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Introduction

Mainly two ways of control implementation:

Periodic

Aperiodic

Periodic Implementation (Fixed Sampling Period)
Easy to implement

Simple techniques are available to analyse the system stability e.g., discrete-time approach,
emulation approach, etc.

Aperiodic Implementation (Varying Sampling Period)
Minimize the resource utilization

Analyzing the system stability is a challenging task

Event-triggering is one of the aperiodic control implementation strategies that guarantees the
system stability.
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Introduction: Why Event-Triggering?

C P

Clock

x(t)x(ti+1)

u(t)

ti+1

d(t)

Sampled-Data System
The periodic control update

ti+1 = ti + h

Inefficient in terms of resource use

Open-loop sampling, i,e., clock is reset
once the time period h is elapsed
irrespective of the state evolution

Demerits
More control updates even when there
is no demand

Not suitable for parallel tasks

Inter sample behaviour may be difficult
to analyse
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Introduction: What is Event-Triggering?

C P

Event

x(t)x(ti+1)

u(t)

ti+1

d(t)

Event-Triggering Strategy
Control is updated in aperiodic manner

Triggering rule (event) governs the
control updates

Event generator uses the system state
trajectories, so it is closed-loop
sampling

Advantages
A need based approach:- so resources
are used optimally

Highly desired in networked control
system
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Introduction: What is Event-Triggering?

Preliminaries: Event-Triggering
Consider

ẋ = f(x, u), x0 = x(t0)

where u = κ(x) is any given stabilizing control law such that closed loop system

ẋ = f(x, κ(x))

is asymptotically stable. Assume control is implemented as

u(t) = u(ti) = κ(x(ti)) ∀t ∈ [ti, ti+1).

Define the error e(t) := x(ti)− x(t). There exists a Lyapunov function V such that

∂V

∂x
f(x, u) ≤ −α(‖x‖) + γ(‖e‖)

where α(·) and γ(·) are K∞ functions.a

aA function α : R≥0 → R≥0 is said to be class-K if it is continuous, strictly increasing and α(0) = 0. The
function α(·) is said to be class-K∞ if it belongs to class-K and α(s)→∞ as s→∞.
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Introduction: What is Event-Triggering?

Let there exists compact sets for α(·) and γ(·). Assuming α−1(·) and γ(·) are Lipschitz on these
compacts, the triggering rule based on Lyapunov method is for some σ ∈ (0, 1) (Tabuada’2006)

γ(‖e‖) ≤ σα(‖x‖) ⇐⇒ α−1

(
γ(‖e‖)
σ

)
≤ ‖x‖.

Since α−1(·) and γ(·) are Lipschitz, we write the following for a constant P

α−1

(
γ(‖e‖)
σ

)
≤
P

σ
‖e‖ ≤ ‖x‖.

Triggering Schemes

ti+1 = inf
{
t > ti : ‖e(t)‖ >

σ

P
‖x(t)‖

}
This triggering rule always ensures γ(‖e‖) ≤ σα(‖x‖). Thus, we have

V̇ = −α(‖x‖) + γ(‖e‖)
≤ −(1− σ)α(‖x‖) < 0.
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Event-Triggered Sliding Mode

Why Sliding Mode Control?
Gives robust performance in the presence of matched disturbances

Sliding mode dynamics becomes disturbance free system

Why Event-Triggered SMC?
To achieve robust performance with event-triggering strategy

To achieve improved steady state performance with discrete implementation strategy
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SMC With Event-Triggering

Sliding Mode Control
Consider a LTI System:

ẋ = Ax+Bu+Bd

where x ∈ Rn, u ∈ R. Define the sliding variable s = c>x and sliding manifold as

S :=
{
x ∈ Rn : c>x = 0

}
.

It is well known that the control

u = (c>B)−1
(
c>Ax+Ksigns

)
brings s to the sliding manifold S in finite time if K ≥ supt≥0 |c>Bd(t)|+ η for some η > 0.

Implementation of Control
Digital implementation never result s = 0 for all time

Periodic control implementation results in a steady-state that depends on sampling period
and also on disturbance bound

Can there be a method to bound steady-state value in digital implementation?
Yes Event-Triggering strategy
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Event-Triggered SMC

Definition: Practical Sliding Mode
Given ∆1 > 0 there exists a t1 ∈ [t0,∞) such that the system trajectories reach the region
bounded by ∆1 in the vicinity of the sliding manifold in time t1 and remain there for all time t ≥ t1.
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SMC With Event-Triggering

Discrete Control
The SMC with discrete implementation is

u(t) = −(c>B)−1
(
c>Ax(ti) +Ksigns(ti)

)
for all t ∈ [ti, ti+1). Here s(ti) = c>x(ti). For sampled-data implementation

0 < h = ti+1 − ti, ∀i ∈ Z≥0.

In event-triggered implementation, the inter event time, Ti = ti+1 − ti, is aperiodic in nature. So,
for stability of the system

Design a stabilizing triggering rule

Show Ti > τ for some τ > 0 and all i ∈ Z≥0
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SMC With Event-Triggering

Theorem
Let α ∈ (0,∞) such that ∣∣∣c>Ae(t)∣∣∣ < α.

Then, the event-triggered SMC guarantees practical sliding mode in the system if

K > sup
t≥0

∣∣∣c>Bd(t)
∣∣∣+ η + α

for some η > 0.

Proof
Choose V (s) = 1

2
s2. Consider t ∈ [ti, ti+1) and i ∈ Z≥0. Then

V̇ (s(t)) = s(t)
(
c>Ax(t)− c>Ax(ti)−Ksigns(ti) + c>Bd(t)

)
= −s(t)

(
c>Ae(t) +Ksigns(ti)− c>Bd(t)

)
≤ |s(t)|

∣∣∣c>Ae(t)∣∣∣− s(t)Ksigns(ti) + |s(t)|
∣∣∣c>B∣∣∣ dmax.
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SMC With Event-Triggering

Proof
If sign(s(ti)) = sign(s(t)), the second term equals K|s(t)|. Then,

V̇ (s(t)) ≤ −|s(t)|
(
K − α−

∣∣∣c>B∣∣∣ dmax

)
< −η|s(t)|.

This shows that the trajectories are attracted towards the sliding manifold and it reaches the
manifold in finite-time.

Once the trajectory reaches the sliding manifold, sign(s(t)) does not remain same in some
triggering interval [ti, ti+1), i.e., sign(s(ti)) 6= sign(s(t)).

However, the trajectory remains bounded in the vicinity of sliding manifold. Now, using the
relation ‖c‖‖A‖‖e(t)‖ < α, we obtain

|s(ti)− s(t)| =
∣∣∣c>x(ti)− c>x(t)

∣∣∣
≤ ‖c‖‖x(ti)− x(t)‖
= ‖c‖‖e(t)‖

<
α

‖A‖
.
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SMC With Event-Triggering

Thus, the trajectory remains within the region{
x ∈ Rn :

∣∣∣c>x∣∣∣ < α

‖A‖

}
once it enters this band.

This ensures the practical sliding mode in the system and the proof is completed.
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SMC With Event-Triggering

State Evolution
Represent the system in regular form

ẋ1 = A11x1 +A12x2

ẋ2 = A21x1 +A22x2 +B2u+B2d.

The sliding surface parameter is c> =
[
c>1 1

]
. Select c1 such that A11 −A12c>1 is Hurwitz.

Now, during sliding mode

ẋ1 = (A11 −A12c
>
1 )x1 +A12s

x2 = −c>1 x1 + s.

Proposition
The system trajectories remain ultimately bounded during practical sliding mode within the region
given by

B =

{
x1 ∈ Rn−1 : ‖x1‖ ≤ 2α

∥∥A>12P∥∥
λmin{Q}‖A‖

}
.
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ẋ1 = (A11 −A12c
>
1 )x1 +A12s

x2 = −c>1 x1 + s.

Proposition
The system trajectories remain ultimately bounded during practical sliding mode within the region
given by

B =

{
x1 ∈ Rn−1 : ‖x1‖ ≤ 2α

∥∥A>12P∥∥
λmin{Q}‖A‖

}
.

B. Bandyopadhyay (IIT B) IEEE IES Distinguished Lecture, UERJ, Brazil April 8-12, 2019 18 / 40



SMC With Event-Triggering

proof

Consider the Lyapunov function V1 = x>1 Px1. Then

V̇1 = ẋ>1 Px1 + x>1 P ẋ1

≤ x>1 (A>clP + PAcl)x1 + 2α ‖A‖−1 A>12Px1

where Acl = (A11 −A12c>1 ) is Hurtiwz. Then, for any Q > 0 such that A>clP + PAcl +Q = 0.
Using this,

V̇1 ≤ −x>1 Qx1 + 2α ‖A‖−1 A>12Px1

≤ −λmin{Q}‖x1‖2 + 2α ‖A‖−1
∥∥∥A>12P∥∥∥ ‖x1‖

= −λmin{Q}
(
‖x1‖ − 2α ‖A‖−1 ‖A>12P‖

λmin{Q}

)
‖x1‖.

We see that V̇1 < 0 whenever x1 is outside the ball B, and thus, B is attractive. This ensures that
the system trajectories enter B in some finite time and remain ultimately bounded.
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SMC With Event-Triggering

Design of Triggering Rule
Recall that the practical sliding mode is ensured if

‖c‖‖A‖‖e‖ < σα σ ∈ (0, 1)

So, the triggering rule is proposed as

ti+1 = inf {t > ti : ‖c‖‖A‖‖e(t)‖ ≥ σα}

Inter Event Time
Since triggering instants is generated whenever triggering rule is violated. So, we must ensure

It is important to show

Ti := ti+1 − ti > τ ∀i ∈ Z≥0

for some τ > 0.

B. Bandyopadhyay (IIT B) IEEE IES Distinguished Lecture, UERJ, Brazil April 8-12, 2019 20 / 40



SMC With Event-Triggering

Theorem
Let {ti}∞i=0 be triggering sequences. Then

ti+1 − ti =: Ti ≥
1

‖A‖
ln

(
1 + σ

α

‖c‖(ρ(‖x(ti)‖) + β)

)
where

β := ‖B(c>B)−1‖K + ‖B‖dmax,

and

ρ(‖x(ti)‖) :=
∥∥∥(A−B(c>B)−1c>A

)
x(ti)

∥∥∥ .
Proof
Construct Γ = {t : ‖c‖‖A‖‖e(t)‖ = 0}. Then for all time t ∈ [ti, ti+1[\Γ, we write

d
dt
‖e(t)‖ ≤

∥∥∥∥ d

dt
e(t)

∥∥∥∥ =

∥∥∥∥ d

dt
x(t)

∥∥∥∥
=
∥∥∥Ax(t)−B(c>B)−1c>Ax(ti)−B(c>B)−1Ksigns(ti) +Bd(t)

∥∥∥ .
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SMC With Event-Triggering

Proof
Recall x(t) = x(ti)− e(t). Then, the above can be reduced to

d
dt
‖e(t)‖ =

∥∥∥Ax(ti)−Ae(t)−B(c>B)−1c>Ax(ti)−B(c>B)−1Ksigns(ti) +Bd(t)
∥∥∥

≤‖A‖‖e(t)‖+
∥∥∥(A−B(c>B)−1c>A

)
x(ti)

∥∥∥+ ‖B(c>B)−1K‖+ ‖B‖dmax

=‖A‖ ‖e(t)‖+ ρ(‖x(ti)‖) + β.

The solution to the above differential inequality with initial condition e(ti) = x(ti)− x(ti) = 0 is

‖e(t)‖ ≤
ρ(‖x(ti)‖) + β

‖A‖

(
e‖A‖(t−ti) − 1

)
.

At the triggering instant the error equals σα
‖c‖‖A‖ . So,

σα ≤ ‖c‖ ‖A‖
ρ(‖x(ti)‖) + β

‖A‖

(
e‖A‖Ti − 1

)
.

On rearrangement, it gives the lower bound for Ti. It is seen that for any bounded region there
exists a τ > 0 such that Ti > τ . Thus, the proof is completed.
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SMC With Event-Triggering

Discussion
α must be selected to incorporate practical constraints

If τmin represents the minimum time for control execution, then α should correspond to
Ti > τmin

The triggering rule
‖c‖‖A‖‖e‖ < σα

demands continuous state measurement, thus it needs dedicated hardware

Self-Triggering Mechanism
This triggering mechanism is motivated by the event-triggering mechanism and development is
based on it.

Does not require hardware circuit to evaluate triggering condition

Triggering instant is determined from previous sampled instant

It is more feasible

The self-triggering mechanism can be given as

ti+1 = ti +
1

‖A‖
ln

(
1 + σ

α

‖c‖(ρ(‖x(ti)‖) + β)

)
This self-triggering scheme always guarantees positive lower bound for inter execution time

B. Bandyopadhyay (IIT B) IEEE IES Distinguished Lecture, UERJ, Brazil April 8-12, 2019 23 / 40



SMC With Event-Triggering

Example: Event-Triggering

ẋ(t) =

[
0 1
4 5

]
x(t) +

[
0
1

]
(u(t) + 0.5 sin(10t)) .

We design c =
[
0.5 1

]
, K = 0.65, α = 0.5, σ = 0.85.
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Figure: Performance of event-triggered SMC
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Figure: Performance of event-triggered SMC
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Properties of Triggering Mechanism

Definitions
An event-triggered system with SMC is said to have robust global event-triggering property if

inf
x∈Rn

i∈Z≥0

|d(t)|≤d0

Ti > aT .

An event-triggered system with SMC is said to have robust semi-global event-triggering
property if for any set D in Rn,

inf
x∈D⊂Rn

i∈Z≥0

|d(t)|≤d0

Ti > aT .

An event-triggered system with SMC is said to have robust local event-triggering property if
for some subset X in D ⊂ Rn,

inf
x∈D∩X ,X⊂D⊂Rn

i∈Z≥0

|d(t)|≤d0

Ti > aT .
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From the above definition, we see that the triggering mechanism

ti+1 = inf {t > ti : ‖c‖‖A‖‖e(t)‖ ≥ σα}

has robust semi-globally property. This can be concluded from

Ti ≥
1

‖A‖
ln

(
1 + σ

α

‖c‖(ρ(‖x(ti)‖) + β)

)
.

The event-triggering mechanism can be designed to achieve globally robust stability of the
event-triggered system.
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Global Event-Triggered System

Global Triggering Rule

ti+1 = inf {t : t > ti, ‖c‖‖A‖‖e(t)‖ ≥ σ(‖x(ti)‖+ α)}

Sliding Mode Control
The SMC for the global stability of event-triggered system is

u(t) = −(c>B)−1
(
c>Ax(ti) +K(x(ti))signs(ti)

)
, t ∈ [ti, ti+1)

The switching gain K(x(ti)) must satisfiy the following
1 K(x(ti)) >

∣∣c>B∣∣ d(t) for all t ≥ 0,
2 K(x(ti)) > ‖x(ti)‖+ α for all t ≥ 0.

We select it as

K(x(ti)) = K1 +K2‖x(ti)‖

with K1 >
∣∣c>B∣∣ dmax + α and K2 > 1.
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Global Event-Triggered System

Theorem
Let α > 0 such that ∣∣∣c>Ae(t)∣∣∣ < ‖x(ti)‖+ α, t ≥ 0.

Then, SMC guarantees that the sliding trajectory remains within a band{
x ∈ Rn :

∣∣∣c>x∣∣∣ < (α+ ‖x(ti)‖)‖A‖−1
}

if

K(x(ti)) > sup
t≥0

∣∣∣c>Bd(t)
∣∣∣+ ‖x(ti)‖+ α.

Proof
Consider the Lyapunov function V (s) = 1

2
s2. Differentiating V along the system trajectory

V̇ (s(t)) = sṡ

= s(t)
(
c>Ax(t)− c>Ax(ti)−K1signs(ti)

−K2‖x(ti)‖signs(ti) + c>Bd
)
.
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Proof
Recalling e(t) = x(ti)− x(t) and reducing the above further,

V̇ ((t)) = −s(t)c>Ae(t)− s(t)K1signs(ti)− s(t)K2‖x(ti)‖signs(ti) + s(t)c>Bd(t)

< |s(t)|‖x(ti)‖+ |s(t)|α− s(t)K1signs(ti)− s(t)K2‖x(ti)‖signs(ti)

+ |s(t)|
∣∣∣c>B∣∣∣ dmax.

Until the sliding manifold is reached, we have signs(ti) = signs(t). So,

V̇ (s(t)) < |s(t)|‖x(ti)‖+ |s(t)|α− |s(t)|K1 − |s(t)|K2‖x(ti)‖+ |s(t)|
∣∣∣c>B∣∣∣ dmax

= −|s(t)|
(
K1 − α−

∣∣∣c>B∣∣∣ dmax

)
− |s(t)| (K2 − 1) ‖x(ti)‖

< −|s(t)|
(
K1 − α−

∣∣∣c>B∣∣∣ dmax

)
≤ −η|s(t)|

for some η > 0. This shows the manifold is attractive.

Once the trajectory reaches the manifold, it may cross it as the control is not updated. But the
trajectory remains bounded due to triggering mechanism.
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Proof
Calculating the maximum deviation of sliding trajectory

|s(ti)− s(t)| =
∣∣∣c>x(ti)− c>x(t)

∣∣∣
≤ ‖c‖‖e(t)‖

<
α+ ‖x(ti)‖
‖A‖

.

Thus, the sliding mode band can be obtained for the case s(ti) = 0. Thus, the proof is completed.
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Global Event-Triggered SMC

Theorem
Let {ti}∞i=0 be the sequence of triggering instants generated by the global triggering rule. Then,

Ti ≥
1

‖A‖
ln

(
1 + σ

‖x(ti)‖+ α

‖c‖(ρ(‖x(ti)‖) + κ)

)
where ρ(‖x(ti)‖) and κ are defined as

ρ(‖x(ti)‖) :=
(∥∥∥A−B(c>B)−1c>A

∥∥∥+
∥∥∥B(c>B)−1K2

∥∥∥) ‖x(ti)‖

and

κ :=
∥∥∥B(c>B)−1K1

∥∥∥+ ‖B‖dmax.

See that Ti > τ for some τ > 0 and all x ∈ Rn
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Proof
To show that Ti is strictly lower bounded from zero, we find

d

dt
‖e(t)‖ ≤

∥∥∥∥de(t)

dt

∥∥∥∥ =

∥∥∥∥dx(t)

dt

∥∥∥∥
=
∥∥∥Ax(t)−B(c>B)−1c>Ax(ti)−B(c>B)−1 (K1 +K2‖x(ti)‖) signs(ti) +Bd(t)

∥∥∥
≤
∥∥∥Ax(ti)−Ae(t)−B(c>B)−1c>Ax(ti)−B(c>B)−1K1signs(ti)

−B(c>B)−1K2‖x(ti)‖signs(ti) +Bd(t)
∥∥∥

≤ ‖A‖‖e(t)‖+ ‖A−B(c>B)−1c>A‖‖x(ti)‖+ ‖B(c>B)−1K2‖‖x(ti)‖

+ ‖B(c>B)−1K1‖+ ‖B‖dmax

= ‖A‖‖e(t)‖+ ρ(‖x(ti)‖) + κ.

Solving the above differential inequality with ‖e(ti)‖ = 0,

‖e(t)‖ ≤
ρ(‖x(ti)‖) + κ

‖A‖

(
e‖A‖(t−ti) − 1

)
for t ∈ [ti, ti+1).
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At the triggering instant,

σ(‖x(ti)‖+ α)

‖c‖‖A‖
≤
ρ(‖x(ti)‖) + κ

‖A‖

(
e‖A‖Ti − 1

)
.

On rearrangement, it gives the lower bound for inter event-time. Thus, the proof is completed.
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SMC With Global Event-Triggering

Example

ẋ(t) =

[
0 1
4 5

]
x(t) +

[
0
1

]
(u(t) + 0.5 sin(10t)) .

We design c =
[
0.5 1

]
, K1 = 0.7, K2 = 1.2, α = 0.5, σ = 0.85.
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Figure: Performance of event-triggered SMC
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Event-Triggered SMC

Conclusion
In event-triggered SMC, the steady-state bound can be designed as per any desired value

Robust system performance is also achieved

This strategy can be extended to nonlinear systems

Global stability of the event-triggered system is also obtained by designing the
event-triggering rule
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Thank you for
Attention

Questions?
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