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Introduction

Discontinuity in feedback control is not suitable for practical applications, as a
consequence of chattering.

Replacing the discontinuous part with STA is an option.

Replacement is possible due to unique disturbance observation property of STA.
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Motivation

sign(x) as a Disturbance Observer

ẋ = u + d , (1)

where x ∈ R, u = −ksign(x) ∈ R, d ∈ R and k > |d |max.

It is shown that when x = 0, the equivalent value of control is obtained by setting
ẋ = 0, which implies d = [ksign(x)]eq .

Super Twisting as a Disturbance Observer

u = −λ|x |
1
2 sign(x) + v

v̇ = −αsign(x) (2)

After substituting the control input (2) into (1), one can write

ẋ = −λ|x |
1
2 sign(x) + v + d

v̇ = −αsign(x) (3)
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Motivation

Let us define z := v + d , then ż = v̇ + ḋ
The system can be written as

ẋ = −λ|x |
1
2 sign(x) + z

ż = −αsign(x) + ḋ , |ḋ | ≤ ∆, (4)

If α = 1.1∆ and λ = 1.5
√

∆, it has been proved that x = z = 0 in finite time.

z = 0 implies d = −v , so one can also construct the disturbance.

The disturbance is given by

d = −v

v̇ = −αsign(x) (5)

when x and v + d are zero in (3).
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Finite Time Stabilization of Chain of Integrators

Consider the following chain of integrators

ẋ1 = x2

...

ẋn−1 = xn

ẋn = u

(6)

Theorem : Bhat and Bernstein

Let k1, . . . , kn > 0 be such that the polynomial sn + knsn−1 + · · ·+ k2s + k1 is Hurwitz,
and there exists ε ∈ (0, 1) such that, for every α ∈ (1− ε, 1), the origin is a globally
finite time stable equilibrium for the system (6) under the feedback control

u = −k1|x1|α1 sign(x1)− · · · − kn|xn|αn sign(xn), (7)

αi−1 =
αiαi+1

2αi+1 − αi
, i = 2, . . . , n,

with αn+1 = 1 and αn = α.
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Finite Time Stabilization of Chain of Integrators with Disturbance

Consider the following uncertain second order system

ẋ1 = x2

ẋ2 = u + d , (8)

where x = [x1, x2]T is the state vector, u = unominal is the control input and d is a
matched disturbance. Also assuming ∆0 ≥ |d | and ∆1 ≥ |ḋ |.

Bhat and Bernstein Control

unominal = −k1|x1|
1
3 sign(x1)− k2|x2|

1
2 sign(x2) (9)

where k1 = 20 and k2 = 9, and disturbance is 8 sin(t) + 4 selected for the simulation.
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Finite Time Stabilization of Chain of Integrators with Disturbance
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Figure: Finite Time control Bhat et.al., Without Disturbance
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Figure: Finite Time control Bhat et.al., With Disturbance
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Integral Sliding Mode Control with Discontinuous Control

Integral sliding mode control has two parts viz. (i) nominal control (unominal) and (ii)
a discontinuous control (udiscon).

The nominal control is designed for the system without disturbance to have a
desired trajectory. The design of unominal and udiscon are completely independent.

It may be noted that the equivalent value of the discontinuous control is the
negative of the disturbance.

So, when u = unominal + udiscon is applied to the system having disturbance, udiscon

rejects the disturbance and the desired trajectory is obtained by the application of
unominal.

ISM control input, u = unominal + udiscon

udiscon = −k3sign(s), k3 > ∆0. (10)

The sliding surface s ∈ R is defined as

s = x2 − x20 −
∫ t

0
unominaldτ, (11)
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Integral Sliding Mode Control with Discontinuous Control

When the system is on the sliding surface, the equivalent value of the control is
calculated by substituting the derivative of the sliding surface equal to zero.

Hence, mathematically one can write

ṡ = u + d − unominal = 0

= unominal + udiscon + d − unominal = 0

⇒ udiscon = −d (12)

Substituting the value of udiscon from the (10), one can write that

[−k3sign(s)]eq + d = 0 (13)

Therefore, when system is on the sliding surface, the value of the disturbance is
d = [ksign(s)]eq and it is canceled out.
But, it can clearly be observed here that the original control u, which is applied to
the plant (8), also contains the discontinuous control.
Due to the discontinuity in the control chattering phenomenon is generated in
actuators, and it is not desirable for the practical implementation.
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Integral Sliding Mode Control with Discontinuous Control

For the simulation, control gains are chosen as k1 = 20, k2 = 9, k3 = 20 and
disturbance as 8 sin(t) + 4.
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Figure: Discontinuous Integral Sliding Mode Control with disturbance.
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Proposed Continuous Integral SMC with STC as a Disturbance
Observer

Consider again the same second order system (8), but now the control input for the
system is given by u = unominal + uSTC, where unominal is nominal control chosen (9)

uSTC is super twisting control given as

uSTC = −k4|s|
1
2 sign(s) + v

v̇ = −k5sign(s), (14)

Sliding surface s is defined as (11) and k4 = 1.5
√

∆1, k5 = 1.1∆1. Here also the
sliding surface is so designed that sliding mode starts from the initial time.
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Proposed Continuous Integral SMC with STC as a Disturbance
Observer

Differentiating (11) we get

ṡ = u + d − unominal (15)

Substituting the value of u one gets

ṡ = uSTC + d (16)

After substituting the value of control (14) to (16), one can write

ṡ = −k4|s|
1
2 sign(s) + v + d

v̇ = −k5sign(s) (17)

Let us define z = v + d , so ż = v̇ + ḋ . After substituting value of z in (17), one
can write

ṡ = −k4|s|
1
2 sign(s) + z

ż = −k5sign(s) + ḋ (18)
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Proposed Continuous Integral SMC with STC as a Disturbance
Observer
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Figure: Continuous Integral Sliding Mode Control with disturbance.
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Proposed Continuous Integral SMC with STC as a Disturbance
Observer

Consider the following uncertain chain of integrators

ẋ1 = x2

...

ẋn−1 = xn

ẋn = u + d

(19)

where d is Lipschitz disturbance and |ḋ | ≤ d0 is bounded.
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Proposed Continuous Integral SMC with STC as a Disturbance
Observer

Theorem
Let k1, . . . , kn > 0 be such that the polynomial sn + knsn−1 + · · ·+ k2s + k1 is Hurwitz, and there
exists kn+1, kn+2 > 0, ε ∈ (0, 1) such that, for every α ∈ (1− ε, 1), the origin is a globally finite
time stable equilibrium for the uncertain system (19) under the feedback control

u = unominal + uSTC (20)

where

unominal = −k1|x1|α1 sign(x1)− · · · − kn|xn|αn sign(xn) (21)

and

uSTC = −kn+1|s|
1
2 sign(s) + v

v̇ = −kn+2sign(s), (22)

with the sliding surface s ∈ R is proposed as

s = xn − xn0 −
∫ t

0
unominaldτ (23)

where xn0 is the initial value of the state variable xn and α1, . . . , αn satisfy

αi−1 =
αiαi+1

2αi+1 − αi
, ∀i = 2, . . . , n,

with αn+1 = 1 and αn = α.
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Proposed Continuous Integral SMC with STC as a Disturbance
Observer

It is not always possible to convert any system in the form of the uncertain chain of
integrators.

Generalized Continuous Integral Like SMC
Consider the system of the following form

ẋ = Ax + B(u + d) (24)

where x ∈ Rn×1, A ∈ Rn×n, B ∈ Rn×1, u ∈ R, d ∈ R are the state, system matrix, input
matrix, control and disturbance respectively.

Control input for the system (24) is given by u = unominal + uSTC, where unominal is
nominal control and uSTC is super twisting control.

The nominal control unominal is designed to achieve the specified performance,
when system is free from disturbances.

For example:-unominal can be any linear control, PID, LQR (linear quadratic
regulator), state feedback, optimal control, time varying control, adaptive control
etc.
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Proposed Continuous Integral SMC with STC as a Disturbance
Observer

Required sliding surface for the system (24) is defined as

s = G
[
x(t)− x(t0)−

∫ t

0
(Ax + Bunominal)dτ

]
(25)

where G ∈ R1×n, x(t0) are the projection matrix and initial condition of the system
respectively. Sliding surface is chosen such that the system trajectories start from the
sliding surface and if disturbance comes into the picture then uSTC becomes active and
disturbance becomes compensated. Mathematically, above procedure can be
explained as

ṡ = G [Ax + Bu + d − Ax − Bunominal]

= G [Ax + B(unominal + uSTC + d)− Ax − Bunominal]

= GB [uSTC + d ]

Without loss of generality let us consider GB = 1 (otherwise uSTC control is scaled by
(GB)−1, one can get

ṡ = uSTC + d

Further analysis is similar as previous discussions.
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Application of Continuous ISMC for the Position Control of Industrial
Emulator

Figure: Industrial Emulator Setup
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Application of Continuous ISMC for the Position Control of Industrial
Emulator

Rigid Body Plant

[
ẋ1
ẋ2

]
=

[
0 1
0 −8.4344

] [
x1
x2

]
+

[
0

458.46

]
(u + d)

y =
[

1 0
] [ x1

x2

] (26)

where x1, x2 are the angular position and the angular velocity of the load disk, u is the input voltage to the drive motor and d is the disturbance voltage
signal injected externally to perturb the plant. The purpose of giving an external disturbance is to check the robustness property of the system with the
proposed control. The disturbance term d is taken to be d = 0.4 sin(t).

Flexible Drive Plant


ẋ1
ẋ2
ẋ3
ẋ4

 =


0 1 0 0

−209.6 −2 838.4 1.7
0 0 0 1

77.9 0.15 −311.8 −2.47




x1
x2
x3
x4

 +


0

2306
0
0

 (u + d)

y =
[

0 0 1 0
] 

x1
x2
x3
x4


(27)

where x1, x3 are the angular position of the drive disk and load disk and x2, x4 are the angular velocity of the drive disk and load disk respectively. Same
disturbance is used in this configuration as well to test robustness of the proposed control.
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Controller Design

LQR Controller as a Nominal Control
The LQR controller design parameter for the rigid body plant is chosen as

Q1 =

[
30 0
0 0.15

]
, R1 = 10

and gain matrix
K1 =

[
1.73 0.15

]
.

Similarly, design parameter for the flexible drive plant is chosen as

Q2 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , R2 = 1

and gain matrix

K2 =
[

0.2547 0.0142 −0.018 0.046
]
.
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Controller Design

Proposed Controller

s = G
[
e(t)− e(t0)−

∫ t

0
(Ae + Bunominal)dτ

]
and the super twisting controller uSTC becomes

uSTC = (GB)−1(−k4|s|
1
2 sign(s) + z)

ż = −k5sign(s) (28)

Rigid body plant configuration k4 = 1, k5 = 0.45 and G = [1 1/458.46].

Flexible drive plant configuration k4 = 1, k5 = 0.45 and G = [1 1/2306 1 1].

Discontinuous ISMC

udiscon = (GB)−1(−k3sign(s))

Control gain k3 = 0.5 is chosen for simulation and experiment in the both configuration.
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Simulation and Experimental Results: Rigid Body Plant
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Figure: Simulation and Experimental Results: Rigid Body Plant
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Simulation and Experimental Results: Rigid Body Plant
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Figure: Simulation and Experimental Results: Rigid Body Plant
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Simulation and Experimental Results: Flexible Drive Plant
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Figure: Simulation and Experimental Results: Flexible Drive Plant
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Simulation and Experimental Results: Flexible Drive Plant
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Figure: Simulation and Experimental Results: Flexible Drive Plant
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Conclusion

Conclusions
ISM control is able to reject the disturbance but it has discontinuous control.

Continuous ISM proposed here overcomes the discontinuous nature of control by
exploiting the super twisting algorithm.

From the practical point of view the proposed controller is very much useful.
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How to implement super-twisting controller
based on sliding mode observer?
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Motivation

Consider the second order dynamical system

ẋ1 = x2

ẋ2 = u + ρ1

y = x1 (29)

y is the output of the system.

ρ1 is a matched disturbance/uncertainties.

Most of the controller needs all the state information, so first we reconstruct the
other state of the system.

Then we design a super twisting controller based on the estimated information.
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STC based On STO

Super twisting observer dynamics for system (29)

˙̂x1 = k1|e1|
1
2 sign(e1) + x̂2

˙̂x2 = k2sign(e1) + u (30)

Let us define the error e1 = x1 − x̂1 and e2 = x2 − x̂2.
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STC based on STO

Now, the error dynamics is

ė1 =− k1|e1|
1
2 sign(e1) + e2

ė2 =− k2sign(e1) + ρ1

(31)

It is assumed that |ρ1| < ∆0 and ∆0 is known.

If we choose k1 = 1.5
√

∆0 and k2 = 1.1∆0 then error dynamics will goes to zero.

Once the error e1 and e2 is zero, one can say that x1 = x̂1 and x2 = x̂2 after finite
time t > T0.
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STC based On STO

System represented by (29) has relative degree two system with respect to output
variable y = x1.

Therefore one cannot apply the direct STC, because it is applicable for only
relative degree one system.

So we have to define a sliding manifold of the following form to get a relative
degree one with respect to sliding manifold.

ŝ = c1x1 + x̂2 = 0, where c1 > 0 (32)
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STC based On STO

To synthesize the control law, taking the time derivative of (32)

˙̂s = c1ẋ1 + ˙̂x2

˙̂s = c1x2 + u + k2sign(e1)
(33)

Substituting the x2 = e2 + x̂2 in the (33), then we can write as

˙̂s = c1x̂2 + c1e2 + u + k2sign(e1). (34)
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STC based On STO

System (29) in the co-ordinate of x1 and ŝ by using (32) and (34),

ẋ1 = ŝ − c1x1 + e2

˙̂s = c1x̂2 + c1e2 + u + k2sign(e1). (35)

Now if we will select the control u as

u = −c1x̂2 − λ1|ŝ|
1
2 sign(ŝ)−

∫ t

0
λ2sign(ŝ)dτ. (36)

where λ1 and λ2 are the designed parameters for the controller.
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STC based On STO

Substituting the control input (36) in (35),

ẋ1 = ŝ − c1x1 + e2

˙̂s = c1e2 − λ1|ŝ|
1
2 sign(ŝ)−

∫ t

0
λ2sign(ŝ)dτ + k2sign(e1). (37)

The overall closed loop system controller observer together

Π :

{
ẋ1 = ŝ − c1x1 + e2

˙̂s = c1e2 − λ1|ŝ|
1
2 sign(ŝ)−

∫ t
0 λ2sign(ŝ)dτ + k2sign(e1)

Ξ :

{
ė1 = −k1|e1|

1
2 sign(e1) + e2

ė2 = −k2sign(e1) + ρ1.
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STC based On STO

It is already discussed earlier that estimation error of system Ξ converges to zero
in finite time, i.e. there exists a T0 > 0 such that for all t > T0, it follows that
e1 = e2 = 0.

Note that the trajectories of system Π cannot escape to infinity in finite time.

Usually observer gains are chosen in such a way that observation error converges
faster.
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STC based On STO

The closed loop system further we can write as

ẋ1 = ŝ − c1x1

˙̂s = −λ1|ŝ|
1
2 sign(ŝ)−

∫ t

0
λ2sign(ŝ)dτ + k2sign(e1), (38)

In another way by adding some new fictitious state variable L we can write

ẋ1 = ŝ − c1x1

˙̂s = −λ1|ŝ|
1
2 sign(ŝ) + L + k2sign(e1)

L̇ = −λ2sign(ŝ) (39)
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STC based On STO

It is clear from the above mathematical transformation that,by selecting STO to
estimate the state of the second order uncertain system (29)and following the
standard way of the STC design as (36) by taking sliding manifold as (32), the
second order sliding motion never starts in (39).

Because ˙̂s contains the non-differentiable term k2sign(e1), which prevents the
possibility of lower two subsystem of (39) to act as the super twisting.

Thus second order sliding motion (so that ŝ = ˙̂s = 0 in finite time) never begins.
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STC based On STO

ẋ1 = x2
ẋ2 = u+ d

PLANT

˙̂x1 = x̂2 + k1|e1|
1
2 sign(e1)

˙̂x2 = u+ k2sign(e1)

y = x1 +
y = x̂1−

e1

ŝ = c1x1 + x̂2

SUPER TWISTING OBSERVER

SLIDING SURFACE

u = −c1x̂2 − λ1|ŝ|
1
2 sign(ŝ) + v

v̇ = −λ2sign(ŝ)

SUPER TWISTING CONTROL

x̂2

Figure: Block diagram of the Super Twisting Control based on Super Twisting Observer
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STC based On STO

Proposal 1
The main aim here, is to design u, such that the second order sliding motion
occurs in finite time.

For this purpose control is selected as

u = −c1x̂2−k2sign(e1)− λ1|ŝ|
1
2 sign(ŝ)−

∫ t

0
λ2sign(ŝ)dτ (40)

where, λ1 > 0 and λ2 > 0 are controller parameter.
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STC based On STO

Proof
The closed loop system after substituting (40) into (35),

ẋ1 = ŝ − c1x1 + e2

ṡ = c1e2 − λ1|ŝ|
1
2 sign(ŝ)−

∫ t

0
λ2sign(ŝ)dτ (41)

As discussed earlier, the observer error converges to zero in finite time so
substituting e2 = 0,

ẋ1 = ŝ − c1x1

˙̂s = −λ1|ŝ|
1
2 sign(ŝ) + ν

ν̇ = −λ2sign(ŝ) (42)

where ν = −
∫ t

0 λ2sign(ŝ)dτ .
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STC based On STO

The last two equations of (42) have the same structure as super twisting algorithm.

Therefore, one can easily observe that after finite time t > T1, ŝ = ˙̂s = 0, which
further implies, that the closed loop system is given as

ẋ1 = −c1x1

x2 = −c1x1 (43)

Therefore, both the states x1 and x2 are asymptotically stable by choosing c1 > 0.
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STC based On STO

ẋ1 = x2
ẋ2 = u+ d

PLANT

˙̂x1 = x̂2 + k1|e1|
1
2 sign(e1)

˙̂x2 = u+ k2sign(e1)

y = x1 +
y = x̂1−

e1

ŝ = c1x1 + x̂2

SUPER TWISTING OBSERVER

SLIDING SURFACE

u = −c1x̂2 − k2sign(e1)− λ1|ŝ|
1
2 sign(ŝ) + v

v̇ = −λ2sign(ŝ)

SUPER TWISTING CONTROL

x̂2

Figure: Block diagram of the Proposition 1 control based on Super Twisting Observer
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Super Twisting Output Feedback Control

Consider the following sliding sliding surface

s = c1x1 + x2 = 0 (44)

Assuming that entire state vector is available.

For realizing the super twisting control expression
Take the first time derivative of sliding surface s (44),

ṡ = c1ẋ1 + ẋ2 (45)
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Super Twisting Output Feedback Control

Now substitute ẋ1 and ẋ2 from (29) into (45), one can write

ṡ = c1x2 + u + ρ1 (46)

Now design control as

u = −c1x2 − λ1|s|
1
2 sign(s)−

∫ t

0
λ2sign(s)dτ (47)

assuming that both the states are available for measurement.
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Super Twisting Output Feedback Control

After substituting the control (47) into (46), one can write

ṡ = −λ1|s|
1
2 sign(s)−

∫ t

0
λ2sign(s)dτ + ρ1, (48)

or

ṡ = −λ1|s|
1
2 sign(s) + z

ż = −λ2sign(s) + ρ̇1. (49)

where z = ν1 + ρ1 and ν1 = −
∫ t

0 λ2sign(s)dτ .
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Super Twisting Output Feedback Control

It is assumed that |ρ̇1| < ∆1.

Now select λ1 = 1.5
√

∆1 and λ2 = 1.1∆1, which leads to second order sliding in
finite time provided ρ1 is Lipschitz and |ρ̇1| < ∆1.

When s = 0, then x1 = x2 = 0 asymptotically same as discussed earlier by
selecting c1 > 0.

The control (47) is based on full state information, so we cannot implement it
directly on system (29) because we do not have the information of x2.
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Super Twisting Output Feedback Control

If we use STO to estimate the x̂2 and using it in control (47) by replacing x2 with its
estimated value x̂2 then control input (47) becomes,

u = −c1x̂2 − λ1|ŝ|
1
2 sign(ŝ)−

∫ t

0
λ2sign(ŝ)dτ (50)

where ŝ = c1x1 + x̂2.
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Super Twisting Output Feedback Control

If the controller (50) is applied to (29) then it is not possible to get SOSM on the
chosen surface.

It is already discussed in earlier section that control input (36) which is same as
(50) is not able to achieve SOSM on the sliding surface ŝ.

Once the control is applied to the system, the system becomes (39) where
discontinuous term is presents in the first derivative of the sliding surface which
prevents the second order sliding mode on the chosen surface.

So the method is not mathematically correct to get second order sliding mode.
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Super Twisting Output Feedback Control

If we use this method for practical implementation it may work (which may not be
true for all system), because most of the time controller implemented digitally
through computer.

It mean that controller is implemented at some fix sampling time, so the value of
discontinuous term k2sign(e1) will be constant during sampling interval.

In STOF control approach one has to choose STO gains k1 and k2 based on the
upper bound of the disturbance and STC gains λ1 and λ2 based on the upper
bound of the derivative of the disturbance.
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HOSMO based STC

It is seen that if an nth order SMO is used to estimate the states of nth order
perturbed integrator system, either the SOSM is not achieved or the controller
becomes discontinuous.

So a continuous controller design is proposed based on (n + 1)th order observer.

The higher order sliding mode observer (HOSMO) dynamics for (29)

˙̂x1 = x̂2 + k1|e1|
2
3 sign(e1)

˙̂x2 = x̂3 + u + k2|e1|
1
3 sign(e1)

˙̂x3 = k3sign(e1) (51)

Let us define the error as e1 = x1 − x̂1 , e2 = x2 − x̂2.
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HOSMO based STC

If we consider the perturbed nth order integrator system,

ẋi = xi+1, i = 1, · · · , n − 1

ẋn = u + ρ1

y = x1

(52)

the (n + 1)th order SMO is given as

HOSMO for perturbed nth order integrator

˙̂x i = x̂i+1 + zi i = 1, · · · , n − 1
˙̂xn = x̂n+1 + u + zn

˙̂xn+1 = zn+1 (53)

where the correction terms are given as

zi = ki |e1|(n−i+1)/(n+1)sign(e1) i = 1, · · · , n − 1

zn+1 = kn+1sign(e1)
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HOSMO based STC

Defining the error variables as ei = xi − x̂i for i = 1, · · · , n, we have

Error dynamics

ė1 = −k1|e1|n/(n+1)sign(e1) + e2

ė2 = −k2|e1|(n−1)/(n+1)sign(e1) + e3

...

ėn = −kn|e1|1/(n+1)sign(e1)− x̂n+1 + ρ1

˙̂xn+1 = kn+1sign(e1)

(54)

Now define the new variable en+1 = −x̂n+1 + ρ1. Also assuming ρ1 is Lipschitz and
|ρ̇1| < ∆1.

ė1 = −k1|e1|n/(n+1)sign(e1) + e2

ė2 = −k2|e1|(n−1)/(n+1)sign(e1) + e3

...

ėn = −kn|e1|1/(n+1)sign(e1)− x̂n+1 + en+1

ėn+1 = −kn+1sign(e1) + ρ̇1

(55)
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HOSMO based STC

The error dynamics in (55) has the structure of nth order differentiator.

So the error variables will converge to zero in finite time t > T0 by appropriate
choice of gains ki .

The value of kn+1 is dependent on the first derivative of ρ1.

The error dynamics for (51) can be written as

ė1 = −k1|e1|
2
3 sign(e1) + e2

ė2 = −k2|e1|
1
3 sign(e1)− x̂3 + ρ1

˙̂x3 = k3sign(e1) (56)

Now define the new variable e3 = −x̂3 + ρ1. Also assuming ρ1 is Lipschitz and
|ρ̇1| < ∆1.
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HOSMO based STC

ė1 = −k1|e1|
2
3 sign(e1) + e2

ė2 = −k2|e1|
1
3 sign(e1) + e3

ė3 = −k3sign(e1) + ρ̇1 (57)

The above equation is finite time stable which is already proved in literature.

So we can conclude that e1, e2 and e3 will converge to zero in finite time t > T2, by
selecting the appropriate gains k1, k2 and k3.

One can find x1 = x̂1, x2 = x̂2 and x̂3 = ρ1 after finite time t > T2.
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HOSMO based STC

To design a super twisting control for a system (29) considering the same sliding
surface (32) and taking its time derivative then, one can write expression as

˙̂s = c1ẋ1 + ˙̂x2

˙̂s = c1x̂2 + c1e2 + u + k2|e1|
1
3 sign(e1) +

∫ t

0
k3sign(e1)dτ

(58)

B. Bandyopadhyay (IIT B) IEEE IES Distinguished Lecture, UERJ, Brazil April 8-12, 2019 64 / 80



HOSMO based STC

Representing the system (29) in the co-ordinate of x1 and ŝ by using (32) and (58),

ẋ1 = ŝ − c1x1 + e2

˙̂s = c1x̂2 + c1e2 + u + k2|e1|
1
3 sign(e1) +

∫ t

0
k3sign(e1)dτ (59)
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HOSMO based STC

Now, the control input u is selected as

u = −c1x̂2 − k2|e1|
1
3 sign(e1)−

∫ t

0
k3sign(e1)dτ

− λ1|ŝ|
1
2 sign(ŝ)−

∫ t

0
λ2sign(ŝ)dτ (60)

or

u = −c1x̂2 −
∫ t

0
k3sign(e1)dτ − λ1|ŝ|

1
2 sign(ŝ)

−
∫ t

0
λ2sign(ŝ)dτ (61)
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HOSMO based STC

Substituting the control input (60) in the (59),

ẋ1 = ŝ − c1x1 + e2

˙̂s = c1e2 − λ1|ŝ|
1
2 sign(ŝ) + v

v̇ = −λ2sign(ŝ) (62)

B. Bandyopadhyay (IIT B) IEEE IES Distinguished Lecture, UERJ, Brazil April 8-12, 2019 67 / 80



HOSMO based STC

Now, the overall closed loop system can be represented as

Π1 :


ẋ1 = ŝ − c1x1 + e2

˙̂s = c1e2 − λ1|ŝ|
1
2 sign(ŝ) + v

v̇ = −λ2sign(ŝ),

Ξ1 :


ė1 = −k1|e1|

2
3 sign(e1) + e2

ė2 = −k2|e1|
1
3 sign(e1) + e3

ė3 = −k3sign(e1) + ρ̇1,

(63)

It is already discussed earlier that estimation error of system Ξ1 converges to zero in
finite time.
Note that the trajectories of system Π1 (above) cannot escape to infinity in finite time.
So, we can substitute e1 = e2 = 0.
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HOSMO based STC

Once the error becomes zero, the closed loop system is given by the following
expression

ẋ1 = ŝ − c1x1

˙̂s = −λ1|ŝ|
1
2 sign(ŝ) + v

v̇ = −λ2sign(ŝ) (64)
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HOSMO based STC

The lower two equation of (64) is super twisting equation, by selecting appropriate
gains λ1 and λ2, then ŝ = ˙̂s = 0 in finite time. which further implies, that the closed
loop system is given as

ẋ1 = −c1x1

x2 = −c1x1 (65)

Therefore, both the states x1 and x2 are asymptotically stable by choosing c1 > 0.
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HOSMO based STC

ẋ1 = x2
ẋ2 = u+ d

PLANT
˙̂x1 = x̂2 + k1|e1|

2
3 sign(e1)

˙̂x2 = x̂3 + u+ k2|e1|
1
3 sign(e1)

y = x1 +
y = x̂1−

e1

ŝ = c1x1 + x̂2

HIGHER ORDER OBSERVER

SLIDING SURFACE

u = −c1x̂2 − x̂3 − k2|e1|
1
3 sign(e1)− λ1|ŝ|

1
2 sign(ŝ) + v

v̇ = −λ2sign(ŝ)

SUPER TWISTING CONTROL

˙̂x3 = k3sign(e1)
x̂2

x̂3 =
∫ t
0 k3 sign(e1)dτ

Figure: Block diagram of the Super Twisting Control based on HOSM Observer
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HOSMO based STC

It is clear from the STC control (60) and (61) expression based on HOSMO (51) is
continuous.

Also, when we design STC control based on HOSMO then one has to tune only
the observer gains, according to the first derivative of disturbance, because it is
necessary for the convergence of the error variables of the HOSMO.

However, during controller design there is no explicit gain condition for the λ2 with
respect to the disturbances.
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HOSMO based STC

One can also observe that super twisting output feedback controller (50) design
based on super twisting observer, requires more conditions on gain relating to
disturbance and its derivative.

One is STO gain means observer gain k2 based on the explicit maximum bound of
the direct disturbance.

Another is λ2, STC gain based on the maximum bound of the derivative of
disturbance.
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HOSMO based STC

Therefore, one can conclude from the above observation that sound mathematical
analysis reduces the two gains conditions with respect to disturbance by simply
one gain condition.

Also the precision of the sliding manifold is much improved by using the HOSMO
based STC rather than STO based STC.

Due to the increase of this precision of sliding variable precision of the states are
also much affected.

In other word if we talk about stabilization problem, then states are much closer to
the origin in the case of HOSMO based STC rather than STO based STC.

We only talk about the closeness of states variable with respect to an equilibrium
point, because only asymptotic stability is possible in both the design methodology.
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Position Control of Industrial Emulator

[
ẋ1

ẋ2

]
=

[
0 1
0 −8.4344

] [
x1

x2

]
+

[
0

458.46

]
(u + d)

y =
[

1 0
] [ x1

x2

] (66)

x1, x2 are the angular position and the angular velocity of the load disk,
u is the input voltage to the drive motor
d is the disturbance voltage signal injected to perturb the plant, disturbance value
is d = 0.2 sin(t) considered.
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Position Control of Industrial Emulator

The controller and observer gains are selected as follows
STC-STOF

STC gains λ1 = 2 and λ2 = 2
STO gains k1 = 1.5

√
m and k2 = 1.1m, where m = 100.

STC-HOSMO
STC gains λ1 = 2 and λ2 = 2
HOSMO gains k1 = 6n

1
3 , k2 = 11n

1
2 and k3 = 6n, where n = 50.

The sliding surface is chosen as s = x1 + 1
458.46 x̂2.
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Position Control of Industrial Emulator
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Position Control of Industrial Emulator
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Conclusion

It is shown that, if one wants to implement absolutely continuous STC signal for
the perturbed double integrator, the derivative of the chosen switching function
must be Lipschitz in the time.

Therefore, we have the need of third order observer in this case.

The same is also true for the higher order perturbed chain of integrators, when we
want to synthesize absolutely continuous STC signal under the output information.

Experimental results are also presented to support the effectiveness of the
proposed methodology.
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Thank You!
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