oo due to radial unboundedness of V. ©

Exponential convergence asks for additional properties of Lyapunov functions.

Theorem 9. Let conditions of Theorem 8 hold, the function V(x) is continuous on an open
nonempty set Q C R" : 0 € int(2) and there exist a,ry,r, € R,:

rllxl <Vx) <rlxll and W(x) > aV(x)

then the origin of the system (27) is exponentially stable with a rate a € R,.

This theorem can be proven by analogy to a classical theorem on exponential stability (see, for
example, [19, p. 171]) using Lemma 6.

The presented theorems show that discontinuous and non-Lipschitzian Lyapunov functions
can also be used for stability analysis. If V(x) is Lipschitz continuous then all theorems on
stability can be reformulated using Clarke's gradient.

The following important theorem declares that a smooth Lyapunov function always exists for
a time-invariant asymptotically stable differential inclusion (27).

Theorem 10 (Clarke et al. [44, Theorem 1.2]). Let a set-valued function F : R" — R" be defined
and upper-semicontinuous in R". Let F(x) be nonempty, compact and convex for any x € R". If
the origin of the system

x e F(x)

is globally uniformly asymptotically stable iff there exist a globally proper function
V() € C*(R") and a function W(-) € C*°(R") : W(x)>0 for x # 0 such that

max VI V(x)y< —W(x), xeR"\{0}.
Ve F(x)
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However, the practice shows that designing of a Lyapunov function for nonlinear and/or
discontinuous system is a nontrivial problem even for a two dimensional case. Frequently, in
order to analyze stability of a sliding mode control system it is simpler to design a non-smooth
Lyapunov function (see, for example, [3,20,24]).

6.2. Lyapunov analysis of finite-time stability

Analysis of finite-time stability using the Lyapunov function method allows us to estimate a
settling time a priori. The proof of the next theorem follows the ideas introduced in [13,54].

Theorem 11. Let a function V : R" — R be proper on an open nonempty set Q<= R" : 0 € int(£2)
and

DryoV(x)< —1 for teR and x € 2\{0}. (44)

Then the origin of the system (27) is finite-time stable with an attraction domain U defined by
Eq. (43) and

T(xo) < V(xp) for xoeld, (45)

where T(-) is a settling-time function.
If a function V is globally proper on Q = R" then the inequality (44) implies global finite-time
stability of the system (27).

Proof. Theorem 8 implies that the origin of the system (27) is asymptotically stable with the
attraction domain /. This means that any solution x(z, fy, x), Xo € U, of the system (27) exists for
Vit>ty. Therefore, we need to show finite-time attractivity. Consider the interval [to,#],#; =
to + V(xp)-
Suppose a contradiction: x(z, fo, xo) # 0 for V1 € [fo, 1;]. Denote V(1) = V(x(t, 19, xo)). Lemma 7
implies
Dy V(t) < DpgyV(x(t, to,x0)) < — 1,  Vte[to, 1]

Hence, by Lemma 3 the function V(¢) is decreasing on [fo,7;] and differentiable almost
everywhere on [fg, #;]. Then

- N nd .

V-V < [ 570 dr< —(0-1)= -V
to

(see, for example, [53, p. 111]), ie. V(t;)=V(x(t;,1,x0)) < V(to)— V(xo) = V(x(to,

t0,X0)) — V(x0) = 0. Since V(x) is positive definite then V(x(t;, 2, x0)) <0 = V(x(t1, 20, %0)) =

0 < x(t1,19,x0) =0, i.e. the origin of the system (27) is finite-time attractive with the settling

time estimate (45). O

Evidently, if under conditions of Theorem 11 there exists a continuous function V:R'S>R
such that V(x) < V(x) for VxeQ then the origin of the system (27) is uniformly finite-time
stable.

Example 10. Consider again the uniformly finite-time stable system

i= A1 -x), xeR,
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and show that its settling-time function

1+ |x|1/2>

1_|x|1/2

T(x)=1In (

satisfies all conditions of Theorem 11. Indeed, it is continuous and proper on 3(1). Finally, it is
differentiable for x € B(1)\{0} and

oT 1

T(x)zaxzme—l for x #0.

The last example shows that a settling-time function of finite-time stable system is a Lyapunov
function in a generalized sense. Theorem 11 operates with a very large class Lyapunov functions.
However, its conditions are still rather conservative. For example, the settling-time function from
Example 6 cannot be considered as a Lyapunov function candidate, since it is discontinuous at
the origin, so it is not proper. However, even proper settling-time functions of sliding mode
systems may not satisfy the condition (44).

Example 11. Consider the twisting second order sliding mode system [55]

X1 y
F — _ _ 4
()kz) € Flx1,x2) ( — 2sign[x;] — sign[x;] )’ (46)
which is uniformly finite-time stable with the settling-time function [54]:
X2 X2 |sign[x; x;] 42
Th(x) = x1| + 2 + ; , = —F
mx)=p \/' 152G signim) T2+ signbonl” P 3-3

The function 7, is globally proper, Lipschitz continuous outside the origin and continuously
differentiable for xy # 0

0Ttw aTM

D Th(X1,x) = —x
Foa ) T no(X1,X2) o 2 o

(—2sign[x;]—sign[x;]) = —1 for x;x; # 0.

However, Dr, )T a(x1,x2) N Ry # @ for x; =0. So, Ty(x,y) does not satisfy Eq. (44).
Applying Clarke’s gradient does not help us to avoid this problem.

In the same time, if x(z,%yp,xp) is an arbitrary solution of the system (46), then
Dy T4, (x(t, 19, x0)) < — 1 for Yi>1q : x(t, ty,x0) # 0 (see [54] for the details).

Remark, if p>4+/2 /3— V/3) then the function T}, (x) satisfies the conditions of Theorem 11
and Dp(x, ) Tr(x) = { — 00} for x; =0.

Sometimes the less restrictive finite-time stability condition
Dy V(x(t, t9,x0)) < — 1, t>1tg : x(2,1t9,x0) #O0,
x(t, to, x0) € P(to,x0), toeR,xoel 47)
has to be considered instead of Eq. (44). Examples of applying the condition (47) for analysis of

second order sliding mode systems can be found in [54,22]. They demonstrate that frequently we
do not need to know a solution x(t,ty,xo) of Eq. (27) in order to check the condition (47).
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Example 12. Consider the system

_ (2—sign[x1x;])

X, Xx= (xl,xz)T e R%.
Il

X =
It is uniformly finite-time stable. Its settling time function is discontinuous

lxll for xjx, >0
T(x)= Lixll for xx, <0

However, the function 7(x) is the generalized Lyapunov function, since it is globally proper and
Dy T(x(t,t9,x0)) = — 1 for t>1y : x(t, tg, x0) # 0,
where x(t, 19, x0) € ®(t9,x0), 1o € R and xp € R%.
Theorem 12 (Bhat and Bernstein [ 14, Theorem 4.2]). Let a continuous function V : R" - R be
proper on an open nonempty set Q< R" : 0 € int(2) and
DruoV(x) < —rVP(x), t>t), xeL,
where r € Ry, 0<p < 1. Then the origin of the system (27) is uniformly finite-time stable with an

attraction domain U defined by Eq. (43) and the settling time function T(-) is estimated as
Sfollows:

T(xp) < w for xo eU.
r(1—p)

Proof. Let x(z, 1, X0), Xo € U, be any solution of Eq. (27) and V(1) = V(x(t, 19, x0)). Since
Dy V(1) < Dy V(x(t, to, X)) < — V' (1)

(see, Lemma 7) then Lemma 6 implies that V(r) <y(f),t>ty, where y(f) is a right-hand
maximum solution of the following Cauchy problem:

y(O)=—nr@), y(to) =V(xo),
ie.
17
(V(xo)' =7 —r(1 —ﬂ)(f—fo))l/(l_ﬂ) forre {fo,fo + ‘i(lip—(;(ﬂ’
V!~ (x)
r(l1—=p)’

This implies V(x(t, ty,x9)) =0 for V>V =?(xp)/r(1—p). O

)=
0 for t>

A global finite-time stability can be analyzed using globally proper Lyapunov functions in
Theorems 11 and 12.

Example 13. Consider the so-called super-twisting system [55]

X —axd!/2 4y
(y‘) =Hen= ( —ﬁ~@[x]> @

where x e R,y e R,a>0, #>0. Recall, X! = |x|“sign[x], u € Ry.
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The function [24]
V(x,y) =B + &2 /2)|x| + y* —ayx/2

is the generalized Lyapunov function for the system (48). Indeed, this function is globally proper
and continuous (but not Lipschitz continuous on the line x=0).
For x # 0 this function is differentiable and

DVF(x,y)(xay) < -7 V(x’y)

where y = y(a, f)>0 is a positive number (see [24] for details).
For x=0 and y # 0 we need to calculate a generalized directional derivative. So, consider the
limit
V(hauy,, y + hyiy) = V(0, y)
hy

where {h,} € KK, u, = (u, u-);)T, {u,} e M(d),d € F(0,y). In this case, u;—y and u)—gq,
q € [—p, p]. Hence,

D)y V(0,y) = lim

Q2 + @ /2) byl + & + hug)* — a2 + hug)—y?
hn '

Dipy. 0y V(0,y) = lim

Obviously, Dy, }.u,1V(0,y) = —oc. Therefore,
DF(X,))V(O’y):{_OO}S -7V V(Osy)) fory?éo

and the super-twisting system is uniformly finite-time stable with the settling time estimate
T(x,y) <2/ V(x,)/7.

By Corollary 1, the set of time instants >ty : D V(x(¢), y(t)) = { — oo} may have only the
measure zero. This means that the line x=0 for y # 0 cannot be sliding set of the system (48).
The sliding mode may appear only at the origin.

6.3. Fixed-time stability analysis

Locally fixed-time stability property is very close to finite-time stability, so it can be
established using Theorem 11 just including additional condition: V(x) < Ty« for Vx € 2, where
Tmax € Ry. An alternative Lyapunov characterization of fixed-time stability can be obtained
using the ideas introduced in the proof of Corollary 2.24 from [31].

Theorem 13 (Polyakov [30, p. 2106]). Let a continuous function V : R" — R be proper on an
open connected set £ : 0 € int(Q). If for some numbers p e (0,1),ve Ry, r, e Ry, r, e Ry the
following inequality

—r,VITHx) forxeQ: V() <I,

1>t Q 4
—rn VT () forxeQ:V(x)>1, 0, X €25 (49)

DF(t,x) V(X) < {

holds, then the origin of the system (27) is fixed-time stable with the attraction domain U defined
by Eq. (43) and the maximum settling time is estimated by
1 1

T(x) < Toaxy < — 4+ —. (50)
ur, ury
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If Q=R" and a function V is radially unbounded then the origin of the system (27) is globally
fixed-time stable.

Proof. Theorem 8 implies that the origin of the system (27) is asymptotically stable with the
attraction domain ¢{. This means that any solution x(t, 7y, Xo), Xo € U, of the system (27) exists for
Vit>ty. We just need to prove that the estimate (49) implies fixed-time attractivity.

Indeed, for any trajectory x(z, ¢y, xo) of the system (6) with V(xp) > 1, there exists a time instant
Ty =Ti(xo) < 1/vr, : V(x(T1,19,x0)) = 1. On the other hand, for any trajectory x(¢,1;,x;) with
V(x1) < 1, there exists a time instant 75 = T (x) < 1/pur, : V(x(t,11,x1)) >0 for 1> T,. These
facts can be easily proven analogously to Theorem 12. O

This result also can be used for fixed-time stability analysis of high-order sliding mode control
systems.

Example 14 (Polyakov [30, p. 2108]). Consider the sliding mode control system

=y,
y=u+d(@),
3p,x%
= _wsign[s]_ (azs +ﬁ253)[1/2],

2

where xe R,y e R, |d(t)|<C, ai,a,p,0,,C € Ry, y>2C and the switching surface s=0 is
defined by

s=y+ 0™ +ax+ ),
The original discontinuous systems correspond to the following extended differential inclusion:
=y,

. {_al + 3B +y

2 } : @[sﬁ{ — (25 + fos?)P2 }H— C.CJ.

Consider the function V(s) = |s| and calculate its generalized derivative along trajectories of the
last system

DpV(s) < —(aaV(s) + B,V (s)'/? for s #0

(see [30] for the details). This implies that the sliding surface s=0 is fixed-time attractive with
the estimate of a reaching time:

2 2
Ty< ——+—=.
Vo /B,

The sliding motion equation for s=0 has the form

(/21
X=— (%x—l—%f) .
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This system is fixed-time stable and a global estimate of the settling-time function T'(x, y) for the
original system is

272 242 2 2
STt ==+
=Va B Ja b

T(x’ y) S Tmax

7. Conclusions

The paper surveys mathematical tools required for stability analysis of sliding mode systems.
It discusses definitions of solutions for systems with discontinuous right-hand sides, which
effectively describe sliding mode systems. It observes an evolution of stability notions,
convergence rate properties and underlines differences between finite-time and fixed-time stable
systems in local and global cases. The paper considers elements of the theory of generalized
derivatives and presents a generalized Lyapunov function method for asymptotic, exponential,
finite-time and fixed-time stability analysis of discontinuous systems. Theorems on finite-time
and fixed-time stability provide rigorous mathematical justifications of formal applying non-
Lipschitz Lyapunov functions presented in [23-25] for stability analysis of second order sliding
mode systems.

It is worth to stress that the presented tutorial summarize methods required for stability
analysis of the so-called “ideal” sliding modes. The practical realization of sliding mode control
requires extended analysis, which takes into account sampling, hysteresis and delay effects,
measurement errors, discretization, etc. Robustness analysis of “real” sliding modes goes out of
the scope of this paper. Practical stability analysis of sliding mode systems based on two
Lyapunov functions was presented in [56]. Stability of the real coordinates in the sliding mode
was studied in [57]. More general approach to robustness analysis of “real” sliding modes based
on ISS theory of homogeneous systems can be found in [58].
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