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Abstract. The history and evolution of Sliding Mode Controllers in
the last three decades is revisited. The new generation of continuous
sliding-mode controllers, and continuous nested sliding-mode controllers
is presented. Such controllers generate an continuous control signal, en-
suring, for the systems with relative degree r, the finite–time convergence
to the (r+1)− th sliding-mode set using only information on the sliding
output and its derivatives up to the (r − 1) order.

In this book it is natural to recall the past and to think about the
future. This chapter is an attempt to give a viewpoint on the stages
of development of the Sliding-Mode Control(SMC) theory in the last
decades. We will show that each decade the SMC community has been
able to generate families of controllers with much better properties than
before, and propose arbitrary-order continuous SMC algorithms which
can significatively reduce the chattering and improve the precision.

1 The First Generation of Sliding Modes Controllers

The classical theory of first order SMC was established by 1980 and later reported
in Prof. Utkin’s monograph in Russian, in 1981 (English version [35]). In his
monograph Porfessor Utkin clearly stated the two-step procedure for sliding-
mode control design:

1. Sliding surface design;
2. Discontinuous (relay or unit) controllers ensuring the sliding modes.

The main advantages of the first order SMC are the following:

• theoretically exact compensation (insensitivity) w.r.t. bounded matched un-
certainties [7];
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• reduced order of sliding equations;
• finite–time convergence to the sliding surface.

However, the following disadvantages were evident:

• chattering;
• the sliding variables converge in finite–time but the state variables only con-
verge asymptotically;

• the sliding surface design is restricted to have relative degree one with respect
to the control, i.e., higher order derivatives are required for the sliding surface
design.

2 The Second Generation of SMC: Second Order Sliding
Modes

By the early 80’s, the control community had understood that the main dis-
advantage of SMC is the “chattering” effect [35],[36]. It has been shown that
this effect is mainly caused by unmodelled cascade dynamics which increase the
system’s relative degree, and perturb the ideal sliding mode [3],[14],[36], i.e. in
order to adjust the chattering it is necessary that not only the sliding variable
tends to zero, but also its derivative.

2.1 Second Order Sliding Modes

The second order sliding modes (SOSM) concept was introduced in the Ph.D.
dissertation of A. Levant (Levantovskii).

Consider a second order uncertain system

σ̈ = f (σ, σ̇, t) + g (σ, σ̇, t) ν,

where σ and σ̇ are the system state, σ = x1 is the system output, ν ∈ R is the
scalar control and f (σ, σ̇, t) represents unknown uncertainties/perturbations.
It is also assumed that all the partial derivatives of f(σ, σ̇, t) are bounded on
compacts and g (σ, σ̇, t) �= 0 is known. Then, one can write{

ẋ1 = x2

ẋ2 = f (x, t) + g (x, t) ν,
(1)

where x2 = σ̇ and x = [x1, x2]
T . For simplicity, it will be assumed that g(x, t) > 0

for all t, x. Defining ν = g−1(x, t)u, system (2.1) can be written as{
ẋ1 = x2

ẋ2 = u+ f(x, t).
(2)

The main objective of SOSM was to design a control u such that the origin
of system (2) is finite-time stable, in spite of the uncertainties/perturbations
f(x, t), with |f(x, t)| < f+ for all t, x. For the above mentioned goal, a controller
is proposed in the next section.

Here, and always below, the solution of the all systems will be understood in
the sense of A. Filippov[12].
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2.2 Twisting Algorithm

The first and simplest SOSM algorithm is the so-called “Twisting
Algorithm”(TA)[10]. For a relative degree two system the TA takes the form

u = −a sign(x2)− b sign(x1), b > a+ f+, a > f+.

Under the assumption of known bounds for f+, and with parameters a and b
of the controller chosen appropriately [10], the twisting algorithm ensures finite-
time exact convergence of both x1 and x2, i.e. there exists T > 0 such that,
for all t > T , x1(t) = x2(t) = 0. Thus, the TA is said to be a SOSM control
algorithm since it provides a (stable) “second order sliding mode” at the origin.
An example trajectory can be seen in the Figure 1.

Fig. 1. Example trajectory of the Twisting algorithm

2.3 Terminal Algorithm and Singularity of Switching Surface

Consider the second order system

ẋ1 = x2, ẋ2 = u(x), (3)

where the terminal sliding mode control input u is given by [27],[39].

u(x) = −α sign(s(x)), s(x) = x2 + β
√
|x1| sign(x1). (4)

By taking the time derivative of the switching surface, it is obtained

ṡ(x) = ẋ2 + β
x2

2
√|x1|

= −α sign(s(x)) + β
x2

2
√|x1|

. (5)

This means that the derivative of the switching surface s(x) is singular for x1 = 0,
and, consequently, the relative degree of the switching surface does not
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exist. From now on, we will call the switching surface s(x), singular. On the
switching surface x2 = −β

√|x1| sign(x1), it occurs that

ṡ = −α sign(s(x)) − β2

2
sign(x1).

It is clear that under condition β2 < 2α, the sliding on the surface s(x) = 0
exists, and two types of behavior for the solution of the system are possi-
ble [24], [33], [34]:

Terminal Mode. For the case when β2 < 2α, the trajectories of the system
reach the surface s(x) = 0 and remain there for all the future time. This kind of
behavior can be seen in Figure 2.

x1

x2

s =0

Fig. 2. Terminal mode with β = 3, α = 5

The ideal sliding and computational chattering start when the solution reaches
s(x) = x2 + β

√|x1| sign(x1) .

Twisting Mode.When the controller parameters are chosen such that β2 > 2α,
the trajectories of the system do not slide on the surface s(x) = 0. This behavior
is exemplified in Figure 3. Note that the computational chattering does not start
until the states reach the system’s origin.

As it has been seen from (5), there is an issue of singularity of the switching
surface. Such issue has been overcame by rewriting the function s as follows [11]

s̄(x) = β2x1 + x2
2 sign(x2).

Note that s(x) = 0, and s̄(x) = 0 describe the same switching surface.

Precision of SOSM. The main advantage of SOSM is that they are homoge-
neous, with weights {2,1} ([1],[30]). As it is shown in [19], the order of precision,
determined by the weights of homogeneity in terms of the discretization step δ,
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x1

x2

s =0

Fig. 3. Twisting mode with β = 4, α = 5

is O(δ2) with respect to the sliding output and O(δ) with respect to its deriva-
tive. Moreover, in the presence of fast actuator dynamics with time constant μ,
the precision order is O(μ2) with respect to the sliding output and O(μ) with
respect to its derivative [5],[26].

2.4 Discussion about SOSM

Advantages of SOSM

1. SOSM ensures the quadratic precision of convergence with respect
to the sliding output.

2. For one degree of freedom mechanical systems, both the Twisting and the
Terminal controllers provide dynamic collapse, i.e. the sliding surface design
is no longer needed.

3. For systems with relative degree r, the order of the sliding dynamics is
reduced up to (r − 2). The design of the sliding surface of order (r − 2)
is still necessary.

However, the following problems remain open:

• SOSM algorithms for systems with relative degree two still pro-
duce a discontinuous control signal, i.e., they can not reduce the
chattering substantially.

• The problem of exact finite-time stabilization (dynamic collapse) and exact
disturbance compensation for SISO systems with arbitrary relative degree
still persists.

Chattering Attenuation Strategy Based on SOSM. Under additional
assumptions regarding the smoothness of the system, the SOSM controllers(see
also [2]) have been used to attenuate chattering in systems with relative
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degree one, by including an integrator in the control input. Consider the following
system

Ẋ = F (t,X) +G(t,X)u,X ∈ Rn, u ∈ R
u̇ = v,

where F is a function with known upper bound. The relative degree one switching
variable σ(X) is designed such that it satisfies the equation σ̇ = f(x, t)+g(x, t)u.
Then, defining for example a Twisting-like control v = −a sign(σ̇(X)) −
b sign(σ(X)), or a Terminal-like control v = −α sign(s(σ(X))), and selecting
appropriate parameters, we will have an continuous control signal u, ensuring
finite-time convergence to the surface σ(X) = 0.

2.4.1 The First Criticism of SOSM
In the end of the 80’s, the SOSM were strongly criticized. The main point of this
criticism is the that anti-chattering strategy for a first order sliding mode uses the
derivative σ̇. Thus, if by any reason it is possible to measure σ̇ = f(t, σ)+g(t, σ)u
and, additionally, g(t, σ) is also known, then the uncertainty f(t, σ) = σ̇−g(t, σ)u
is also known and can be compensated without any discontinuous control! In this
case, what is the reason for theq use of a SMC?

In the late eighties it was clear that, in order to adjust the chattering
for a relative degree one sliding variable, an continuous control signal
should be generated without requiring information on the derivative
of the sliding variable, i.e. on the perturbations.

3 Third Generation of Sliding Modes Controllers: The
Super-Twisting Algorithm

The Super–Twisting Algorithm (STA)[19]:

ẋ = f(t, x) + g(t, x)u,

u = −k1|x| 12 sign(x) + v,
v̇ = −k2 sign(x),

(6)

where f is any Lipschitz bounded uncertainty/disturbance, for some constants
k1 and k2, ensures [19] exact finite time convergence to the second sliding-mode
set x(t) = ẋ(t) = 0, ∀t ≥ T without usage of ẋ. If we consider system (6) having
x as the measured output, the STA is an output-feedback controller for a system
of one dimension.

3.0.2 Robust Exact Differentiator
This last property of the STA allowed to construct the ”robust exact” sliding-
mode differentiator [20] and gave further impetus to the development of the
mathematical theory and applications of SOSM algorithms. We now briefly de-
scribe the idea behind it. Let f(t) be a signal to be differentiated and assume
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that |f̈(t)| ≤ L, with L being a known constant. Take x1 = f, x2 = ḟ ; then the
problem can be reformulated as finding an observer for

ẋ1 = x2, ẋ2 = f̈ , y = x1,

where f̈(t) is considered as a bounded perturbation. Since the STA does not
require derivatives, which in this case would be the state x2, it only uses output
injection and results particularly useful in the form of a STA observer

˙̂x1 = −k1|x̂1 − y| 12 sign(x̂1 − y) + x̂2,
˙̂x2 = −k2 sign(x̂1 − y) .

Once the constants k1 and k2 are appropriately chosen, the convergence of
the STA ensures that the equalities (f − x̂1) = (ḟ − x̂2) = 0 are established
after a finite-time transient. Thus x̂2 is an estimate for the derivative ḟ(t) and
turns out to be the best possible one ([20]) in the sense of [18] when (bounded
Lebesgue-measurable) noise or discretization are present. However, the difficult
geometrical proof of the STA convergence remained as the main disadvantage
for this algorithm, thereby preventing further generalizations.

3.0.3 Recapitulations
The use of the Super Twisting Algorithm for Lipschitz systems allows substitut-
ing a discontinuous control by means of an continuous one. Additionally, their
use offers:

1. Chattering attenuation (but not its complete removal![4]).
2. Differentiator obtained using the STA:

• finite-time exact estimation of derivatives in the absence of both noise
and sampling;

• the best possible approximation in the sense of [18] of order O(δ) w.r.t.
discrete sampling and of order O(

√
ε) w.r.t. deterministic Lebesgue-

measurable noise bounded by ε.

However, there are some disadvantages:

1. For systems with relative degree r = 2, the design of a sliding surface is
still needed. Hence, there is finite-time convergence to the surface, but the
convergence of the states to the origin is asymptotic. Moreover, in this case,
the usage of STA based differentiator for the sliding surface design is not
enough [6] because the reconstructed switching surface should have at least
Lipschitz derivative.

2. The first order sliding mode controllers with constant gains could compen-
sate Lebesgue but bounded perturbations. The STA is insensible to per-
turbations whose time derivative is bounded. However, these perturbations
could grow no more fast than linear function of time, i.e., they do not need
to be bounded.
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4 Fourth Generation of Sliding Mode Controllers:
Arbitrary Order Sliding Mode Controllers

Consider the uncertain dynamical system:

Ẋ = F (t,X) +G(t,X)u,X ∈ Rn, u ∈ R
σ = σ(X, t),∈ R.

Let the output σ have a fixed and known relative degree r. In such a case, the
control problem is translated into the finite-time stabilization of an uncertain
differential equation or, equivalently, of the following differential inclusion

σ(r) ∈ [−C,C] + [Km,KM ]u, (7)

where C,Km and KM are known constants parameterizing the uncertainty of
the original system.

4.1 Nested Arbitrary Order Sliding-Mode Controllers

In 2001, the first arbitrary order SM controller was introduced [21], combining
relay controller with hierarchical terminal sliding modes [38]. Such controllers
solve the finite-time exact stabilization problem for an output with an arbitrary
relative degree, in the presence of bounded Lebesgue measurable uncertainties.

Given the relative degree r of the output, ”Nested” higher order sliding-
mode(HOSM) controllers are constructed using a recursion, generalizing the
singular Terminal Algorithm. The following is the recursion for the Singular
Terminal Algorithm. Let p be the least common multiple of 1, 2, . . . , r. Also let

u = −α sign
(
ϕr−1,r(σ, σ̇, . . . , σ

(r−1))
)
, (8)

where ϕ0,r = σ, N1,r = |σ| r−1
r and

ϕi,r = σ(i) + βiNi,r sign(ϕi−1,r), Ni,r =
(
|σ| pr + · · ·+ |σ(i−1)| p

r−1+1

) r−i
p

.

The parameters βi can be selected in advance in such a way that only the gain
of the controller α has to be selected large enough. The algorithm provides for
the finite-time stabilization of σ = 0 and, therefore, of its successive derivatives
up to r−1. Thus, it provides for the existence of an r-th order sliding mode in the
set Sr = {σ = σ̇ = ... = σ(r−1) = 0}. In Figure 4 it is exemplified the trajectories
and states for the Nested controller with r = 3. Since controller (8) uses the
output and its successive derivatives, the HOSM arbitrary order differentiator,
introduced in [23], was instrumental for the applicability of HOSM controllers.
Let σ(t) be a signal to be differentiated k− 1 times and assume that |σ(k)| ≤ L,
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Fig. 4. System trajectory of Nested algorithm for r = 3

with L being a known constant. Then, the (k− 1)-th order HOSM differentiator
takes the following form

ż0 = v0 = −λkL
1

k+1 |z0 − σ| k
k+1 sign(z0 − σ) + z1,

ż1 = v1 = −λk−1L
1
k |z1 − v0|

k−1
k sign(z1 − v0) + z2,

...

żk−1 = vk−1 = −λ1L
1
2 |zk−1 − vk−2|

1
2 sign(zk−1 − vk−2) + zk

żk = −λ0L sign(zk − vk−1)

(9)

where zi is the estimation of the true derivative σ(i)(t). The differentiator ensures
the finite-time exact differentiation under ideal conditions of exact measurement
in continuous time. The only information needed is an upper bound, L, for
|σ(k+1)|. Then a parametric sequence {λi} > 0, i = 0, 1, . . . , k, is recursively
built, which provides for the convergence of the differentiators for each order
k. In particular, the parameters λ0 = 1.1, λ1 = 1.5, λ2 = 2, λ3 = 3, λ4 =
5, λ5 = 8 are enough up until the 5-th differentiation order. With discrete
sampling, the differential equations are replaced by their Euler approximations.
This differentiator provides for the best possible asymptotic accuracy in the
presence of input noises or discrete sampling [19,18] for the rth derivative:

– order O(δ) with respect to discrete sampling,

– order O(ε
1

r+1 ) with respect to bounded deterministic Lebesgue measurable
noise.

The use of the HOSM arbitrary order differentiator together with the HOSM
arbitrary order controller allowed the design and the implementation of a
nested arbitrary-order HOSM output-feedback controller for uncertain single-
input single-output (SISO) systems ensuring the finite-time output stabilization
in spite of disturbances. The block diagram for implementation of the output-
feedback nested HOSM controller is presented in Figure 5.

4.1.1 Discussion about Nested HOSM
Nested HOSM algorithm ensures exact finite-time stabilization (dynamic col-
lapse) of the output σ and exact disturbance compensation for SISO systems
with relative degree r, using information on σ, σ̇, ..., σ(r−1).
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Fig. 5. The implementation of the output-feedback nested HOSM controller

Some of its advantages are:

• SOSM ensure the r-th order precision for the sliding output with
respect to the discretization step and fast parasitic dynamics
[22],[26].
item The sliding surface design is no longer needed.

However, the nested HOSM algorithms for relative degree r systems
still produces a discontinuous control signal, i.e., they can not reduce
the chattering substantially.

5 Fifth Generation of SMC: Continuous Arbitrary Order
Sliding-Mode Controllers

In this section we propose an arbitrary order Continuous Nested Sliding Mode
Algorithm(CNSMA). The CNSMA provides, for relative degree r systems with
respect to the output,

- continuous control signal;
- finite-time convergence to the (r + 1)-th order sliding-mode set;
- derivatives of the output up to the (r − 1) order.

Firstly for the systems with relative degree two we will introduce two versions
of the Continuous Terminal Sliding Mode Algorithm(CTSMA), as a combina-
tion of Super-Twisting with both versions of Terminal Algorithm: singular and
nonsingular. It will be shown that the CTSMA has also the above mentioned
properties of the CNSMA for the systems with relative degree two. The possi-
bilities to prove their convergence will be discussed.

Than the CNSMA for the systems with arbitrary relative degree is suggested.
In this section the following notation is used, for a real variable z ∈ R to a

real power p ∈ R, �z	p = |z|psgn(z), therefore �z	2 = |z|2sgn(z) �= z2. If p is
an odd number, this notation does not change the meaning of the equation, i.e.
�z	p = zp. Therefore

�z	0 = sgn(z), �z	0zp = |z|p, �z	0|z|p = �z	p
�z	p�z	q = |z|psgn(z)|z|qsgn(z) = |z|p+q (10)
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5.1 Continuous Terminal Sliding Mode Algorithm

Continuous terminal sliding-mode algorithms are defined in the following way:

(a) Continuous Singular Terminal Sliding Mode Algorithm (CSTSMA);
(b) Continuous Nonsingular Terminal Sliding Mode Algorithm (CNTSMA).

Continuous Singular Terminal Sliding Mode Algorithm (CSTSMA)

Suppose that the control input u is defined as

u =− k1�φ	1/2 − k3

∫ t

0

�φ	0dτ, (11)

or

u = −k1�φ	1/2 + L, L̇ = −k3�φ	0, (12)

where φ =
(
x2 + k2�x1	2/3

)
, and k1, k2, k3 are appropriate positive gains. Sub-

stituting the control (12) into (2), the closed loop system becomes⎧⎪⎨
⎪⎩
ẋ1 = x2

ẋ2 = −k1�φ	1/2 + L+ f(x, t)

L̇ = −k3�φ	0.
(13)

Suppose x3 = L+ f(x, t), then one can rewrite (13) as⎧⎪⎨
⎪⎩
ẋ1 = x2

ẋ2 = −k1�φ	1/2 + x3

ẋ3 = −k3�φ	0 + ρ,

(14)

where ρ = ∂f
∂x ẋ+ ∂f

∂t , and it is assumed that it satisfies |ρ| ≤ Δ.
Proposed algorithm (14) can be interpreted as a combination of the Super-

Twisting algorithm with the Singular Terminal Sliding mode.

5.2 Continuous Nonsingular Terminal Sliding Mode Algorithm
(CNTSMA)

Suppose that the control input u is defined as

u =− k1�φN	1/3 − k3

∫ t

0

�φN 	0dτ, (15)

or

u = −k1�φN	1/3 + L, L̇ = −k3�φN	0, (16)
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where, φN =
(
x1 + k2�x2	3/2

)
and k1, k2, k3 are appropriate positive gains.

Substituting the control (16) into (2), the closed loop system becomes⎧⎪⎨
⎪⎩
ẋ1 = x2

ẋ2 = −k1�φN	1/3 + L+ f(x, t)

L̇ = −k3�φN	0.
(17)

Suppose x3 = L+ f(x, t), then one can rewrite (17) as⎧⎪⎨
⎪⎩
ẋ1 = x2

ẋ2 = −k1�φN	1/3 + x3

ẋ3 = −k3�φN	0 + ρ,

(18)

where ρ = ∂f
∂x ẋ+ ∂f

∂t and assume that it satisfy |ρ| ≤ Δ.
Proposed algorithm (18) can be viewed as a combination of the Super-

Twisting algorithm with the Nonsingular Terminal Sliding Mode algorithm.

5.2.1 Discussion about the CSTSMA and CNSTMA
Continuous singular/nonsingular terminal sliding-mode algorithms (14) and (18)
are homogeneous of degree δf = −1, with weights � = {3, 2, 1}. The main
advantage of this algorithm is that, the only information needed, for the finite
time convergence of all three variables x1, x2 and x3, is the output (x1) and its
derivative (x2). It is also obvious that ẋ2 = 0 because φ, which is a function of
x1, x2 and x3, equals to zero. The precision of the output tracking σ, σ̇ and σ̈,
corresponding to a 3rd order sliding mode.

The parameters used in the simulation of were

• initial conditions x1(0) = 2 and x2(0) = −7
• gains k1 = 6, k2 = 5 and k3 = 6

After substituting the control u in (2), the closed loop system is the same as in
(14). Figure 6 shows that the convergence and precision of the states x1, x2 and
x3 are 10−9, 10−6 and 10−3 respectively, when the simulation step of the Euler
algorithm is set to τ = 10−3. It evident from the simulation that the precision
corresponds to a third order sliding mode.

Figure (7) shows the convergence of the states, the phase portrait, the control
input and the perturbation estimation of a second order uncertain plant with
3-CSTSMC as a controller. It is noticeable from the phase portrait in Fig. (7)(b)
that switching surface φ = 0 does not seem to be a sliding surface, and shows a
behavior typical of the second order sliding mode known as Twisting controller.

The time evolution of the states of system (18) with u as a Continuous Non-
singular Terminal Sliding Mode Control(CNTSMC) are given in Figure 9, where
the value of perturbation is again taken as f = 2 + 4 sin(t/2) + 0.6 sin(10t) and
gains are selected as k1 = 13.4, k2 = 3.3, k3 = 25. It is clear from the figure
that all the states converge to zero, despite of the perturbation f . Figure 10
shows the precision of each of the states when the simulation step of the Euler
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Fig. 6. Convergence and precision of states with τ = 0.001 for 3-CSTSMA

algorithm is set to τ = 10−3 (Fig. 10a), or τ = 10−4 (Fig. 10b). From them we
can calculate the (precision) coefficients: ν3 = 80, ν2 = 80 and ν1 = 1200. They
show that the precision corresponds to a third-order sliding mode.

In Figure 11 the phase portrait of the plant’s states x1 and x2 is shown, along
with the switching curve φN = 0. It is noticeable that the trajectory reaches
the switching surface and then slides along it, until the origin is reached in finite
time. This is also clear from the behavior of φ = φN in Figure 9, that also appears
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Fig. 9. Time evolution of the sates x1, x2, x3 and of the switching variable φ = φN

under a non vanishing perturbation f

zoomed in the same picture. This behavior is similar to the one of the classical
second-order sliding mode known as Terminal (or Prescribed) Controller.

Figure 13 presents again the phase portrait of the plant’s states x1 and x2

with the same CNTSMC, but with different gains: k1 = 6, k2 = 1/6, k3 = 6.
Trajectories in Figure 13 have a rather undamped behavior compared to the ones
in Figure 11. In this case, the convergence to the switching surface φ = φN = 0
has a twisting-like convergence to the switching surface (see Fig. 11 and Fig. 13).

6 Convergence Conditions for the Continuous Terminal
Sliding Mode Algorithm

The proposed controllers (12) and (16) are able to stabilize system (2) in finite
time if the following Proposition is satisfied.

Proposition 1. System (14) is finite time stable at the origin, with appropriate
gains k1, k2 and k3, in spite of bounded perturbations |ρ| ≤ Δ.

of the bounded perturbation ρ.

6.1 Lyapunov Function for Continuous Singular Terminal Sliding
Mode Algorithm (CSTSMA)

Consider the following continuous Lyapunov function candidate for the stability
analysis of (14)

V (x) = p1|x1| 43 − p12�x1	 2
3

(
x2 + k2�x1	2/3

)
+ p2

∣∣∣x2 + k2�x1	2/3
∣∣∣2

+ p13�x1	 2
3 �x3	2 − p23

(
x2 + k2�x1	2/3

)
�x3	2 + p3|x3|4. (19)
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Fig. 10. Precision of the state variables x1, x2, x3 corresponding to a 3-order Sliding
Mode

V (x) is homogeneous of degree δV = 4, with weights � = [3, 2, 1]. It is differen-
tiable everywhere, but it is not locally Lipschitz at x1 = 0. Our main goal is to
derive conditions for the coefficients (p1, p12, p2, p13, p23, p3), and for the gains
(k1, k2, k3) of the continuous terminal sliding-mode algorithm (14), such that
V (x) > 0 and time derivative of (19), along (14), is negative definite (V̇ < 0 for
all x ∈ R

3, x �= 0).
Function (19) can also be expressed as a quadratic form, with the vector

ΞT =
[
�x1	 2

3 φ �x3	2
]
, where φ =

(
x2 + k2�x1	2/3

)
, i.e.

V (x) = ΞTPΞ, where P =

⎡
⎣ p1 − 1

2p12
1
2p13− 1

2p12 p2 − 1
2p23

1
2p13 − 1

2p23 p3

⎤
⎦ (20)
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V (x) is positive definite and radially unbounded if and only if P > 0, which is
true if the following inequalities are satisfied

⎧⎪⎨
⎪⎩

p1 > 0, p1p2 > 1
4p

2
12,

p1
(
p2p3 − 1

4p
2
23

)
+ p12

2

(− p12p3

2 + p13p23

4

)
+ p13

2

(
p12p23

4 − p2p13

2

)
> 0

(21)
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φ = φN = 0, showing a Twisting-Like behavior of the CNTSM controller

The derivative of (19), along the system (14), is

V̇ (x) = q1�x1	 1
3 x2 − q2|x1|− 1

3x2
2 − 2k1p2|φ| 32 − p23|x3|3

− q3|x1|− 1
3 x2�x3	2 + k1p12�x1	 2

3 �φ	 1
2 − q̄4�x1	 2

3x3

+ q̄5x3φ+ p23k1�φ	 1
2 �x3	2 − q̄6�x3	3�φ	0 (22)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1 = 4p1

3 − 4k2p12

3 +
4p2k

2
2

3

q2 = 2p12

3 − 4p2k2

3

q3 = 2p23k2

3 − 2p13

3

q̄4 = p12 + 2p13k3�φ	0�x3	0 − 2p13�x3	0ρ
q̄5 = 2p2 + 2p23k3�φ	0�x3	0 − 2p23�x3	0ρ
q̄6 = 4k3p3 − 4p3ρ�φ	0

(23)

when ρ = 0, then let us define⎧⎪⎨
⎪⎩
q4 = p12 + 2p13k3�φ	0�x3	0
q5 = 2p2 + 2p23k3�φ	0�x3	0
q6 = 4k3p3

(24)

The following Definition and Lemma are presented to prove the stability of
system (14) without disturbances i.e., ρ = 0
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Definition 1. Functions β(α, λ) and ϑ(α) are the real valued function of the
real variable α > 0 and any value of λ, β(α, λ) satisfied ϑ(α) ≥ β(α, λ) for all
λ, where the function β(α, λ) is defined as

β(α, λ) =

{
max(0, β1(α, λ)) for λ ≥ −√

3α

max(0, β2(α, λ)) for λ < −√
3α

(25)

where {
β1(α, λ) = −αr31(α, λ) + λr21(α, λ) + r1(α, λ)

β2(α, λ) = αr32(α, λ)− λr22(α, λ) + r2(α, λ)
(26)

and

r1(α, λ) =
λ+

√|λ|2 + 3α

3α
, r2(α, λ) =

λ−√|λ|2 − 3α

3α
(27)

One of the main results of the chapter which guarantee the finite time stability
of proposed algorithm (14) when ρ = 0 is stated in the following lemma :

Lemma 1. Consider the continuous and homogeneous function V (x) given by
(20). V (x) goes to zero in finite time if the following conditions are satisfied{

p1 + p2k
2
2 > k2p12, p12 = 2p2k2, p23k2 = p13

p12 > 2p13k3, p2 > p23k3, k3 > 0,
(28)

and there exists some α1, α2 > 0 such that⎧⎪⎪⎨
⎪⎪⎩

q1k1k2p12 − k1p12 −
√

22|q4|3
33(p23−|q6|) > α1 > 0

ϑ(α1) ≥ β(q1, α1)
2k2

1p2p23−α2

k3
1p23p12

> ϑ(α1) > 0,

(29)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2k21p2p23 > α2 > 0

ϑ(α2) ≥ max {β(λ1, α2), β(λ2, α2)}
1

(k1p12)2

(
p23 − |q6| − 22|q4|3

33
(
q1k2− α1

k1p12

)2

)
> ϑ(α2) > 0,

(30)

where λ1 = 2p2 + 2p23k3 and λ2 = 2p2 − 2p23k3. In this case V (x) satisfies the
differential inequality

V̇ ≤ −κV 3/4 (31)

for some positive κ and it is a Lyapunov function for the system (14), whose
trajectories converges in finite time to the origin x = 0, for every value of the
perturbation ρ = 0. The convergence time of a trajectory starting at the initial
condition x0 can be estimated as

T (x0) ≤ 4

κ
V

1
4 (x0). (32)
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Lemma 1 provides conditions for the existence of a Lyapunov function for system
(14), when ρ = 0. However, it is not obvious a priori that there exist indeed values
of the parameters k1, k2, k3,p1, p2, p3,p12, p13, p23, α1, α2 for which the conditions
imposed in the Lemma 1 are satisfied, i.e. if the system of inequalities are feasible.
Using the next Theorem it will be shown that there are indeed sets of values for
the parameters, that fulfill the conditions of the Theorem in the both case when
ρ = 0 or ρ �= 0. This Theorem is the main contribution of the chapter, which
also gives the proof of the Proposition 1.

Theorem 1. Let us suppose that the origin x = 0 of system (14) is finite
time stable for a set of gains k1, k2, k3, and (19) is the Lyapunov function
V (x), with a set of parameters p1, p2, p3, p12, p13, p23 in the unperturbed case.
Then, the origin x = 0 of (14) remains finite time stable for a set of gains
l3k1, l

2k2, l
6k3 and that V (x) in (19) is a Lyapunov function for the set of pa-

rameters l−8p1, l
−12p2, l

−24p3, l
−10p12, l

−16p13, l
−18p23, for the sufficiently large

positive real number l in the both perturbed and unperturbed case.

Table 1. Parameters of the Lyapunov function when ρ = 0

k1 6 6

k2 1 2

k3 6 6

p1 20 20

p2 0.5 0.5

p3 0.01 0.01

p12 1 2

p13 0.05 0.1

p23 0.05 0.05

6.1.1 Lyapunov Function Validation
After finding the conditions on the gains k1, k2, k3, as given by (28), based on the
Lyapunov function parameters of (20), p1, p2, p3, p12, p13, p23 that makes system
(14) finite time stable at the origin, it is still not quite obvious that system
inequalities (21) and (28) to (30) are feasible. Therefore, we have to find at least
one set of numerical values of k1, k2, k3, p1, p2, p3, p12, p13, p23 and inequalities
for α1 and α2 such that inequalities (21) and (28) to (30) are feasible. Other sets
of gains can easily be found using Theorem 1, by simply tuning the positive real
value l.

One of the Possible Choice for Validation:

Using (28) to (30) and some particular ki, i = 1, 2, 3 and p1, p2, p3, p12, p13, p23,
one can write α2 = η1α1 where 0 < η1 < 1. Figures 14 (a) and (b) show the
graphs of the functions ϑ(α1), β(α1, λ) and ϑ(α2), β(α2, λ1) along with β(α2, λ2),
respectively, for the parameters of the first column of Table 1 parameters which
satisfy (29) and (30).
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Fig. 14. Inequalities for the Lyapunov Function Validation

6.2 Lyapunov Analysis of Continuous Nonsingular Terminal Sliding
Mode Algorithm (CNTSMA)

The Lyapunov function candidate for system (18) is proposed as

V (x) = β |x1|
5
3 + x1x2 +

2

5
k2 |x2|

5
2 − 1

k31
x2x

3
3 + γ3 |x3|5 ,

which is homogeneous (of degree δV = 5) and continuously differentiable. We will
show that V (x) is decrescent, and that selecting β > 0 and γ3 > 0 sufficiently
large it is also positive definite.

For this, recall the classical Young’s inequality [16]: for any real values p > 1,
q > 1 such that 1

p + 1
q = 1 and any positive real numbers a, b, c the inequality

ab ≤ cp ap

p + c−q bq

q holds. Using this inequality it follows that

V (x) ≥
(
β − 3

5
c

5
3
1

)
|x1|

5
3 +

2

5

(
k2 − c

− 5
2

1 − c
− 5

2
2

1

k31

)
|x2|

5
2

+

(
γ3 − 3

5

1

k31
c

5
3
2

)
|x3|5 .

V is positive definite if all its coefficients are positive. This can be achieved by

selecting e.g. c1 =
(

4
k2

) 2
5

, c2 =
(

4
k2k3

1

) 2
5

, and

β >
3

5

(
4

k2

) 2
3

, (33)

k51γ3 >
3

5

(
4

k2

) 2
3

. (34)
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It is straight forward to verify that V is decrescent for any values of the param-
eters if the following conditions are satisfied

k3 > Δ

β >
3

5k
2
3
2

k1 > 5γ3k
5
1κ

(
1 +

Δ

k3

)
+

(
3
2

)2
(k3

k1
)2(

5
3βk

2
3
2 − 1

) (
1 +

Δ

k3

)2

γ3k
5
1 >

(
5
32

1
3 β + 3k3

k1

(
1 + Δ

k3

))2

20k3

k1

(
1− Δ

k3

)(
5
3βk

2
3
2 − 1

) (35)

7 Continuous Nested Sliding Mode Algorithm

In this section a generalization of the Continuous Singular Terminal Sliding
Mode Algorithm (CSTSMA) is presented. Due to the nested structure of the
algorithm, it is also referred to as continuous nested terminal sliding-mode
algorithm.

CSTSMA is proposed as follows

ẋ1 = x2

ẋ2 = −k1 |φ1|1/2 sign (φ1) + x3

ẋ3 = −k3sign (φ1) + ρ (36)

where φ1 = x2 + k2|x1|2/3sign(x1) x1, x2, x3 represent the states, and the
perturbation ρ satisfies |ρ| ≤ Δ.

4-CSNSMA is proposed as follows

ẋ1 = x2

ẋ2 = x3

ẋ3 = −k1 |φ2|1/2 sign (φ2) + x4

ẋ4 = −k4sign (φ2) + ρ (37)

where

φ2 = x3 + k3
(|x1|3 + |x2|4

) 1
6 sign

(
x2 + k2|x1| 34 sign(x1)

)
(38)

and x1, x2, x3, x4 represent the states, and the perturbation ρ satisfies |ρ| ≤ Δ.
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Similarly, 5-CSNSMA is proposed as follows

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = −k1 |φ3|1/2 sign (φ3) + x5

ẋ5 = −k5sign (φ3) + ρ (39)

where

φ3 = x4 + k4

[(|x1|12 + |x2|15 + |x3|20
) 1

30 sign (l1)
]

and

l1 = x3 + k3
(|x1|12 + |x2|15

) 1
20 sign

(
x2 + k2|x1| 45 sign(x1)

)
and x1, x2, x3, x4, x5 represent the states, and the perturbation ρ satisfies
|ρ| ≤ Δ.

The generalized r-CSNSMA is proposed as follows

ẋ1 = x2

ẋ2 = x3

...

ẋr−1 = −k1 |φr−2|1/2 sign (φr−2) + xr

ẋr = −krsign (φr−2) + ρ (40)

where x1, x2, · · · , xr represent the states, and the perturbation ρ satisfies |ρ| ≤ Δ.
Variable φr−2 is defined as:

•
R1,r−1 = |x1| r

r+1

where r represents the relative degree of the algorithm with respect to x1.
•

Ri,r−1 = ||x1|r1 + |x2|r2 + · · ·+ |xi−2|ri−2 |qi ,
where i = 2, 3, · · · , (r − 1), r1, r2, · · · , ri−2, and qi is a parameter designed
based on the homogeneity weight of xi+1.

•
S0,r−1 = x1

S1,r−1 = x2 + k2R1,r−1sign(x1)

Si,r−1 = xi+1 + ki+1Ri,r−1sign(Si−1,r−1)

where i = 2, 3, · · · , (r − 1)
• Finally φr−2 = sr−1,r−1.
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For example, if we want to select r1, r2 and q2 for the 4-CSNSMA (r=3), firstly
we have to check its weighted homogeneity. Our aim is to design a 4-CSNSMA
that has homogeneous weights {4, 3, 2, 1}. The design of parameters r1, r2, and
q2 is fully dependent on the weight assigned to x3. Here, we have chosen its value
as 2, therefore, it is necessary to adjust r1, r2 and q2 such that after homogenous
scaling, one can get the desired value 2 for x3. There are several ways to select
these parameters, one of them consists on calculating the LCM (lowest common
factor) of 4 and 3, which is 12, and then adjusting the power of the terms |x1|,
and |x2|, such that the weight of x3 is equal to 2. It is obvious that by selecting
r1 = 3, r2 = 4 and q2 = 6 it is possible to maintain the homogeneity of the
algorithm with weights {4, 3, 2, 1}. Similarly, one can generalize the 4-CSNSMA
till the r-CSNSMA.

Evolution of the states for the STA, where STA is given as follows [19], [28]

ẋ1 = −k1|x1| 12 sign(x1) + x2

ẋ2 = −k2sign (x1) + ρ, (41)

where x1, x2 represent the states, and the perturbation ρ satisfies |ρ| ≤ Δ. The
CSTSMA, and 4-CSNSMA are shown in Fig. 15-Fig. 16, with the following values
for the initial conditions and gains

• STA
– initial conditions x1(0) = 2, x2(0) = −7
– gains k1 = 3, k2 = 4

• CSTSMA
– initial conditions x1(0) = 2, x2(0) = −7 and x3(0) = 1
– gains k1 = 6, k2 = 2 and k3 = 6

• 4-CSNSMA
– initial conditions x1(0) = 2, x2(0) = −7, x3(0) = 1 and x4(0) = −1
– gains k1 = 4, k2 = 1, k3 = 2 and k4 = 4

Remark 1. The properties of the proposed algorithms are the same as those of
the terminal sliding mode, therefore it is referred to as rth order continuous
terminal sliding-mode algorithm (r-CSNSMA).

Discussion about CTSMA and Other Generalized CSNSMA. The
CTSMA (36) is homogeneous of degree δf = −1 with weights � = {3, 2, 1}. The
main advantage of this algorithm is that the only information that it needs to
maintain finite time convergence of all three variables x1, x2 and x3 is the output
(x1) and its derivative (x2). The proposed algorithm can work as a controller for
an uncertain system with relative degree 2 with respect to its output, in the case
of CSTSMA. Similarly, the r-CSNSMA is homogeneous of degree δf = −1, with
weights � = {r, r − 1, · · · , 2, 1}, and it can be used for an uncertain system with
relative degree r − 1 with respect to output. The main idea behind the construc-
tion of this algorithm is to add one extra discontinuous integral term, which is
able to reconstruct the perturbation and also nullify it. The CSNSMA is insen-
sible to perturbations whose time derivative is bounded. These perturbations
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Fig. 15. STA and states precision with τ = 0.001

could grow no more fast than linear function of time, i.e., they do not need to be
bounded. In comparison the nested HOSM controller can compensate bounded
Lebesgue measurable perturbations. Comparison of the properties of the prin-
cipal SMC strategies for the second order uncertain system is given in the Table 2.
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Fig. 16. CSTSMA and states precision with τ = 0.001

Simulation Results. In order to verify the proposed technique of the r-
CSNSMA, the following second and third order systems are considered

ẋ1 = x2

ẋ2 = u+ f
(42)
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Table 2. Comparison of the properties of the different SMC strategies for the second
order uncertain system with output σ

Algorithm Control Signal Information Stability Chattering Order of sliding w.r.t. σ

First SMC Discontinuous σ, σ̇ Asymptotic Yes 1

Twisting Discontinuous σ, σ̇ Finite time Yes 2

Terminal SMC Discontinuous σ, σ̇ Finite time Yes 2

STC Continuous σ, σ̇ Asymptotic No 2

Third SMC Continuous σ, σ̇, σ̈ Finite time No 3

Continuous Terminal SMC Continuous σ, σ̇ Finite time No 3

where x1, x2 are the states, u is the control and f = 2+ 4sin(t/2)+ 0.6sin(10t)
is the Lipschitz (in time) disturbance. Similarly,

ẋ1 = x2

ẋ2 = x3

ẋ3 = u+ f

(43)

where x1, x2, x3 are the states, u is the control and f = 2+4sin(t/2)+0.6sin(10t)
is the Lipschitz (in time) disturbance. The controller for systems (42) and (43)
are designed as

u = −k1 |φ1|1/2 sign (φ1)−
∫ t

0

k3sign (φ1) dτ (44)

and

u = −k1 |φ2|1/2 sign (φ1)−
∫ t

0

k4sign (φ2) dτ (45)

where φ1 and φ2 are defined as in (14) and (37), respectively. The following
parameters are used for the simulation

• uncertain double order integrator (42)
– initial conditions x1(0) = 2 and x2(0) = −7
– gains k1 = 6, k2 = 5 and k3 = 6

• uncertain third order integrator (43)
– initial conditions x1(0) = 2, x2(0) = −7 and x3(0) = 1
– gains k1 = 5, k2 = 1, k3 = 2 and k4 = 4

How to Implement CSNSMA? The main specific feature of CSNSMA as well
as of STA, CSTSMA and CNTSMA is that the part of control signal responsable
for the compensation of Lipschitz perturbation is continuous. As a consequence
of this, they are only able to compensate, theoretically exactly, Lipschitz per-
turbations, but they also need a Lipschitz signal to follow. This means that the
switching surfaces estimated by the differentiators should be smooth and have
Lipschitz derivatives. This is the reason why even the CSNSMA requires only
(r − 1) derivatives of the sliding output, and the derivative of order (r − 1)
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Fig. 17. Numerical example uncertain double integrator
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Fig. 18. Numerical example uncertain triple integrator
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should be approximated by smooth signal with Lipschitz derivatives. This could
be achieved by a differentiator of order r so, in order to implement the CSNSMA
it is necessary to use r-order robust exact differentiators [22], but using only the
derivatives that it produces up to the order (r−1). By doing so, all the necessary
signals for the r-CSNSMA will be smooth, with Lipschitz derivative. The block
diagram for the implementation of CSNSMA is shown in next Figure.

Fig. 19. CSNSMA implementation

8 Conclusion

In this chapter, the historical overview of the development of SMC is presented.
We have shown that in the last three decades the Sliding Mode Community has
created new generations of controllers:

- second order sliding mode controllers(1985);
- super-twisting controllers(1993);
- arbitrary sliding-mode controllers(2001,2005).

In this chapter we have presented the next generation: two families of
continuous nested sliding-mode controllers, that can be used on Lipschitz
systems with relative degree r, providing the continuous control signal. This
new controllers ensure a finite-time convergence of the sliding output to the
(r + 1) − th-order sliding set using information on the sliding output and its
derivatives up to the order (r − 1),
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