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Abstract

The paper surveys mathematical tools required for stability and convergence analysis of modern sliding
mode control systems. Elements of Filippov theory of differential equations with discontinuous right-hand
sides and its recent extensions are discussed. Stability notions (from Lyapunov stability (1982) to fixed-time
stability (2012)) are observed. Concepts of generalized derivatives and non-smooth Lyapunov functions are
considered. The generalized Lyapunov theorems for stability analysis and convergence time estimation are
presented and supported by examples from sliding mode control theory.
& 2014 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

During the whole history of control theory, a special interest of researchers was focused on systems
with relay and discontinuous (switching) control elements [1–4]. Relay and variable structure control
systems have found applications in many engineering areas. They are simple, effective, cheap and
sometimes they have better dynamics than linear systems [2]. In practice both input and output of a
system may be of a relay type. For example, automobile engine control systems sometimes use λ-sensor
with almost relay output characteristics, i.e. only the sign of a controllable output can be measured [5].
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In the same time, terristors can be considered as relay “actuators” for some power electronic
systems [6].
Mathematical backgrounds for a rigorous study of variable structure control systems were

presented in the beginning of 1960s by the celebrated Filippov theory of differential equations
with discontinuous right-hand sides [7]. Following this theory, discontinuous differential
equations have to be extended to differential inclusions. This extension helps us to describe,
correctly from a mathematical point of view, such a phenomenon as sliding mode [3,8,6]. In spite
of this, Filippov theory was severely criticized by many authors [9,10,3], since it does not
describe adequately some discontinuous and relay models. That is why, extensions and
specifications of this theory appear rather frequently [10,11]. Recently, in [12] an extension of
Filippov theory was presented in order to study Input-to-State Stability (ISS) and some other
robustness properties of discontinuous models.
Analysis of sliding mode systems is usually related to a specific property, which is called

finite-time stability [13,3,14–16]. Indeed, the simplest example of a finite-time stable system is
the relay sliding mode system: _x ¼ �sign½x�; xAR; xð0Þ ¼ x0. Any solution of this system
reaches the origin in a finite time Tðx0Þ ¼ jx0j and remains there for all later time instants.
Sometimes, this conceptually very simple property is hard to prove theoretically. From a
practical point of view, it is also important to estimate a time of stabilization (settling time). Both
these problems can be tackled by Lyapunov Function Method [17–19]. However, designing a
finite-time Lyapunov function of a rather simple form is a difficult problem for many sliding
mode systems. In particular, appropriate Lyapunov functions for second order sliding mode
systems are non-smooth [20–22] or even non-Lipschitz [23–25]. Some problems of a stability
analysis using generalized Lyapunov functions are studied in [26–29].
One more extension of a conventional stability property is called fixed-time stability [30]. In

addition to finite-time stability it assumes uniform boundedness of a settling time on a set of
admissible initial conditions (attraction domain). This phenomenon was initially discovered in
the context of systems that are homogeneous in the bi-limit [31]. In particular, if an
asymptotically stable system has an asymptotically stable homogeneous approximation at the 0-
limit with negative degree and an asymptotically stable homogeneous approximation at the
þ1�limit with positive degree, then it is fixed-time stable. An important application of this
concept was considered in the paper [32], which designs a uniform (fixed-time) exact
differentiator based on the second order sliding mode technique. Analysis of fixed-time stable
sliding mode system requires applying generalized Lyapunov functions [30,32].
The main goal of this paper is to survey mathematical tools required for stability analysis of

modern sliding mode control systems. The paper is organized as follows. The next section presents
notations, which are used in the paper. Section 3 considers elements of the theory of differential
equations with discontinuous right-hand sides, which are required for a correct description of sliding
modes. Stability notions, which frequently appear in sliding mode control systems, are discussed in
Section 4. Concepts of generalized derivatives are studied in Section 5 in order to present a
generalized Lyapunov function method in Section 6. Finally, some concluding remarks are given.

2. Notations
�
 R is the set of real numbers and R ¼R [ f�1g [ fþ1g, Rþ ¼ fxAR : x40g and
Rþ ¼Rþ [ fþ1g.
�
 I denotes one of the following intervals: ½a; b�, (a,b), ½a; bÞ or ða; b�, where a; bAR; aob.ffiffiffiffiffiffiffiffiffiffip
�
 The inner product of x; yARn is denoted by 〈x; y〉 and JxJ ¼ 〈x; x〉.
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�
 The set consisting of elements x1; x2;…; xn is denoted by fx1; x2;…; xng.

�
 The set of all subsets of a set MDRn is denoted by 2M .

�
 The sign function is defined by

signs½ρ� ¼
1 if ρ40;

�1 if ρo0;

s if ρ¼ 0;

8><
>: ð1Þ

where sAR : �1rsr1. If s¼0 we use the notation sign½ρ�.

�
 The set-valued modification of the sign function is given by

sign½ρ� ¼
f1g if ρ40;

f�1g if ρo0;

½�1; 1� if ρ¼ 0:

8><
>: ð2Þ
�
 x½α� ¼ jxjα sign½x� is a power operation, which preserves the sign of a number xAR.

�
 The geometric sum of two sets is denoted by “ _þ”, i.e.

M1 _þM2 ¼ ⋃
x1AM1;x2 AM2

fx1 þ x2g; ð3Þ

where M1DRn;M2DRn.

�
 The Cartesian product of sets is denoted by � .

�
 The product of a scalar yAR and a set MDRn is denoted by “ � ” :

y �M¼M � y¼ ⋃
xAM

fyxg: ð4Þ
�
 The product of a matrix AARm�n and a set MDRn is also denoted by “ � ”:
A �M¼ ⋃

xAM
fAxg: ð5Þ
�
 ∂Ω is the boundary set of ΩDRn.

�
 BðrÞ ¼ fxARn : JxJorg is an open ball of the radius rARþ with the center at the origin.

Under introduced notations, fyg _þBðɛÞ is an open ball of the radius ɛ40 with the center at
yARn.
�
 intðΩÞ is the interior of a set ΩDRn, i.e. xA intðΩÞ iff (rARþ : fxg þ BðrÞDΩ.

�
 Let k be a given natural number. CkðΩÞ is the set of continuous functions defined on a set

ΩDRn, which are continuously differentiable up to the order k.

�
 If Vð�ÞAC1 then ∇VðxÞ ¼ ð∂V=∂x1;…; ∂V=∂xnÞT . If s : Rn-Rm, sð�Þ ¼ ðs1ð�Þ;…; smð�ÞÞT ,

sið�ÞAC1 then ∇sðxÞ is the matrix Rn�m of the partial derivatives ∂sj=∂xi.

�
 Wn

I is the set of vector-valued, componentwise locally absolutely continuous functions,
which map I to Rn.

3. Discontinuous systems, sliding modes and disturbances

3.1. Systems with discontinuous right-hand sides

The classical theory of differential equations [33] introduces a solution of the ordinary
differential equation (ODE)

_x ¼ f ðt; xÞ; f : R� Rn-Rn; ð6Þ
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as a differentiable function x : R-Rn, which satisfies Eq. (6) on some segment (or interval)
IDR. The modern control theory frequently deals with dynamic systems, which are modeled by
ODE with discontinuous right-hand sides [6,34,35]. The classical definition is not applicable to
such ODE. This section observes definitions of solutions for systems with piecewise continuous
right-hand sides, which are useful for sliding mode control theory.
Recall that a function f : Rnþ1-Rn is piece-wise continuous iff Rnþ1 consists of a finite

number of domains (open connected sets) Gj �Rnþ1; j¼ 1; 2;…;N; Gi \ Gj ¼∅ for ia j and
the boundary set S ¼⋃N

i ¼ 1∂Gj of measure zero such that f ðt; xÞ is continuous in each Gj and for
each ðtn; xnÞA∂Gj there exists a vector f jðtn; xnÞ, possibly depended on j, such that for any
sequence ðtk; xkÞAGj : ðtk; xkÞ-ðtn; xnÞ we have f ðtk; xkÞ-f jðtn; xnÞ. Let functions f j :
Rnþ1-Rn be defined on ∂Gj according to this limiting process, i.e.

f jðt; xÞ ¼ lim
ðtk ;xkÞ-ðt;xÞ

f ðtk ; xkÞ; ðtk; xkÞAGj; ðt; xÞA∂Gj:
3.1.1. Filippov definition
Introduce the following differential inclusion:

_xAK½f �ðt; xÞ; tAR; ð7Þ

K½f �ðt; xÞ ¼
ff ðt; xÞg if ðt; xÞARnþ1\S;

co ⋃
jAN ðt;xÞ

ff jðt; xÞg
 !

if ðt; xÞAS;

8>><
>>: ð8Þ

where coðMÞ is the convex closure of a set M and the set-valued index function N :
Rnþ1-2f1;2;…;Ng defined on S indicates domains Gj, which have a common boundary point
ðt; xÞAS, i.e.

N ðt; xÞ ¼ fjAf1; 2;…;Ng : ðt; xÞA∂Gjg:
For ðt; xÞAS the set K½f �ðt; xÞ is a convex polyhedron.

Definition 1 (Filippov [7, p. 50]). An absolutely continuous function x : I-Rn defined on
some interval or segment I is called a solution of Eq. (6) if it satisfies the differential inclusion
(7) almost everywhere on I .

Consider the simplest case when the function f ðt; xÞ has discontinuities on a smooth surface
S ¼ fxARn : sðxÞ ¼ 0g, which separates Rn on two domains Gþ ¼ fxARn : sðxÞ40g and G� ¼
fxARn : sðxÞo0g.
Let P(x) be the tangential plane to the surface S at a point xAS and

fþðt; xÞ ¼ lim
xi-x;xiAGþ

f ðt; xiÞ and f � ðt; xÞ ¼ lim
xi-x;xiAG� f ðt; xiÞ

For xAS the set K½f �ðt; xÞ defines a segment connecting the vectors fþðt; xÞ and f � ðt; xÞ (see
Fig. 1(a), (b)). If this segment crosses P(x) then the cross point is the end of the velocity vector,
which defines the system motion on the surface S (see Fig. 1(b)). In this case the system (7) has
trajectories, which start to slide on the surface S according to the sliding motion equation

_x ¼ f 0ðt; xÞ; ð9Þ



Fig. 1. Geometrical illustration of Filippov definition. (a) Switching case and (b) sliding mode case.
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where the function

f 0 t; xð Þ ¼ 〈∇sðxÞ; f � ðt; xÞ〉fþðt; xÞ þ 〈∇sðxÞ; fþðt; xÞ〉f � ðt; xÞ
〈∇sðxÞ; fþðt; xÞ� f � ðt; xÞ〉 ð10Þ

is the velocity vector defined by a cross-point of the segment and the plane P(x), i.e. f 0ðt; xÞ ¼
μfþðt; xÞ þ ð1�μÞf � ðt; xÞ with μA ½0; 1� such that 〈∇sðxÞ; μfþðt; xÞ þ ð1�μÞf � ðt; xÞ〉¼ 0.

If ∇sðxÞ μf � ðt; xÞ þ ð1�μÞfþðt; xÞ for every μA ½0; 1� then any trajectory of Eq. (7) comes
through the surface (see Fig. 1(a)) resulting an isolated “switching” in the right-hand side of Eq. (6).

Seemingly, Filippov definition is the most simple and widespread definition of solutions for
ODE with being discontinuous by x right-hand sides. However, this definition was severely
criticized by many authors [9,3,10] since its appearance in 1960s. In fact, it does not cover
correctly many real-life systems, which have discontinuous models. Definitely, contradictions to
reality usually are provoked by model inadequacies, but some problems can be avoided by
modifications of Filippov definition.

Example 1. Consider the discontinuous control system

_x1 ¼ u;

_x2 ¼ ðɛu2 þ ɛ2juj�ɛÞx2; u¼ �sign½x1�;
(

ð11Þ

where x1; x2AR are system states, ɛARþ is some small parameter 0oɛ51, uAR is the relay
control with the sign function defined by Eq. (1).

If we apply Filippov definition only to the first equation of Eq. (11), we obtain the following
sliding motion equation _x1 ¼ 0 for x1 ¼ 0, which implicitly implies u¼0 for x1 ¼ 0. So, the
expectable sliding motion equation for Eq. (11) is

_x1 ¼ 0;

_x2 ¼ �ɛx2;
for x1 ¼ 0:

(
ð12Þ

However, considering Filippov definition for the whole system (11) we derive

fþðx1; x2Þ ¼
�1

ɛ2x2

 !
for x1-þ 0
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f � ðx1; x2Þ ¼
1

ɛ2x2

 !
for x1-�0

and the formula (10) for sðxÞ ¼ x1 gives another sliding motion equation:

_x1
_x2

 !
¼ 〈∇sðxÞ; f � ðt; xÞ〉fþðt; xÞ þ 〈∇sðxÞ; fþðt; xÞ〉f � ðt; xÞ

〈∇sðxÞ; fþðt; xÞ� f � ðt; xÞ〉 ¼
0

ɛ2x2

 !

From the practical point of view the sliding motion equation (12) looks more realistic. Indeed,
in practice we usually do not have ideal relays, so the model of switchings like Eq. (1) is just
a “comfortable” approximation of real “relay” elements, which are continuous functions
(or singular outputs of additional dynamics [36]) probably with hysteresis or delay effects. In this
case, a “real” sliding mode is, in fact, a switching regime of bounded frequency. An average
value of the control input

jujaverage ¼
1

t� t0

Z t

t0

ju τð Þj dτ; t4t0 : x1 t0ð Þ ¼ 0

in the “real” sliding mode is less than 1, particulary jujaverager1�ɛ (see [36] for details). Hence,
ɛjuj2average þ ɛ2jujaverage�ɛr�ɛ2 and the system (11) has asymptotically stable equilibrium point
ðx1; x2Þ ¼ 0AR2, but Filippov definition quite the contrary provides instability of the system.
Such problems with Filippov definition may appear if the control input u is incorporated to the

system (11) in nonlinear way. More detailed study of such discontinuous models is presented in [11].

This example demonstrates two important things:
�
 Filippov definition is not appropriate for some discontinuous models, since it does not
describe a real system motion.
�
 Stability properties of a system with discontinuous right-hand side may depend on a definition
of solutions.

Remark 1 (On Filippov regularization). The regularization of the ODE system with
discontinuous right-hand side can also be done even if the function f ðt; xÞ in Eq. (6) is not
piecewise continuous, but locally measurable. In this case the differential inclusion (7) has the
following right-hand side [7]:

K½f �ðt; xÞ ¼ ⋂
δ40

⋂
μðNÞ ¼ 0

co f ðt; fxg _þBðδÞ\NÞ;

where the intersections are taken over all sets N �Rn of measure zero (μðNÞ ¼ 0) and all δ40,
coðMÞ denotes the convex closure of the set M.
3.1.2. Utkin definition (equivalent control method)
The modification of Filippov definition, which delivers an important impact to the sliding

mode control theory, is called the equivalent control method [3].
Consider the system

_x ¼ f ðt; x; uðt; xÞÞ; tAR; ð13Þ
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where f : R� Rn � Rm-Rn is a continuous vector-valued function and a piecewise continuous
function

u : R� Rn-Rm; uðt; xÞ ¼ ðu1ðt; xÞ; u2ðt; xÞ;…; umðt; xÞÞT

has a sense of a feedback control.

Assumption 1. Each component uiðt; xÞ is discontinuous only on a surface

Si ¼ fðt; xÞARn : siðt; xÞ ¼ 0g;
where functions si : R

nþ1-R are smooth, i.e. siAC1ðRnþ1Þ.

Introduce the following differential inclusion:

_xA f ðt; x;K½u�ðt; xÞÞ; tAR; ð14Þ
where

K½u�ðt; xÞ ¼ ðK½u1�ðt; xÞ;…;K½um�ðt; xÞÞT ;

K ui½ � t; xð Þ ¼
fuiðt; xÞg; siðt; xÞa0;

co lim
ðtj ;xjÞ-ðt;xÞ
siðtj ;xjÞ40

ui tj; xj
� �

; lim
ðtj ;xj Þ-ðt;xÞ
si ðtj ;xjÞo0

ui tj; xj
� �( )

; siðt; xÞ ¼ 0:

8>><
>>:

ð15Þ

The set f ðt; x;K½u1�ðt; xÞ;…;K½um�ðt; xÞÞ is non-convex in general case [11].

Definition 2. An absolutely continuous function x : I-Rn defined on some interval or segment
I is called a solution of Eq. (13) if there exists a measurable function ueq : I-Rm such that
ueqðtÞAK½u�ðt; xðtÞÞ and _xðtÞ ¼ f ðt; xðtÞ; ueqðtÞÞ almost everywhere on I .

The given definition introduces a solution of the differential equation (13), which we call
Utkin solution, since it follows the basic idea of the equivalent control method introduced by
Utkin [3, p. 14] (see also [7, p. 54]).

Obviously, for ðt; xðtÞÞ=2S we have ueqðtÞ ¼ uðt; xðtÞÞ. So, the only question is how to define
ueq(t) on a switching surface. The scheme presented in [3] is based on resolving of the equation
_sðt; xÞ ¼ ∂s=∂t þ ∇TsðxÞf ðt; x; ueqÞ ¼ 0 in algebraic way. The obtained solution ueqðt; xÞ is called
equivalent control [3].

In order to show a difference between Utkin and Filippov definitions we consider the system (13)
with uAR ðm¼ 1Þ and a time-invariant switching surface S ¼ fxARn : sðxÞ ¼ 0g.

Denote

uþðt; xÞ ¼ lim
xj-x;sðxjÞ40

uðt; xjÞ and u� ðt; xÞ ¼ lim
xj-x;sðxjÞo0

uðt; xjÞ;

fþðt; xÞ ¼ f ðt; x; uþðt; xÞÞ and f � ðt; xÞ ¼ f ðt; x; u� ðt; xÞÞ:
The sliding mode existence condition

(μA ½0; 1� : ∇sðxÞ ? μf � ðt; xÞ þ ð1�μÞfþðt; xÞ
is the same for both definitions.

The sliding motion equation obtained by Filippov definition has the form (9) recalled here by

_x ¼ f 0 t; xð Þ;
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f 0 t; xð Þ ¼ 〈∇sðxÞ; f � ðt; xÞ〉fþðt; xÞ þ 〈∇sðxÞ; fþðt; xÞ〉f � ðt; xÞ
〈∇sðxÞ; fþðt; xÞ� f � ðt; xÞ〉 :

The corresponding vector f 0ðt; xÞ is defined by a cross-point of the tangential plane at the point
xAS and a segment connecting the ends of the vectors fþðt; xÞ and f � ðt; xÞ (see Fig. 3(a)).
Utkin definition considers a set K½u�ðt; xÞ, which is the convex closure of a set of limit values

of a discontinuous control function uðt; xÞ. For different u1; u2; u3;…AK½u�ðt; xÞ the vectors
f ðt; x; u1Þ, f ðt; x; u2Þ, f ðt; x; u3Þ;… end on an arc connecting the ends of the vectors fþðt; xÞ and
f � ðt; xÞ (see Fig. 3(b)). In this case the vector f ðt; x; ueqÞ defining the right-hand side of the
sliding motion equation is derived by a cross-point of this arc and a tangential plane at the point
xAS (see Fig. 3(b)), i.e.

_x ¼ f ðt; x; ueqðt; xÞÞ; xAS; ð16Þ
where ueqðt; xÞAK½u�ðt; xÞ : ∇sðxÞ ? f ðt; x; ueqðt; xÞÞ.
Sometimes Utkin definition gives quite strange, from mathematical point of view, results, but

they are very consistent with real-life applications.

Example 2 (Filippov [7]). Consider the system

_x ¼ Axþ bu1 þ cu2; u1 ¼ sign½x1�; u2 ¼ sign½x1�; ð17Þ
where x¼ ðx1; x2;…; xnÞTARn;AARn�n; c; bARn; cab. Filippov definition provides the
inclusion

_xAfAxg _þðbþ cÞ � sign½x1�; ð18Þ
where _þ is the geometric (Minkovski) sum of sets (see Eq. (3)), sign is the set-valued modification of
the sign function (see Eq. (2)) and the product of a vector to a set is defined by Eq. (5).
If the functions u1 and u2 are independent control inputs, then Utkin definition gives

_xAfAxg _þb � sign½x1� _þc � sign½x1�: ð19Þ
The right-hand sides of Eqs. (18) and (19) coincide if the vectors c and b are collinear, otherwise
Filippov and Utkin definitions generate different set-valued mappings.
For example, if x¼ ðx1; x2ÞTAR2, A¼0, b¼ ð�1; 0ÞT and c¼ ð0; �1ÞT , then
(a)
 Filippov definition gives

K½f �ðxÞ ¼ ½�1; 1� � 1

1

� �
for x1 ¼ 0, i.e. K½f �ðxÞ is a segment connecting the points ð�1; �1Þ and ð1; 1Þ (see Fig. 2(a));
the corresponding sliding motion equation is

_x ¼ 0 for x1 ¼ 0;
(b)
 Utkin definition generates the square box, i.e. K½f �ðxÞ ¼ ½�1; 1� � ½�1; 1� for x1 ¼ 0
(see Fig. 2(b)), so sliding motion equation has the form

_x ¼
0

ueqðtÞ

 !
for x1 ¼ 0;

where ueq : R-R is an arbitrary locally measurable function such that jueqðtÞjr1 for
every tAR.



Fig. 2. Example of (a) Filippov0s and (c) Utkin0s sets.
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Control inputs u1 and u2 are independent and relay elements are not identical in practice. They
cannot switch absolutely synchronously. This admits a motion of the system along the switching
line x1 ¼ 0. In this case, Utkin definition is more adequate to reality than Filippov one.

3.1.3. Aizerman–Pyatnickii definition
The Aizerman–Pyatnickii definition covers solutions of both definitions considered above by

means of introduction of the following differential inclusion:

_xAco f ðt; x;K½u�ðt; xÞÞ; tAR; ð20Þ
for the system (13).

Definition 3 (Aizerman–Pyatnickii definition, Aizerman and Pyatnitskii [10] and Filippov
[7, p. 55]). An absolutely continuous function x : I-Rn defined on some interval or segment I
is called a solution of Eq. (6) if it satisfies the differential inclusion (20) almost everywhere on I .

Returning to the example considered above for uAR ðm¼ 1Þ Aizerman–Pyatnickii definition
gives the inclusion

_xAFSMðt; xÞ ¼ coff 0ðt; xÞ; f ðt; x; ueqðt; xÞÞg;
which describes the motion of the discontinuous system (13) in a sliding mode (see Fig. 3(c) with
f αAFSMðt; xÞ).

A criticism of Aizerman–Pyatnickii definition is related to nonuniqueness of solutions even for
simple nonlinear cases. However, if some stability property is proven for Aizerman–Pyatnickii
definition, then the same property holds for both Filippov and Utkin solutions.

The affine control system is the case when all definitions may be equivalent.

Theorem 1 (Zolezzi [37, Theorem 14, p. 44]). Let a right-hand side of the system (6) be affine
with respect to control:

f ðt; xÞ ¼ aðt; xÞ þ bðt; xÞuðt; xÞ;
where a : Rnþ1-Rn is a continuous vector-valued function, b : Rnþ1-Rn�m is a continuous
matrix-valued function and u : Rnþ1-Rm is a piecewise continuous function uðt; xÞ ¼
ðu1ðt; xÞ;…; umðt; xÞÞT , such that ui has a unique time-invariant switching surface siðxÞ ¼
0; siAC1ðRnÞ.

Definitions of Filippov, Utkin and Aizerman-Pyatnitskii are equivalent iff

detð∇TsðxÞbðt; xÞÞa0 if ðt; xÞAS; ð21Þ
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where sðxÞ ¼ ðs1ðxÞ; s2ðxÞ;…; smðxÞÞT , ∇sðxÞARn�m is the matrix of partial derivatives ∂sj=∂xi
and S is a discontinuity set of uðt; xÞ.

The present theorem has the simple geometric interpretation for the single input system. The
affine control system is linear with respect to the control input, which is the only discontinuous
term of the right-hand side of the system (6). In this case all regularization procedures provide the
set-valued extension depicted in Fig. 3(a). The condition (21) excludes non-uniqueness of this
set-valued extension for multi-input case. For example, the system considered in Example 17 is
affine, but it does not satisfy the condition (21).
3.2. System disturbances and extended differential inclusion

Some modifications of presented definitions of solutions are required again if a model of a
dynamic system includes disturbances into considerations. For example, the paper [12] extends
Filippov definition to discontinuous disturbed systems. It demonstrates that the presented
extension is useful for ISS analysis.
The present survey is mostly oriented on sliding mode control systems. The robustness of

sliding mode control systems (at least theoretically) is related to invariance of qualitative
behavior of closed-loop system on matched disturbances with some a priori known maximum
magnitude [3,8,6]. This property usually allows reducing a problem of stability analysis of a
disturbed discontinuous sliding mode control system to a similar problem presented for an
extended differential inclusion. The idea explained in the next example was also used in papers
[15,38].

Example 3. Consider the simplest disturbed sliding mode system

_x ¼ �d1ðtÞsign½x� þ d2ðtÞ; ð22Þ
where xAR, unknown functions di : R-R are bounded by

dmin
i rdiðtÞrdmax

i ; i¼ 1; 2; ð23Þ

and the function sign½x� is defined by Eq. (1).
Fig. 3. The sliding motion for different definitions. (a) Filippov definition, (b) Utkin definition and (c) Aizerman–
Pyatnickii definition.
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Obviously, all solutions of the system (22) belong to a solution set of the following extended
differential inclusion:

_xA�½dmin
1 ; dmax

1 � � sign½x� þ ½dmin
2 ; dmax

2 �: ð24Þ

Stability of the system (24) implies the same property for Eq. (22). In particular, for
dmin
1 4maxfjdmin

2 j; jdmax
2 jg both these systems have asymptotically stable origins.

This example shows that the conventional properties, like asymptotic or finite stability,
discovered for differential inclusions may provide “robust” stability for original discontinuous
differential equations. That is why, in this paper we do not discuss “robust” modifications of
stability notions for differential inclusions.

Models of sliding mode control systems usually have the form

_x ¼ f ðt; x; uðt; xÞ; dðtÞÞ; tAR; ð25Þ

where xARn is the vector of system states, uARm is the vector of control inputs, dARk is the
vector of disturbances, the function f : Rnþmþkþ1-Rn is assumed to be continuous, the control
function u : Rnþ1-Rm is piecewise continuous, the vector-valued function d : R-Rk is
assumed to be locally measurable and bounded as follows:

dmin
i rdiðtÞrdmax

i ; ð26Þ

where dðtÞ ¼ ðd1ðtÞ; d2ðtÞ;…; dkðtÞÞT , tAR.
All further considerations deal with the extended differential inclusion

_xAFðt; xÞ; tAR; ð27Þ

where Fðt; xÞ ¼ coff ðt; x;K½u�ðt; xÞ;DÞg, the set-valued function K½u�ðt; xÞ is defined by Eq. (15)
and

D¼ fðd1; d2;…; dkÞTARk : diA ½dmin
i ; dmax

i �; i¼ 1; 2;…; kg: ð28Þ

The same extended differential inclusion can be used if the vector d (or its part) has a sense of
parametric uncertainties.
3.3. Existence of solutions

Let us recall initially the classical result of Caratheodory about the existence of solutions for
ODEs with right-hand sides, which are discontinuous on time.

Theorem 2 (Coddington and Levinson [33, Theorem 1.1, Chapter 2]). Let the function

g : R� Rn-Rn

ðt; xÞ-gðt; xÞ
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be continuous by x in Ω¼ fx0g þ BðrÞ; rARþ; x0ARn for any fixed tAI ¼ ½t0�a; t0 þ a�;
aARþ; t0AR and it is measurable by t for any fixed xAΩ. If there exists an integrable function
m : R-R such that J f ðt; xÞJrmðtÞ for all ðt; xÞAI �Ω then there exist an absolutely
continuous function x : R-Rn and a number bA ð0; a� such that xðt0Þ ¼ x0 and the equality

_xðtÞ ¼ gðt; xðtÞÞ
holds almost everywhere on ½t0�b; t0 þ b�.

Introduce the following distances:

ρðx;MÞ ¼ inf
yAM

Jx�yJ ; xARn; MDRn;

ρðM1;M2Þ ¼ sup
xAM1

ρðx;M2Þ; M1DRn; M2DRn: ð29Þ

Remark, the distance ρðM1;M2Þ is not symmetric, i.e. ρðM1;M2ÞaρðM2;M1Þ in the general
case.

Definition 4. A set-valued function F : Rnþ1-2R
nþ1

is said to be upper semi-continuous at a
point ðtn; xnÞARnþ1 if ðt; xÞ-ðtn; xnÞ implies

ρðFðt; xÞ;Fðtn; xnÞÞ-0:

For instance, the function sign½x� defined by Eq. (2) is upper semi-continuous.

Theorem 3 (Filippov [7, p. 77]). Let a set-valued function F : G-2R
n

be defined and upper
semi-continuous at each point of the set

G¼ fðt; xÞARnþ1 : jt� t0jra and Jx�x0 Jrbg; ð30Þ
where a; bARþ; t0AR; x0ARn. Let Fðt; xÞ be nonempty, compact and convex for ðt; xÞAG.
If there exists K40 such that ρð0;Fðt; xÞÞoK for ðt; xÞAG then there exists at least one

absolutely continuous function x : R-Rn defined at least on the segment ½t0�α; t0 þ α�,
α¼minfa; b=Kg, such that xðt0Þ ¼ x0 and the inclusion _xðtÞAFðt; xðtÞÞ holds almost everywhere
on ½t0�α; t0 þ α�.

Filippov and Aizerman–Pyatnickii set-valued extensions of the discontinuous ODE (see
formulas (7) and (20)) and the extended differential inclusion (27) satisfy all conditions of
Theorem 3 implying local existence of the corresponding solutions.
The existence analysis of Utkin solutions is more complicated in general case. Since the

function f ðt; x; uÞ is continuous, then for any measurable bounded function u0 : I-Rm the
composition f ðt; x; u0ðtÞÞ satisfies all conditions of Theorem 2 and the equation _x ¼ f ðt; x; u0ðtÞÞ
has an absolutely continuous solution x0ðtÞ, but u0ðtÞ may not belong to the set K½u�ðt; x0ðtÞÞ.
In some cases, the existence of Utkin solution can be proven using the celebrated Filippov0s

lemma.

Lemma 1 (Filippov [39, p. 78]). Let a function f : Rnþmþ1-Rn be continuous and a set-
valued function U : Rnþ1-2R

m
be defined and upper-semicontinuous on an open set I �Ω,

where ΩDRn. Let Uðt; xÞ be nonempty, compact and convex for every ðt; xÞAI �Ω. Let a
function x : R-Rn be absolutely continuous on I , xðtÞAΩ for tAI and _xðtÞA f ðt; xðtÞ;
Uðt; xðtÞÞÞ almost everywhere on I .
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Then there exists a measurable function ueq : R-Rm such that ueqðtÞAUðt; xðtÞÞ and
_xðtÞ ¼ f ðt; xðtÞ; ueqðtÞÞ almost everywhere on I .

If the differential inclusion (14) has a convex right-hand side then Theorem 3 together with
Lemma 1 results local existence of Utkin solutions. If the set-valued function f ðt; x;K½u�ðt; xÞÞ is
non-convex, the existence analysis of Utkin solutions becomes very difficult (see [11] for the
details).

Some additional restrictions to right-hand sides are required for a prolongation of solutions. In
particular, the famous Winter0s theorem (see, for example, [40, p. 515]) about a non-local
existence of solutions of ODE can be expanded to differential inclusions.

Theorem 4 (Gelig et al. [41, p. 169]). Let a set-valued function F : Rnþ1-Rnþ1 be defined
and upper-semicontinuous in Rnþ1. Let Fðt; xÞ be nonempty, compact and convex for any
ðt; xÞARnþ1.

If there exists a real valued function L : Rþ [ f0g-Rþ [ f0g such that

ρ 0;F t; xð Þð ÞrL JxJð Þ and

Z þ1

0

1
LðrÞ dr ¼ þ1;

then for any ðt0; x0ÞARnþ1 the system (27) has a solution xðtÞ : xðt0Þ ¼ x0 defined for all tAR.

Based on Lyapunov function method, the less conservative conditions for prolongation of
solutions are given below.

4. Stability and convergence rate

Consider the differential inclusion (27) for t4t0 with an initial condition

xðt0Þ ¼ x0; ð31Þ
where x0ARn is given.

Cauchy problem (27), (31) obviously may not have a unique solution for a given t0AR and a
given x0ARn. Let us denote the set of all solutions of Cauchy problem (27), (31) by Φðt0; x0Þ and
a solution of Eqs. (27), (31) by xðt; t0; x0ÞAΦðt0; x0Þ.

Nonuniqueness of solutions implies two types of stability for differential inclusions (27): weak
stability (a property holds for a solution) and strong stability (a property holds for all solutions)
(see, for example, [27,13,7]). Weak stability is usually not enough for robust control purposes.
This section observes only strong stability properties of the system (27). All conditions presented
in definitions below are assumed to be held for all solutions xðt; t0; x0ÞAΦðt0; x0Þ.

4.1. Lyapunov, asymptotic and exponential stability

The concept of stability introduced in the famous thesis of Lyapunov [17] is one of the central
notions of the modern stability theory. It considers some nominal motion xnðt; t0; x0Þ of a
dynamic system and studies small perturbations of the initial condition x0. If they imply small
deviations of perturbed motions from xnðt; t0; x0Þ then the nominal motion is called stable.
We study different stability forms of the zero solution (or, equivalently, the origin) of the
system (27), since making the change of variables y¼ x�xn we transform any problem of
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stability analysis for some nontrivial solution xnðt; tn; xn0Þ to the same problem for the zero
solution.
Assume that 0AFðt; 0Þ for tAR, where Fðt; xÞ is defined by Eq. (27). Then the function

x0ðtÞ ¼ 0 belongs to a solution set Φðt; t0; 0Þ for any t0AR.

Definition 5 (Lyapunov stability). The origin of the system (27) is said to be Lyapunov stable if
for 8ɛARþ and 8 t0AR there exists δ¼ δðɛ; t0ÞARþ such that for 8x0ABðδÞ
(1)
 any solution xðt; t0; x0Þ of Cauchy problem (27), (31) exists for t4t0;

(2)
 xðt; t0; x0ÞABðɛÞ for t4t0.
If the function δ does not depend on t0 then the origin is called uniformly Lyapunov stable. For
instance, if Fðt; xÞ is independent of t (time-invariant case) and the zero solution of Eq. (27) is
Lyapunov stable, then it is uniformly Lyapunov stable.

Proposition 1. If the origin of the system (27) is Lyapunov stable then xðtÞ ¼ 0 is the unique
solution of Cauchy problem (27), (31) with x0 ¼ 0 and t0AR.

The origin, which does not satisfy any condition from Definition 5, is called unstable.

Definition 6 (Asymptotic attractivity). The origin of the system (27) is said to be asymptotically
attractive if for 8 t0AR there exists a set Uðt0ÞDRn : 0A intðUðt0ÞÞ such that 8x0AUðt0Þ
�
 any solution xðt; t0; x0Þ of Cauchy problem (27), (31) exists for t4t0;

�
 limt-þ1 Jxðt; t0; x0ÞJ ¼ 0.
The set Uðt0Þ is called attraction domain.

Finding the maximum attraction domain is an important problem for many practical control
applications.

Definition 7 (Asymptotic stability). The origin of the system (27) is said to be asymptotically
stable if it is Lyapunov stable and asymptotically attractive.

If Uðt0Þ ¼Rn then the asymptotically stable (attractive) origin of the system (27) is called
globally asymptotically stable (attractive).
Requirement of Lyapunov stability is very important in Definition 7, since even global

asymptotic attractivity does not imply Lyapunov stability.

Example 4 (Vinograd [42, p. 433] or Hahn [43, p. 191]). The system

_x1 ¼
x21ðx2�x1Þ þ x52

ðx21 þ x22Þð1þ ðx21 þ x22Þ2Þ
and _x2 ¼

x22ðx2�2x1Þ
ðx21 þ x22Þð1þ ðx21 þ x22Þ2Þ

has the globally asymptotically attractive origin. However, it is not Lyapunov stable, since this
system has trajectories (see Fig. 4), which start in arbitrary small ball with the center at the origin
and always leave the ball Bðɛ0Þ of a fixed radius ɛ0ARþ (i.e. Condition 2 of Definition 5 does
not hold for ɛA ð0; ɛ0Þ).
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The uniform asymptotic stability can be introduced by analogy with uniform Lyapunov
stability. It just requests more strong attractivity property.
Definition 8 (Uniform asymptotic attractivity). The origin of the system (27) is said to be
uniformly asymptotically attractive if it is asymptotically attractive with a time-invariant
attraction domain UDRn and for 8RARþ, 8ɛARþ there exists T ¼ TðR; ɛÞARþ such that the
inclusions x0ABðRÞ \ U and t0AR imply xðt; t0; x0ÞABðɛÞ for t4t0 þ T .

Definition 9 (Uniform asymptotic stability). The origin of the system (27) is said to be
uniformly asymptotically stable if it is uniformly Lyapunov stable and uniformly asymptotically
attractive.

If U ¼Rn then a uniformly asymptotically stable (attractive) origin of the system (27) is called
globally uniformly asymptotically stable (attractive). Uniform asymptotic stability always
implies asymptotic stability. The converse proposition also holds for time-invariant systems.

Proposition 2 (Clarke et al. [44, Proposition 2.2, p. 78]). Let a set-valued function F : Rn-Rn

be defined and upper-semicontinuous in Rn. Let F(x) be nonempty, compact and convex for any
xARn. If the origin of the system

_xAFðxÞ
is asymptotically stable then it is uniformly asymptotically stable.

Frequently, an asymptotic stability of a closed-loop system is not enough for a “good” quality
of control. A rate of transition processes also has to be adjusted in order to provide a better
performance to a control system. For this purpose some concepts of “rated” stability can be used
such as exponential, finite-time or fixed-time stability.

Definition 10 (Exponential stability). The origin of the system (27) is said to be exponentially
stable if there exist an attraction domain UDRn : 0A intðUÞ and numbers C; rARþ such that

Jxðt; t0; x0ÞJrCJx0 Je� rðt� t0Þ; t4t0: ð32Þ
for t0AR and x0AU.

The inequality (32) expresses the so-called exponential convergence (attractivity) property.
The linear control theory usually deals with this property [19].

Exponential stability obviously implies both Lyapunov stability and asymptotic stability.

Fig. 4. Example of Vinograd [42].
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4.2. Finite-time stability

Introduce the functional T0 : W
n
½t0;þ1Þ-Rþ [ f0g by the following formula:

T0ðyð�ÞÞ ¼ inf
τZ t0:yðτÞ ¼ 0

τ:

If yðτÞa0 for all tA ½t0;þ1Þ then T0ðyð�ÞÞ ¼ þ1.
Let us define the settling-time function of the system (27) as follows:

Tðt0; x0Þ ¼ sup
xðt;t0;x0ÞAΦðt0;x0Þ

T0ðxðt; t0; x0ÞÞ� t0; ð33Þ

where Φðt0; x0Þ is the set of all solutions of the Cauchy problem (27), (31).

Definition 11 (Finite-time attractivity). The origin of the system (27) is said to be finite-time
attractive if for 8 t0AR there exists a set Vðt0ÞDRn : 0A intðVðt0ÞÞ such that 8x0AVðt0Þ
�
 any solution xðt; t0; x0Þ of Cauchy problem (27), (31) exists for t4t0;

�
 Tðt0; x0Þoþ1 for x0AVðt0Þ and for t0AR.
The set Vðt0Þ is called finite-time attraction domain.

It is worth to stress that the finite-time attractivity property, introduced originally in [14], does
not imply asymptotic attractivity. However, it is important for many control applications. For
example, antimissile control problem has to be studied only on a finite interval of time, since
there is nothing to control after missile explosion. In practice, Lyapunov stability is additionally
required in order to guarantee a robustness of a control system.

Definition 12 (Finite-time stability, Roxin [13] and Bhat and Bernstein [14]). The origin of the
system (27) is said to be finite-time stable if it is Lyapunov stable and finite-time attractive.

If Vðt0Þ ¼Rn then the origin of Eq. (27) is called globally finite-time stable.

Example 5. Consider the sliding mode system

_x ¼ � 2ffiffiffi
π

p sign x½ � þ 2tx ; t4t0; xAR;jj

which, according to Filippov definition, is extended to the differential inclusion

_xA� 2ffiffiffi
π

p � sign x½ � _þ 2txjg; t4t0; xAR;jf ð34Þ

where t0AR. It can be shown that the origin of this system is finite-time attractive with an
attraction domain Vðt0Þ ¼ Bðet20ð1�erfðjt0jÞÞÞ, where

erf zð Þ ¼ 2ffiffiffi
π

p
Z z

0
e� τ2 dτ; zAR

is the so-called Gauss error function. Moreover, the origin of the considered system is Lyapunov
stable (for 8ɛ40 and for 8 t0AR we can select δ¼ δðt0Þ ¼minfɛ; et20 ð1�erfðjt0jÞÞg), so it is



A. Polyakov, L. Fridman / Journal of the Franklin Institute 351 (2014) 1831–1865 1847
finite-time stable. In particular, for t040 the settling-time function has the form

Tðt0; x0Þ ¼ erf �1ðjx0je� t20 þ erfðt0ÞÞ� t0;

where erf �1ð�Þ denotes the inverse function to erfð�Þ.

Proposition 1 implies the following property of a finite-time stable system.

Proposition 3 (Bhat and Bernstein [14, Proposition 2.3]). If the origin of the system (27) is
finite-time stable then it is asymptotically stable and xðt; t0; x0Þ ¼ 0 for t4t0 þ T0ðt0; x0Þ.

A uniform finite-time attractivity requests an additional property for the system (27).

Definition 13 (Uniform finite-time attractivity). The origin of the system (27) is said to be
uniformly finite-time attractive if it is finite-time attractive with a time-invariant attraction
domain VDRn such that the settling time function Tðt0; x0Þ is locally bounded on R� V
uniformly on t0AR, i.e. for any yAV there exists ɛARþ such that fyg _þBðɛÞDV and
supt0AR; x0A fyg _þBðɛÞTðt0; x0Þoþ1.

Definition 14 (Uniform finite-time stability, Roxin [13] and Orlov [15]). The origin of the
system (27) is said to be uniformly finite-time stable if it is uniformly Lyapunov stable and
uniformly finite-time attractive.

The origin of Eq. (27) is called globally uniformly finite-time stable if V ¼Rn.
Obviously, a settling-time function of time-invariant finite-time stable system (27) is independent

of t0, i.e. T ¼ Tðx0Þ. However, in contrast to asymptotic and Lyapunov stability, finite-time stability
of a time-invariant system does not imply its uniform finite-time stability in general case.

Example 6 (Bhat and Bernstein [14, p. 756]). Let a vector field f : R2-R2 of a time-invariant
system be defined on the quadrants

QI ¼ fxAR2\f0g : x1Z0; x2Z0g; QII ¼ fxAR2 : x1o0; x2Z0g
QIII ¼ fxAR2 : x1r0; x2o0g; QIV ¼ fxAR2 : x140; x2o0g

as shown in Fig. 5. The vector field f is continuous, f ð0Þ ¼ 0 and x¼ ðx1; x2ÞT ¼
ðr cos ðθÞ; r sin ðθÞÞT , r40, θA ½0; 2πÞ. In [14] it was shown that this system is finite-time stable.
Moreover, it is uniformly asymptotically stable, but it is not uniformly finite-time stable. For the
sequence of the initial conditions xi0 ¼ ð0; �1=iÞT ; i¼ 1; 2;… we have (see [14] for the details)

xi0-0 and Tðxi0Þ-þ1:
Fig. 5. Example of Bhat and Bernstein [14].
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So, for any open ball BðrÞ; r40, with the center at the origin we have

sup
x0 ABðrÞ

Tðx0Þ ¼ þ1:

Uniform finite-time stability is the usual property for sliding mode systems [15,38]. The
further considerations deals mainly with this property and its modifications.

4.3. Fixed-time stability

This subsection discusses a recent extension of the uniform finite-time stability concept, which
is called fixed-time stability [30]. Fixed-time stability asks more strong uniform attractivity
property for the system (27). As it was demonstrated in [32,30], this property is very important
for some applications, such as control and observation with predefined convergence time.
In order to demonstrate the necessity of more detailed elaboration of uniformity properties of

finite-time stable systems let us consider the following motivating example.

Example 7. Consider two systems

ðIÞ _x ¼ �x½1=2�ð1�jxjÞ; ðIIÞ _x ¼ �x½1=2� for xo1;

0 for xZ1;

(

which are uniformly finite-time stable with the finite-time attraction domain V ¼ Bð1Þ. Indeed,
the settling-time functions of these systems are continuous on V:

T ðIÞ x0ð Þ ¼ ln
1þ jx0j1=2
1�jx0j1=2

� �
; T ðIIÞ x0ð Þ ¼ 2jx0j1=2:

So, for any yAV we can select the ball fyg _þBðɛÞDV, where ɛ¼ð1�jyjÞ=2, such that
supx0A fyg _þBðɛÞT ðIÞðx0Þoþ1 and supx0A fyg _þBðɛÞT ðIIÞðx0Þoþ1.
On the other hand, T ðIÞðx0Þ-þ1 if x0-71, but T ðIIÞðx0Þ-2 if x0-71. Therefore, these

systems have different uniformity properties of finite-time attractivity with respect to the domain
of initial conditions.

Definition 15 (Fixed-time attractivity). The origin of the system (27) is said to be fixed-time
attractive if it is uniformly finite-time attractive with an attraction domain V and the settling time
function Tðt0; x0Þ is bounded on R� V, i.e. there exists a number TmaxARþ such that
Tðt0; x0ÞrTmax if t0AR and x0AV.

Systems (I) and (II) from Example 7 are both fixed-time attractive with respect to attraction
domain BðrÞ if rA ð0; 1Þ, but the system (I) loses this property for the maximum attraction
domain Bð1Þ.
Definition 16 (Fixed-time stability, Polyakov [30]). The origin of the system (27) is said to be
fixed-time stable if it is Lyapunov stable and fixed-time attractive.

If V ¼Rn then the origin of the system (27) is called globally fixed-time stable. Locally
differences between finite-time and fixed-time stability are questionable. Fixed-time stability
definitely provides more advantages to a control system in a global case [32,30].
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Example 8. Consider the system

_x ¼ �x½1=2� �x½3=2�; xAR; t4t0;

which has solutions defined for all tZ t0:

x t; t0; x0ð Þ ¼
sign x0ð Þ tan 2 arctan jx0j1=2

� �� t� t0
2

� �
; tr t0 þ 2arctanðjx0j1=2Þ;

0; t4t0 þ 2arctanðjx0j1=2Þ:

8<
:

Any solution xðt; t0; x0Þ of this system converges to the origin in a finite time. Moreover, for any
x0AR; t0AR the equality xðt; t0; x0Þ ¼ 0 holds for all tZ t0 þ π, i.e. the system is globally fixed-
time stable with Tmax ¼ π.

5. Generalized derivatives

The celebrated Second Lyapunov Method is founded on the so-called energetic approach to
stability analysis. It considers any positive definite function as a possible energetic characteristic
(energy) of a dynamic system and studies evolution of this “energy” in time. If a dynamic system
has an energetic function, which is decreasing (strongly decreasing or bounded) along any
trajectory of the system, then this system has a stability property and the corresponding energetic
function is called Lyapunov function.

For example, to analyze asymptotic stability of the origin of the system

_x ¼ f ðt; xÞ; f ACðRnþ1Þ; tARþ; xARn ð35Þ
it is sufficient to find a continuous positive definite function Vð�Þ such that for any solution x(t) of
the system (35) the function VðxðtÞÞ is decreasing and tending to zero for t-þ1. The
existence of such function guarantees asymptotic stability of the origin of the system (35) due to
Zubov0s theorem (see [26,40]).

If the function V(x) is continuously differentiable then the required monotonicity property can
be rewritten in the form of the classical condition [17]:

_V ðxÞ ¼∇TVðxÞf ðt; xÞo0: ð36Þ
The inequality (36) is very usable, since it does not require knowing the solutions of Eq. (35) in
order to check the asymptotic stability. From the practical point of view, it is important
to represent monotonicity conditions in the form of differential or algebraic inequalities like
Eq. (36).

Analysis of sliding mode systems is frequently based on non-smooth or even discontinuous
Lyapunov functions [13,27,45,20,24], which require consideration of generalized derivatives and
generalized gradients in order to verify stability conditions. This section presents all necessary
backgrounds for the corresponding non-smooth analysis.
5.1. Derivative numbers and monotonicity

Let I be one of the following intervals: ½a; b�, (a,b), ½a; bÞ or ða; b�, where a; bAR; aob.
The function φ : R-R is called decreasing on I iff

8 t1; t2AI : t1r t2 ) φðt1ÞZφðt2Þ:
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Let K be a set of all sequences of real numbers converging to zero, i.e.

fhngAK 3 hn-0; hna0:

Let a real-valued function φ : R-R be defined on I .
Definition 17 (Natanson [46, p. 207]). A number

Dfhngφ tð Þ ¼ lim
n-þ1

φðt þ hnÞ�φðtÞ
hn

; hnf gAK : t þ hnAI

is called derivative number of the function φðtÞ at a point tAI , if finite or infinite limit exists.
The set of all derivative numbers of the function φðtÞ at a point tAI is called contingent

derivative:

DKφðtÞ ¼ ⋃
fhngAK

fDfhngφðtÞgDR:

A contingent derivative of a vector-valued function φ : R-Rn can be defined in the same
way. If a function φðtÞ is differentiable at a point tAI then DKφðtÞ ¼ f _φðtÞg.
Lemma 2 (Natanson [46, p. 208]). If a function φ : R-R is defined on I then
(1)
 the set DKφðtÞDR is nonempty for any tAI ;

(2)
 for any tAI and for any sequence fhngAK : t þ fhngAI there exists a subsequence

fhn0 gDfhng such that finite or infinite derivative number Dfhn0 gφðtÞ exists.
n
Remark, Lemma 2 remains true for a vector-valued function φ : R-R .
Inequalities yo0, yr0, y40, yZ0 for yARn are understood in a componentwise sense. If

for 8yADKφðtÞ we have yo0 then we write DKφðtÞo0. Other ordering relations r , 4, Z for
contingent derivatives are interpreted analogously.
The contingent derivative also helps us to prove monotonicity of a non-differentiable function.

Lemma 3 (Natanson [46], p. 266). If a function φ : R-R is defined on I and the inequality
DKφðtÞr0 holds for all tAI , then φðtÞ is decreasing function on I and differentiable almost
everywhere on I .
Lemma 3 requires neither the continuity of the function φðtÞ nor the finiteness of its derivative

numbers. It gives a background for the discontinuous Lyapunov function method.

Example 9. The function φðtÞ ¼ � t�signs½t� has a negative contingent derivative for all tAR

and for any sA ½�1; 1�, where the function signs is defined by Eq. (1). Indeed, DKφðtÞ ¼ f�1g
for ta0, DKφð0Þ ¼ f�1g if sA ð�1; 1Þ and DKφð0Þ ¼ f�1; �1g if sAf�1; 1g.

The next lemma simplifies the monotonicity analysis of nonnegative functions.

Lemma 4. If
(1)
 the function φ : R-R is nonnegative on I ;

(2)
 the inequality DKφðtÞr0 holds for tAI : φðtÞa0;

(3)
 the function φðtÞ is continuous at any tAI : φðtÞ ¼ 0;

then φðtÞ is decreasing function on I and differentiable almost everywhere on I .



Proof. Suppose the contrary: ( t1; t2AI : t1ot2 and 0rφðt1Þoφðt2Þ.
If φðt0Þa0 for all tA ½t1; t2� then Lemma 3 implies that the function φðtÞ is decreasing on

½t1; t2� and φðt1ÞZφðt2Þ.
If there exists t0A ½t1; t2� such that φðt0Þ ¼ 0 and φðtÞ40 for all tA ðt0; t2� then Lemma 3

guarantees that the function φðtÞ is decreasing on ðt0; t2�. Taking into account the condition (3)
we obtain the contradiction φðt2Þrφðt0Þ ¼ 0.

Finally, let there exists a point tnA ðt1; t2� such that φðtnÞ40 and any neighborhood of the
point tn contains a point t0A ½t1; tn� : φðt0Þ ¼ 0. In this case, let us select the sequence
hn ¼ tn� tno0 such that φðtnÞ ¼ 0 and tn-tn as n-1. For this sequence we obviously have

Dfhngφ t1ð Þ ¼ lim
n-1

φðtn þ hnÞ�φðtnÞ
hn

¼ lim
n-1

�φðtnÞ
hn

¼ þ1:

This contradicts to the condition (2). □

Absolutely continuous functions are differentiable almost everywhere. Monotonicity
conditions for them are less restrictive.

Lemma 5 (Szarski [47, p. 13]). If a function φ : R-R defined on I is absolutely continuous
and _φðtÞr0 almost everywhere on I then φðtÞ is decreasing function on I .

Lemma below shows relations between solutions of a differential inclusion (27) and its
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contingent derivatives.

Lemma 6 (Filippov [7, p. 70]). Let a set-valued function F : Rnþ1-2R
n

be defined, upper-
semicontinuous on a closed nonempty set ΩARnþ1 and the set Fðt; xÞ be nonempty, compact and
convex for all ðt; xÞAΩ.

Let an absolutely continuous function x : R-Rn be defined on I and ðt; xðtÞÞAΩ if tAI .
Then

_xðtÞAFðt; xðtÞÞ
almost everywhere on I

)
3

DKxðtÞDFðt; xðtÞÞ
everywhere on I :

5.2. Dini derivatives and comparison systems

The generalized derivatives presented above are closely related with well-known Dini
derivatives (see, for example, [47]).
�
 Right-hand upper Dini derivative:

Dþφ tð Þ ¼ lim sup
h-0þ

φðt þ hÞ�φðtÞ
h

:

�
 Right-hand lower Dini derivative:

Dþφ tð Þ ¼ lim inf
h-0þ

φðt þ hÞ�φðtÞ
h

:

�
 Left-hand upper Dini derivative:

D�φ tð Þ ¼ lim sup
h-0�

φðt þ hÞ�φðtÞ
h

:
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�
 Left-hand lower Dini derivative:

D�φ tð Þ ¼ lim inf
h-0�

φðt þ hÞ�φðtÞ
h

:

Obviously, DþφðtÞrDþφðtÞ and D�φðtÞrD�φðtÞ. Moreover, definitions of lim sup and
lim inf directly imply that all Dini derivatives belong to the set DKφðtÞ and

DKφðtÞr0 3
D�φðtÞr0;

DþφðtÞr0:

(

DKφðtÞZ0 3
D�φðtÞZ0;

DþφðtÞZ0:

(

Therefore, all further results for contingent derivative can be rewritten in terms of Dini
derivatives.

Theorem 5 (Denjoy–Young–Saks Theorem, Bruckner [48, p. 65]). If φ : R-R is a function
defined on an interval I , then for almost all tAI Dini derivatives of φðtÞ satisfy one of the
following four conditions:
�
 φðtÞ has a finite derivative;

�
 DþφðtÞ ¼D�φðtÞ is finite and D�φðtÞ ¼ þ1, DþφðtÞ ¼ �1;

�
 D�φðtÞ ¼DþφðtÞ is finite and DþφðtÞ ¼ þ1, D�φðtÞ ¼ �1;

�
 D�φðtÞ ¼DþφðtÞ ¼ þ1, D�φðtÞ ¼DþφðtÞ ¼ �1.
This theorem has the following simple corollary, which is important for some further
considerations.

Corollary 1. If φ : R -R is a function defined on I , then the equality DKφðtÞ ¼ f�1g
(DKφðtÞ ¼ fþ1g) may hold only on a set ΔDI of measure zero.

Consider the system

_y ¼ gðt; yÞ; ðt; yÞAR2; g : R2-R; ð37Þ
where a function gðt; yÞ is continuous and defined on a set G¼ ða; bÞ � ðy1; y2Þ,
a; b; y1; y2AR : aob; y1oy2. In this case the system (37) has the so-called right-hand maximum
solutions for any initial condition yðt0Þ ¼ y0; ðt0; y0ÞAG (see [47, Remark 9.1, p. 25]).

Definition 18. A solution ynðt; t0; y0Þ of the system (37) with initial conditions
yðt0Þ ¼ y0; ðt0; y0ÞAG is said to be right-hand maximum if any other solution yðt; t0; y0Þ of the
system (37) with the same initial condition satisfies the inequality

yðt; t0; y0Þrynðt; t0; y0Þ
for all tAI , where I is a time interval on which all solutions exist.

Now we can formulate the following comparison theorem.
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Theorem 6 (Szarski [47, p. 25]). Let
(1)
 the right-hand side of Eq. (37) be continuous in a region G;

(2)
 ynðt; t0; y0Þ be the right-hand maximum solution of Eq. (37) with the initial condition

yðt0Þ ¼ y0, ðt0; y0ÞAG, which is defined on ½t0; t0 þ αÞ, αARþ;

(3)
 a function V : R-R be defined and continuous on ½t0; t0 þ βÞ, βARþ, ðt;VðtÞÞAG for

tA ½t0; t0 þ βÞ and
Vðt0Þry0; DþVðtÞrgðt;VðtÞÞ for tA ðt0; t0 þ βÞ;then

VðtÞrynðt; t0; y0Þ for tA ½t0; t0 þminfα; βgÞ:
Theorem 6 remains true if Dini derivative Dþ is replaced with some other derivative Dþ, D� ,

D� or DK (see [47, Remark 2.2, p. 11]).
5.3. Generalized directional derivatives of continuous and discontinuous functions

Stability analysis based on Lyapunov functions requires calculation of derivatives of positive
definite functions along trajectories of a dynamic system. If Lyapunov function is non-
differentiable, a concept of generalized directional derivatives (see, for example, [28,49,50]) can
be used for this analysis. This survey introduces generalized directional derivatives by analogy
with contingent derivatives for scalar functions.

Let MðdÞ be a set of all sequences of real vectors converging to dARn, i.e.

fvngAMðdÞ 3 vn-d; vnARn:

Let a function V : Rn-R be defined on an open nonempty set ΩDRn and dARn.

Definition 19. A number

Dfhng;fvngV x; dð Þ ¼ lim
n-þ1

Vðxþ hnvnÞ�VðxÞ
hn

;

fhngAK; fvngAMðdÞ : xþ hnvnAΩ

is called directional derivative number of the function V(x) at the point xAΩ on the direction
dARn, if finite or infinite limit exists.

The set of all directional derivative numbers of the function V(x) at the point xAΩ on the
direction dARn is called directional contingent derivative:

DK;MðdÞVðxÞ ¼ ⋃
fhngAK;fvngAMðdÞ

fDfhng;fvngVðx; dÞg:

Similar to Lemma 2 it can be shown that if xAΩ then the set DK;MðdÞVðxÞ is nonempty for any
function V defined on an open nonempty set ΩDRn and any dARn. A chain rule for the
introduced contingent derivative is described by the following lemma.

Lemma 7. Let a function V : Rn-R be defined on an open nonempty set ΩDRn and a function
x : R-Rn be defined on I , such that xðtÞAΩ if tAI and the contingent derivative DKxðtÞDRn

is bounded for all tAI .
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Then the inclusion

DKVðxðtÞÞD ⋃
dADKxðtÞ

DK;MðdÞVðxÞ

holds for all tAI .
Proof. Since xðtÞAΩ for tAI then Lemma 2 implies that DKVðxðtÞÞ is nonempty for any tAI .
Let DfhngVðxðtÞÞADKVðxðtÞÞ be an arbitrary derivative number, i.e. by Definition 17 the finite or
infinite limit

lim
n-1

Vðxðt þ hnÞÞ�VðxðtÞÞ
hn

; hnf gAK : t þ hnAI

exists.
Consider now the sequence:

vn ¼ xðt þ hnÞ�xðtÞ
hn

:

Lemma 2 and inequality jDKxðtÞjoþ1 imply that there exist finite dADKxðtÞ and a
subsequence fhn0 g of the sequence fhng such that vn0-d. Hence,

DfhngV x tð Þð Þ ¼ lim
n-1

Vðxðt þ hnÞÞ�VðxðtÞÞ
hn

¼ lim
n0-1

Vðxðt þ hn0 ÞÞ�VðxðtÞÞ
hn0

¼ lim
n0-1

VðxðtÞ þ hn0vn0 Þ�VðxðtÞÞ
hn0

¼Dfhn 0g;fvn 0gV xð Þ: □

The proven lemma together with Lemmas 6 and 4 implies the following corollary, which is
useful for a non-smooth Lyapunov analysis.

Corollary 2. Let a set-valued function F : Rnþ1-2R
n

be defined and upper-semicontinuous on
I �Ω and the set Fðt; xÞ be nonempty, compact and convex for any ðt; xÞAI �Ω, where ΩDRn

is an open nonempty set.
Let xðt; t0; x0Þ be an arbitrary solution of Cauchy problem (27), (31) defined on ½t0; t0 þ αÞ,

where t0AI ; x0AΩ and αARþ. Let a function V : Rn-R be nonnegative on Ω.
If the inequality DFðt;xÞVðxÞr0 holds for every tAI and every xAΩ : VðxÞa0 then the

function of time Vðxðt; t0; x0ÞÞ is decreasing on ½t0; t0 þ αÞ, where
DFðt;xÞVðxÞ ¼ ⋃

dAFðt;xÞ
DK;MðdÞVðxÞ: ð38Þ

5.4. Clarke0s gradient of Lipschitz continuous functions

Let a function V : Rn-R be defined and Lipschitz continuous on an open nonempty set.
Then, by Rademacher theorem [51], its gradient exists almost everywhere on Ω and for each
xAΩ the following set can be constructed:

∇CVðxÞ ¼ co ⋃
fxkgAMðxÞ:(∇VðxkÞ

lim
xk-x

∇VðxkÞ
	 


; ð39Þ

which is called Clarke0s generalized gradient of the function V(x) at the point xAΩ. The set
∇CVðxÞ is nonempty, convex and compact for any xAΩ and the set-valued mapping ∇CV :
Rn-2R

n

is upper-semicontinuous on Ω (see [50, Proposition 2.6.2, p. 70]).
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The formula (39) gives a procedure for calculation of the generalized gradient of a function.
The next lemma presents a chain rule for Clarke0s generalized gradient.

Lemma 8 (Moreau and Valadier [52, Theorem 2, p. 336]). Let a Lipschitz continuous function
V : Rn-R be defined in an open nonempty set ΩDRn and an absolutely continuous function
x : R-Rn be defined on I such that xðtÞAΩ for every tAI .

Then there exists a function p : R-Rn defined on I such that pðtÞA∇CVðxðtÞÞ and
_V ðxðtÞÞ ¼ pT ðtÞ_xðtÞ almost everywhere on I .
Lemmas 8 and 5 imply the following corollary.

Corollary 3. Let a set-valued function F : Rnþ1-2R
n

be defined and upper-semicontinuous on
I �Ω and a set Fðt; xÞ be nonempty, compact and convex for any ðt; xÞAI �Ω, where ΩDRn

is an open nonempty set. Let xðt; t0; x0Þ be an arbitrary solution of Cauchy problem (27), (31)
defined on ½t0; t0 þ αÞ, where t0AI ; x0AΩ and αARþ. Let a function V : Rn-R be defined
and Lipschitz continuous on Ω.

If the inequality DC
Fðt;xÞVðxÞr0 holds almost everywhere on I for every xAΩ then the

function of time Vðxðt; t0; x0ÞÞ is decreasing on ½t0; t0 þ αÞ, where
DC

Fðt;xÞVðxÞ ¼ ⋃
dAFðt;xÞ

⋃
pA∇CVðxÞ

fpTdg ð40Þ

If the function V : Rn-R is continuously differentiable then the usual total derivative

_VFðt;xÞðxÞ ¼ ⋃
dAFðt;xÞ

f∇TVðxÞdg ð41Þ

can be used for monotonicity analysis instead of Clarke0s or contingent derivative. In this case we
have DFðt;xÞVðxÞ ¼DC

Fðt;xÞVðxÞ ¼ _VFðt;xÞðxÞ.

6. Lyapunov function method and convergence rate

Lyapunov function method is a very effective tool for analysis and design of both linear and
nonlinear control systems [19]. Initially, the method was presented for “unrated” (Lyapunov and
asymptotic) stability analysis [17]. A development of control theory had required to study a
convergence rate together with a stability properties of a control system. This section observes
the most important achievements of the Lyapunov function method related to a convergence rate
estimation of sliding mode systems.

6.1. Analysis of Lyapunov, asymptotic and exponential stability

The continuous function W : Rn-R defined on Rn is said to be positive definite iff Wð0Þ ¼ 0
and WðxÞ40 for xARn\f0g.
Definition 20. A function V : Rn-R is said to be proper on an open nonempty set ΩDRn :
0A intðΩÞ iff
(1)
 it is defined on Ω and continuous at the origin;

(2)
 there exists a continuous positive definite function V : Rn-R such that

V ðxÞrVðxÞ for xAΩ:
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A positive definite function W : R -R is called radially unbounded if WðxÞ-þ1 for
JxJ-þ1.

Definition 21. A function V : Rn-R is said to be globally proper iff it is proper on Rn and the
n

positive definite function V : Rn-R is radially unbounded.

If V is continuous on Ω, then V ðxÞ ¼ VðxÞ for xAΩ and Definition 21 corresponds to the usual
notion of proper positive definite function (see, for example, [44]).
For a given number rAR and a given positive definite function W : Rn-R defined on Ω let

us introduce the set

ΠðW ; rÞ ¼ fxAΩ : WðxÞorg
which is called the level set of the function W.
Theorems on Lyapunov and asymptotic stability given below are obtained by a combination of

Zubov0s theorems (see, for example, [40, pp. 566–568]) with Corollary 2.

Theorem 7. Let a function V : Rn-R be proper on an open nonempty set ΩDRn : 0A intðΩÞ
and

DFðt;xÞVðxÞr0 for tAR and xAΩ\f0g: ð42Þ
Then the origin of the system (27) is Lyapunov stable.

Proof. Since V(x) is proper, then there exists continuous positive definite function V ðxÞ such that
V ðxÞrVðxÞ for all xAΩ.
Let h¼ suprARþ:BðrÞDΩr and λðɛÞ ¼ infxARn: J x J ¼ ɛV ðxÞ40, where ɛA ð0; h�.
The function V(x) is continuous at the origin, so (δA ð0; ɛÞ : VðxÞoλðɛÞ if xABðδÞ. Moreover,

BðδÞDUðɛÞ ¼ΠðV ; λðɛÞÞ \ BðɛÞ.
Let t0AR and x0AUðɛÞ (in partial case x0ABðδÞ). The system (27) satisfies Theorem 3 and it

has solutions, which can be continued up to the boundary of Ω. Consider an arbitrary solution
xðt; t0; x0Þ of Eq. (27). The inequality (42) and Corollary 2 imply that the function of time
Vðxðt; t0; x0ÞÞ is decreasing for t4t0, i.e. Vðxðt; t0; x0ÞÞrVðx0ÞoλðɛÞ.
In this case, xðt; t0; x0ÞABðɛÞ for t4t0. Indeed, otherwise there exists tn4t0 :

Jxðtn; t0; x0ÞJ ¼ ɛ, so Vðxðtn; t0; x0ÞÞZV ðxðtn; t0; x0ÞÞZλðɛÞ.
The proven property also implies that even if a solution of Eq. (27) with t0AR and x0AUðɛÞ

was initially defined on finite interval ½t0; t0 þ αÞ; αARþ, it can be prolonged for all t4t0. □

Asymptotic stability requires analysis of an attraction set. Lyapunov function approach may
provide an estimate of this set.

Theorem 8. Let a function V : Rn-R be proper on an open nonempty set ΩDRn : 0A intðΩÞ,
a function W : Rn-R be a continuous positive definite and

DFðt;xÞVðxÞr�WðxÞ for tAR and xAΩ\f0g:
Then the origin of the system (27) is asymptotically stable with an attraction domain

U ¼ΠðV ; λðhÞÞ \ BðhÞ; ð43Þ
where λðhÞ ¼ infxARn: J x J ¼ hV ðxÞ and hrsuprARþ:BðrÞDΩr.
If V is globally proper and Ω¼Rn then the origin of the system (27) is globally asymptotically

stable (U ¼RnÞ.
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Proof. Theorem 7 implies that an arbitrary solution xðt; t0; x0Þ of Eq. (27) with t0AR and
x0AUðɛÞ is defined for all t4t0 and xðt; t0; x0ÞABðɛÞ, where ɛA ð0; h� and UðɛÞ ¼
ΠðV ; λðɛÞÞ \ BðɛÞ. Moreover, the function of time ~V ðtÞ ¼ Vðxðt; t0; x0ÞÞ is decreasing for all
t4t0. So, in order to prove asymptotic stability we just need to show that μ¼0, where
μ¼ inf t4t0

~V ðtÞ.
Suppose a contradiction, i.e. μ40.
The function V(x) is continuous at the origin, so there exists r40 such that VðxÞoμ for all

xABðrÞ. Since μ40 then xðt; t0; x0Þ=2BðrÞ for all t4t0.
Introduce the following compact set Θ¼ fxARn : rr JxJrɛg. SinceW(x) is continuous and

positive definite, then we have W0 ¼ infxAΘWðxÞ40.
The inequality DFðt;xÞVðxÞr�WðxÞ and the exclusion xðt; t0; x0Þ=2BðrÞ imply DK

~V ðtÞr�W0

for all t4t0.
Since ~V ðtÞ is decreasing then it is differentiable almost everywhere on ½t0; t0 þ Δ�, where

Δ¼ Vðx0Þ=W0. Hence (see, for example, [53, p. 111]),

Vðt0 þ ΔÞ�Vðt0Þr
Z t0þΔ

t0

_V ðτÞ dτr�W0Δ¼ �Vðt0Þ;

i.e. Vðt0 þ ΔÞr0oμ. This contradicts our supposition. So, Vðxðt; t0; x0ÞÞ-0 or equivalently
xðt; t0; x0Þ-0 if t-þ1.

If the function V is globally proper then global asymptotic attractiveness follows from
limɛ-þ1λðɛÞ ¼ þ1 due to radial unboundedness of V . □

Exponential convergence asks for additional properties of Lyapunov functions.

Theorem 9. Let conditions of Theorem 8 hold, the function V(x) is continuous on an open
nonempty set Ω�Rn : 0A intðΩÞ and there exist α; r1; r2ARþ:

r1 JxJrVðxÞrr2 JxJ and WðxÞZαVðxÞ
then the origin of the system (27) is exponentially stable with a rate αARþ.

This theorem can be proven by analogy to a classical theorem on exponential stability (see, for
example, [19, p. 171]) using Lemma 6.

The presented theorems show that discontinuous and non-Lipschitzian Lyapunov functions
can also be used for stability analysis. If V(x) is Lipschitz continuous then all theorems on
stability can be reformulated using Clarke0s gradient.

The following important theorem declares that a smooth Lyapunov function always exists for
a time-invariant asymptotically stable differential inclusion (27).

Theorem 10 (Clarke et al. [44, Theorem 1.2]). Let a set-valued function F : Rn-Rn be defined
and upper-semicontinuous in Rn. Let F(x) be nonempty, compact and convex for any xARn. If
the origin of the system

_xAFðxÞ
is globally uniformly asymptotically stable iff there exist a globally proper function
Vð�ÞAC1ðRnÞ and a function Wð�ÞAC1ðRnÞ : WðxÞ40 for xa0 such that

max
yAFðxÞ

∇TVðxÞyr�WðxÞ; xARn\f0g:
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However, the practice shows that designing of a Lyapunov function for nonlinear and/or
discontinuous system is a nontrivial problem even for a two dimensional case. Frequently, in
order to analyze stability of a sliding mode control system it is simpler to design a non-smooth
Lyapunov function (see, for example, [3,20,24]).
6.2. Lyapunov analysis of finite-time stability

Analysis of finite-time stability using the Lyapunov function method allows us to estimate a
settling time a priori. The proof of the next theorem follows the ideas introduced in [13,54].

Theorem 11. Let a function V : Rn-R be proper on an open nonempty set ΩDRn : 0A intðΩÞ
and

DFðt;xÞVðxÞr�1 for tAR and xAΩ\f0g: ð44Þ
Then the origin of the system (27) is finite-time stable with an attraction domain U defined by
Eq. (43) and

Tðx0ÞrVðx0Þ for x0AU; ð45Þ
where Tð�Þ is a settling-time function.
If a function V is globally proper on Ω¼Rn then the inequality (44) implies global finite-time

stability of the system (27).

Proof. Theorem 8 implies that the origin of the system (27) is asymptotically stable with the
attraction domain U. This means that any solution xðt; t0; x0Þ; x0AU, of the system (27) exists for
8 t4t0. Therefore, we need to show finite-time attractivity. Consider the interval ½t0; t1�; t1 ¼
t0 þ Vðx0Þ.
Suppose a contradiction: xðt; t0; x0Þa0 for 8 tA ½t0; t1�. Denote ~V ðtÞ ¼ Vðxðt; t0; x0ÞÞ. Lemma 7

implies

DK
~V ðtÞrDFðt;xÞVðxðt; t0; x0ÞÞr�1; 8 tA ½t0; t1�

Hence, by Lemma 3 the function ~V ðtÞ is decreasing on ½t0; t1� and differentiable almost
everywhere on ½t0; t1�. Then

~V t1ð Þ� ~V t0ð Þr
Z t1

t0

d

dt
~V τð Þ dτr� t1� t0ð Þ ¼ �V x0ð Þ

(see, for example, [53, p. 111]), i.e. ~V ðt1Þ ¼ Vðxðt1; t0; x0ÞÞr ~V ðt0Þ�Vðx0Þ ¼ Vðxðt0;
t0; x0ÞÞ�Vðx0Þ ¼ 0. Since V(x) is positive definite then Vðxðt1; t0; x0ÞÞr0 ) Vðxðt1; t0; x0ÞÞ ¼
03xðt1; t0; x0Þ ¼ 0, i.e. the origin of the system (27) is finite-time attractive with the settling
time estimate (45). □

Evidently, if under conditions of Theorem 11 there exists a continuous function V : Rn-R

such that VðxÞrV ðxÞ for 8xAΩ then the origin of the system (27) is uniformly finite-time
stable.

Example 10. Consider again the uniformly finite-time stable system

_x ¼ �x½1=2�ð1�jxjÞ; xAR;
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and show that its settling-time function

T xð Þ ¼ ln
1þ jxj1=2
1�jxj1=2

� �

satisfies all conditions of Theorem 11. Indeed, it is continuous and proper on Bð1Þ. Finally, it is
differentiable for xABð1Þ\f0g and

_T xð Þ ¼ ∂T
∂x

_x ¼ 1

x½1=2�ð1�jxjÞ _x ¼ �1 for xa0:

The last example shows that a settling-time function of finite-time stable system is a Lyapunov
function in a generalized sense. Theorem 11 operates with a very large class Lyapunov functions.
However, its conditions are still rather conservative. For example, the settling-time function from
Example 6 cannot be considered as a Lyapunov function candidate, since it is discontinuous at
the origin, so it is not proper. However, even proper settling-time functions of sliding mode
systems may not satisfy the condition (44).

Example 11. Consider the twisting second order sliding mode system [55]

_x1
_x2

 !
AFðx1; x2Þ ¼

y

�2sign½x1��sign½x2�

 !
; ð46Þ

which is uniformly finite-time stable with the settling-time function [54]:

Ttw xð Þ ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1j j þ x22

2ð2þ sign½x1x2�Þ

s
þ jx2jsign½x1x2�

2þ sign½x1x2�
; p¼ 4

ffiffiffi
2

p

3� ffiffiffi
3

p

The function Ttw is globally proper, Lipschitz continuous outside the origin and continuously
differentiable for xya0

DFðx1;x2ÞTtw x1; x2ð Þ ¼ ∂Ttw

∂x1
x2 þ

∂Ttw

∂x2
�2sign x1½ ��sign x2½ �ð Þ ¼ �1 for x1x2a0:

However, DFðx1;x2ÞTtwðx1; x2Þ \ Rþa∅ for x1 ¼ 0. So, Ttwðx; yÞ does not satisfy Eq. (44).
Applying Clarke0s gradient does not help us to avoid this problem.

In the same time, if xðt; t0; x0Þ is an arbitrary solution of the system (46), then
DKTtwðxðt; t0; x0ÞÞr�1 for 8 t4t0 : xðt; t0; x0Þa0 (see [54] for the details).

Remark, if p44
ffiffiffi
2

p
=ð3� ffiffiffi

3
p Þ then the function Ttw(x) satisfies the conditions of Theorem 11

and DFðx1;x2ÞTtwðxÞ ¼ f�1g for x1 ¼ 0.

Sometimes the less restrictive finite-time stability condition

DKVðxðt; t0; x0ÞÞr�1; tZ t0 : xðt; t0; x0Þa0;

xðt; t0; x0ÞAΦðt0; x0Þ; t0AR; x0AU ð47Þ
has to be considered instead of Eq. (44). Examples of applying the condition (47) for analysis of
second order sliding mode systems can be found in [54,22]. They demonstrate that frequently we
do not need to know a solution xðt; t0; x0Þ of Eq. (27) in order to check the condition (47).
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Example 12. Consider the system

_x ¼ � ð2�sign½x1x2�Þ
JxJ

x; x¼ ðx1; x2ÞTAR2:

It is uniformly finite-time stable. Its settling time function is discontinuous

T xð Þ ¼
JxJ for x1x2Z0
1
3JxJ for x1x2o0

(

However, the function T(x) is the generalized Lyapunov function, since it is globally proper and

DKTðxðt; t0; x0ÞÞ ¼ �1 for t4t0 : xðt; t0; x0Þa0;

where xðt; t0; x0ÞAΦðt0; x0Þ, t0AR and x0AR2.

Theorem 12 (Bhat and Bernstein [14, Theorem 4.2]). Let a continuous function V : Rn-R be
proper on an open nonempty set ΩDRn : 0A intðΩÞ and

DFðt;xÞVðxÞr�rVρðxÞ; t4t0; xAΩ;

where rARþ, 0oρo1. Then the origin of the system (27) is uniformly finite-time stable with an
attraction domain U defined by Eq. (43) and the settling time function Tð�Þ is estimated as
follows:

T x0ð Þr V1�ρðx0Þ
rð1�ρÞ for x0AU:

Proof. Let xðt; t0; x0Þ; x0AU, be any solution of Eq. (27) and ~V ðtÞ ¼ Vðxðt; t0; x0ÞÞ. Since
DK

~V ðtÞrDFðt;xÞVðxðt; t0; x0ÞÞr�r ~V
ρðtÞ

(see, Lemma 7) then Lemma 6 implies that ~V ðtÞryðtÞ; t4t0, where y(t) is a right-hand
maximum solution of the following Cauchy problem:

_yðtÞ ¼ �ryρðtÞ; yðt0Þ ¼ Vðx0Þ;
i.e.

y tð Þ ¼
Vðx0Þ1�ρ�rð1�ρÞðt� t0Þ
� �1=ð1�ρÞ

for tA t0; t0 þ V1�ρðx0Þ
rð1�ρÞ

� �
;

0 for t4
V1�ρðx0Þ
rð1�ρÞ :

8>>><
>>>:

This implies Vðxðt; t0; x0ÞÞ ¼ 0 for 8 t4V1�ρðx0Þ=rð1�ρÞ. □

A global finite-time stability can be analyzed using globally proper Lyapunov functions in
Theorems 11 and 12.

Example 13. Consider the so-called super-twisting system [55]

_x

_y

 !
AFðx; yÞ ¼ �αx½1=2� þ y

�β � sign½x�

 !
ð48Þ

where xAR; yAR; α40; β40. Recall, x½μ� ¼ jxjμsign½x�, μARþ.
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The function [24]

Vðx; yÞ ¼ ð2β þ α2=2Þjxj þ y2�αyx½1=2�

is the generalized Lyapunov function for the system (48). Indeed, this function is globally proper
and continuous (but not Lipschitz continuous on the line x¼0).

For xa0 this function is differentiable and

DVFðx;yÞðx; yÞr�γ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðx; yÞ

p
where γ ¼ γðα; βÞ40 is a positive number (see [24] for details).

For x¼0 and ya0 we need to calculate a generalized directional derivative. So, consider the
limit

Dfhng;fungV 0; yð Þ ¼ lim
n-1

Vðhnuxn; yþ hnuynÞ�Vð0; yÞ
hn

where fhngAK; un ¼ ðuxn; uynÞT ; fungAMðdÞ; dAFð0; yÞ. In this case, uxn-y and uyn-q;
qA ½�β; β�. Hence,

Dfhng;fungV 0; yð Þ ¼ lim
n-1

ð2β þ α2=2Þjhnyj þ ðyþ hnqÞ2�αðhnyÞ½1=2�ðyþ hnqÞ�y2

hn
:

Obviously, Dfhng;fungVð0; yÞ ¼ �1. Therefore,

DFðx;yÞVð0; yÞ ¼ f�1gr�γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð0; yÞÞ

p
for ya0

and the super-twisting system is uniformly finite-time stable with the settling time estimate
Tðx; yÞr2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðx; yÞ

p
=γ.

By Corollary 1, the set of time instants t4t0 : DKVðxðtÞ; yðtÞÞ ¼ f�1g may have only the
measure zero. This means that the line x¼0 for ya0 cannot be sliding set of the system (48).
The sliding mode may appear only at the origin.

6.3. Fixed-time stability analysis

Locally fixed-time stability property is very close to finite-time stability, so it can be
established using Theorem 11 just including additional condition: VðxÞrTmax for 8xAΩ, where
TmaxARþ. An alternative Lyapunov characterization of fixed-time stability can be obtained
using the ideas introduced in the proof of Corollary 2.24 from [31].

Theorem 13 (Polyakov [30, p. 2106]). Let a continuous function V : Rn-R be proper on an
open connected set Ω : 0A intðΩÞ. If for some numbers μA ð0; 1Þ; νARþ; rμARþ; rνARþ the
following inequality

DFðt;xÞVðxÞr
�rμV1�μðxÞ for xAΩ : VðxÞr1;

�rνV1þνðxÞ for xAΩ : VðxÞZ1;
t4t0; xAΩ;

(
ð49Þ

holds, then the origin of the system (27) is fixed-time stable with the attraction domain U defined
by Eq. (43) and the maximum settling time is estimated by

T xð ÞrTmax r 1
μrμ

þ 1
νrν

: ð50Þ
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If Ω¼Rn and a function V is radially unbounded then the origin of the system (27) is globally
fixed-time stable.

Proof. Theorem 8 implies that the origin of the system (27) is asymptotically stable with the
attraction domain U. This means that any solution xðt; t0; x0Þ; x0AU, of the system (27) exists for
8 t4t0. We just need to prove that the estimate (49) implies fixed-time attractivity.
Indeed, for any trajectory xðt; t0; x0Þ of the system (6) with Vðx0Þ41, there exists a time instant

T1 ¼ T1ðx0Þr1=νrν : VðxðT1; t0; x0ÞÞ ¼ 1. On the other hand, for any trajectory xðt; t1; x1Þ with
Vðx1Þr1, there exists a time instant T2 ¼ T2ðx1Þr1=μrμ : Vðxðt; t1; x1ÞÞ-0 for t-T2. These
facts can be easily proven analogously to Theorem 12. □

This result also can be used for fixed-time stability analysis of high-order sliding mode control
systems.

Example 14 (Polyakov [30, p. 2108]). Consider the sliding mode control system

_x ¼ y;

_y ¼ uþ dðtÞ;

u¼ �α1 þ 3β1x
2 þ γ

2
sign s½ �� α2sþ β2s

3
� �½1=2�

;

8>>><
>>>:

where xAR; yAR, jdðtÞjoC, α1; α2; β1; β2;CARþ; γ42C and the switching surface s¼0 is
defined by

s¼ yþ ðyt½2� þ α1xþ β1x
3Þ½1=2�:

The original discontinuous systems correspond to the following extended differential inclusion:

_x ¼ y;

_yA �α1 þ 3β1x
2 þ γ

2

	 

� sign s½ � _þ

(
�ðα2sþ β2s

3Þ½3=2�
)

_þ �C;C½ �:

8>><
>>:

Consider the function VðsÞ ¼ jsj and calculate its generalized derivative along trajectories of the
last system

DFVðsÞr�ðα2VðsÞ þ β2V
3ðsÞÞ1=2 for sa0

(see [30] for the details). This implies that the sliding surface s¼0 is fixed-time attractive with
the estimate of a reaching time:

Tsr
2ffiffiffiffiffi
α2

p þ 2ffiffiffiffiffi
β2

p :

The sliding motion equation for s¼0 has the form

_x ¼ � α1
2
xþ β1

2
x3

� �½1=2�
:
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This system is fixed-time stable and a global estimate of the settling-time function Tðx; yÞ for the
original system is

T x; yð ÞrTmax r 2
ffiffiffi
2

p
ffiffiffiffiffi
α1

p þ 2
ffiffiffi
2

pffiffiffiffiffi
β1

p þ 2ffiffiffiffiffi
α2

p þ 2ffiffiffiffiffi
β2

p :

7. Conclusions

The paper surveys mathematical tools required for stability analysis of sliding mode systems.
It discusses definitions of solutions for systems with discontinuous right-hand sides, which
effectively describe sliding mode systems. It observes an evolution of stability notions,
convergence rate properties and underlines differences between finite-time and fixed-time stable
systems in local and global cases. The paper considers elements of the theory of generalized
derivatives and presents a generalized Lyapunov function method for asymptotic, exponential,
finite-time and fixed-time stability analysis of discontinuous systems. Theorems on finite-time
and fixed-time stability provide rigorous mathematical justifications of formal applying non-
Lipschitz Lyapunov functions presented in [23–25] for stability analysis of second order sliding
mode systems.

It is worth to stress that the presented tutorial summarize methods required for stability
analysis of the so-called “ideal” sliding modes. The practical realization of sliding mode control
requires extended analysis, which takes into account sampling, hysteresis and delay effects,
measurement errors, discretization, etc. Robustness analysis of “real” sliding modes goes out of
the scope of this paper. Practical stability analysis of sliding mode systems based on two
Lyapunov functions was presented in [56]. Stability of the real coordinates in the sliding mode
was studied in [57]. More general approach to robustness analysis of “real” sliding modes based
on ISS theory of homogeneous systems can be found in [58].
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