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Terminal Sliding Mode: Motivation

Classical sliding Mode Control
Most commonly used switching manifolds are the linear hyperplanes which guarantee
asymptotic stability of the system motion during sliding mode
System states reach the equilibrium in infinite time

Motivation
Need to improve the system performance during sliding mode
System should reach equilibrium point as fast as possible
A non-Lipschitz nonlinear manifold has faster convergence near the equilibrium point
(i.e., origin)

Terminal Sliding Mode
In TSM, a nonlinear sliding surface is proposed
The equilibrium is a terminal attractor, i.e., the states can be reached in finite time
and are stable
The term terminal is referred to the equilibrium which can be reached in finite time
and is stable
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Terminal Sliding Mode: Concept

Terminal Sliding Mode
Consider a second order system

ẋ1 = x2
ẋ2 = f (x) + g(x)u

where g−1(x) 6= 0. Select the TSM manifold as

s = x2 + βxq/p
1 , β > 0

where p and q are odd integers such that q < p. Differentiating s, we obtain

ṡ = ẋ2 + β
q
p x

q
p−1
1 ẋ1

= f (x) + g(x)u + β
q
p x

q−p
p

1 x2.

Design the control as u = −g−1(x)
(

f (x) + β q
p x

q−p
p

1 x2 + Ksign(s)
)

where K > 0.

Then, simplifying further

ṡ = −Ksign(s).
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Terminal Sliding Mode: Concept

Reduced Order Dynamics
During the sliding mode, we achieve s = 0, that implies

ẋ1 = x2 = −βxq/p
1 .

Now solving for time t1 such that x1(t) = 0 for all t ≥ t1 given any initial condition
x1(t0) at time t = t0

t1 = t0 −
1
β

∫ 0

x1(t0)
x
− q

p
1 dx1

= t0 + p
β(p − q) x

p−q
p

1 (t0).

Note that p − q is an even number. It implies that x1 goes to zero in time t1 and remains
there for all time t ≥ t1 since ẋ1 = 0. Then, x2 = 0 and thus, finite time stability is
ensured.

Remarks
The control expression contains negative exponent of x1, so it becomes unbounded
for x1 = 0
However, during sliding the control can be bounded by selecting q

p ∈ [0.5, 1). It can

be shown as u = −g−1(x)
(

f (x)− β2 q
p x

2
(

q
p−

1
2

)
1 + Ksign(s)
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Terminal Sliding Mode: Concept

Terminal Sliding Manifold
Consider the terminal sliding manifold

s = x2 + βxq/p
1 .

Remarks
TSM manifold is a non-Lipschitz in
nature
Near origin the convergence rate is
much faster than the linear surface
Solution of the such system reach the
equilibrium point in finite time
Solution in forward time direction is
unique
If p = q, then TSM manifold
becomes linear sliding surface
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Figure: Terminal sliding manifold
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TSM for SISO System

SISO System

ẋi = xi+1 i = 1, 2, . . . , n − 1,
ẋn = f (x) + g(x)u.

For this nth order SISO system, hierarchical TSM manifolds are defined as

s1 = ṡ0 + β1sq1/p1
0

s2 = ṡ1 + β2sq2/p2
1

...

sn−2 = ṡn−3 + βn−2sqn−2/pn−2
n−3

sn−1 = ṡn−2 + βn−1sqn−1/pn−1
n−2

where s0 = x1, βi > 0, pi > qi and pi , qi are positive odd integers. The values of integer
must satisfy for bounded control during sliding given asa

qk

pk
>

n − k
n − k + 1 k = n − 1, . . . , 1.

aX. Yu and Z. Man, “Model reference adaptive control systems with terminal sliding mode”, Int.
J. Control, vol. 64, no. 6, pp. 1165–1176, 1996.
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TSM for SISO System

TSM Control
Differentiating sn−1, we obtain

ṡn−1 = s̈n−2 + βn−1
qn−1

pn−1
s

qn−1
pn−1

−1

n−2
d
dt sn−2

= f (x) + g(x)u +
n−1∑
i=1

di

dt i βn−i s
qn−i
pn−i

n−i−1.

Now, design the control law

u = −g−1(x)

(
f (x) +

n−1∑
i=1

di

dt i βn−i sηn−i
n−i−1 + Ksign(sn−1)

)
.

Substituting u in the above dynamics

ṡn−1 = −Ksign(sn−1).

It leads to sn−1 = 0 in finite time. This implies sn−2 = 0 and subsequently to
s0 = x1 = 0. Thus, all the states of the goes to zero in finite time.
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Fast Terminal Sliding Mode Control
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Fast Terminal Sliding Mode

Motivation
Consider the terminal sliding manifold

s = x2 + βxq/p
1 .

During sliding ẋ1 = −βx
q
p
1 . It can be observed that

if the initial condition is far away from the origin the term x
q
p
1 has lesser magnitude

than that of linear counter part
convergence can be enhanced by incorporating a linear term in terminal sliding
manifold

Fast TSM
To achieve faster convergence, a new TSM manifold is defined as

s = x2 + αx1 + βxq/p
1

and during sliding ẋ1 = −αx1 − βx
q
p
1 . Thus,

when x1 is far away from the origin αx1 dominates, in other words, ẋ1 ≈ −αx1, so
convergence is faster.

for the values of x1 close to origin, βx
q
p
1 will be the dominating term, so ẋ1 ≈ −βx

q
p
1 .B. Bandyopadhyay (IIT B) IEEE IES Distinguished Lecture, UERJ, Brazil April 8-12, 2019 10 / 55



Fast Terminal Sliding Mode

Reduced Order System
The reduced system during sliding can be given as

ẋ1 = −αx1 − βx
q
p
1 .

The time of convergence of x1 to zero can be obtained as

t1 = t0 +
∫ 0

x1(t0)

dx1

−αx1 − βx
q
p
1

= t0 +
∫ 0

x1(t0)

dx1

−x
q
p
1

(
αx

1− q
p

1 + β
)

= t0 + p
α(p − q)

(
ln
(
αx

p−q
p

1 (t0) + β

)
− ln(β)

)
where t0 is the time taken by the system to reach the fast terminal sliding manifold.
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Fast Terminal Sliding Mode

SISO System

ẋi = xi+1 i = 1, 2, . . . , n − 1,
ẋn = f (x) + g(x)u.

For this nth order SISO system, hierarchical TSM manifolds are defined as

s1 = ṡ0 + α1s0 + β1sq1/p1
0

s2 = ṡ1 + α2s1 + β2sq2/p2
1

...

sn−2 = ṡn−3 + αn−2sn−3 + βn−2sqn−2/pn−2
n−3

sn−1 = ṡn−2 + αn−1sn−2 + βn−1sqn−1/pn−1
n−2

where s0 = x1, βi > 0, pi > qi and pi , qi are positive odd integers. The values of integer
must satisfy for bounded control during sliding given asa

qk

pk
>

n − k − 1
n − k k = n − 1, . . . , 1.

aX. Yu and Z. Man, “Fast terminal sliding-mode control design for nonlinear dynamical
systems”, IEEE Trans. Circuit Systems-1, Fundam. Theory and Appl., vol. 49, no. 2, pp. 261–264,
2002.
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Non Singular Terminal Sliding Mode Control
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Non Singular Terminal Sliding Mode

Terminal Sliding Mode Control
Recall the TSM control law

u = −g−1(x)
(

f (x) + β
q
p x

q
p−1
1 x2 + Ksign(s)

)
.

We see that the exponent of x1 is q
p − 1 < 0. So, when system trajectories crosses x1 = 0

axis, then control law become infinite. Such a controller can not be applied to the system
and it is called singularity in the TSM.

Non Singular Terminal Sliding Mode
To avoid such a situation, a new terminal manifold is proposed called non singular
terminal sliding mode (NTSM)a

s = x1 + 1
β

p
q

x
p
q
2 , 1 < p

q < 2

The TSM and NTSM surfaces are equivalent to each other when s = 0.
aY. Feng, X. Yu and Z. Man, “Non-singular terminal sliding mode control of rigid

manipulators”, Automatica, vol. 38, no. 12, pp. 2159–2167, 2002.
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Non Singular Terminal Sliding Mode

Equivalence Between TSM and NTSM

It is to be noted that x
q
p
1 is an odd function, i.e., (−x1)

q
p = −x

q
p
1 .

One way to realize this, we can take x
q
p
1 = |x1|

q
p sign(x1).

Now, we shall see equivalence between TSM and NTSM when s = 0. From NTSM with
s = 0, we have

x1 = − 1
β

p
q
|x2|

p
q sign(x2).

From this, we conclude that sign(x1) = −sign(x2). Multiplying both sides by sign(x1)
and then taking q

p power on both sides (use the fact |x1| = x1sign(x1))

β|x1|
q
p = |x2|.

Multiplying both sides by sign(x2), it yields

−β|x1|
q
p sign(x1) = x2.

This in other words equal to x2 = −βx
q
p
1 . Thus, time taken by the system to reach

x1 = 0 is same as that of TSM.
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Non Singular Terminal Sliding Mode

Finite Time Reachability to NTSM Manifold
Differentiating s

ṡ = ẋ1 + 1
β

p
q

p
q x

p
q−1
2 ẋ2

= x2 + 1
β

p
q

p
q x

p
q−1
2 (f (x) + g(x)u).

Design the control law as given below

u = −g−1(x)
(

f (x) + β
p
q

q
p x

2− p
q

2 + Ksign(s)
)
.

Substituting for u in the ṡ, we obtain

ṡ = − 1
β

p
q

p
q x

p
q−1
2 Ksign(s).

To show convergence to origin, we consider V = 1
2 s2. Differentiating V along the system

trajectories

V̇ = sṡ = −s
(

1
β

p
q

p
q x

p
q−1
2 Ksign(s)

)
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Non Singular Terminal Sliding Mode

Finite Time Reachability to NTSM Manifold
which on further simplification

V̇ = − 1
β

p
q

p
q x

p
q−1
2 K |s|.

Define ρ(x2) := 1

β
p
q

p
q x

p
q−1
2 K . Then sṡ = −ρ(x2)|s|. If x2 6= 0, we have ρ(x2) > 0. That

means, the trajectories are attracted towards the NTSM manifold and hence finite time
convergence is achieved. For x2 = 0, we write

ẋ2 = −Ksign(s).
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Non Singular Terminal Sliding Mode

Finite Time Reachability to NTSM Manifold
If s > 0, then ẋ2 = −K . Similarly for s < 0, we have ẋ2 = K .
It implies that there exists a small vicinity |x2| < δ around x2 = 0 such that for
s > 0, we have ẋ2 = −K . Similarly for s < 0.
Then x2 decreases for s > 0 and increases for s < 0. So, the sliding trajectories will
cross the boundaries x2 = δ and x2 = −δ in finite time and similarly for s < 0.
Therefore, the trajectories are attracted towards the NTSM manifold in finite time.
Thus, proof is completed.
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Prescribed Convergence Law
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Prescribed Convergence Law

Second Order System
Consider a second order system

ẋ1 = x2
ẋ2 = f (x) + g(x)u

where g(x) 6= 0. Define the sliding variable as s = x2 + β|x1|
1
2 sign(x1). The control law

is given as

u = −g−1(x)(f (x) + αsign(s))

where α > β2

2 . Substituting the control in the system dynamics, we obtain

ẋ1 = x2
ẋ2 = −αsign(s).

It can be seen that trajectories are driven by a constant rate gain, hence the name
prescribed convergence lawab.

aA. Levant, “Universal single-input-single-output(SISO) sliding mode controllers with finite time
convergence”, IEEE Trans. Autom. Control, vol. 46, no. 9, pp. 1447–1451, 2001.

bA. Levant, “Higher-order sliding modes, differentiation and output-feedback control”, Int. J.
Control, vol. 76, no. 9/10, pp. 924–941, 2003.B. Bandyopadhyay (IIT B) IEEE IES Distinguished Lecture, UERJ, Brazil April 8-12, 2019 20 / 55



Prescribed Convergence Law

Proof of Prescribed Convergence Law
Differentiating s and substituting for u

ṡ = −αsign(s) + 1
2β|x1|

− 1
2 x2.

It can be noted that the initial conditions
may be located either in s > 0 or s < 0
(s = 0 is trivial). Consider s > 0 and then

ẋ1 = x2
ẋ2 = −α.

Due to geometric reason, the system
trajectories decreases and eventually hit
the curve s = 0 on the way. Similarly, for
the case s < 0 as the dynamics takes the
form

ẋ1 = x2
ẋ2 = α.

It implies that the trajectories increases
and hit s = 0 in finite time.
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Prescribed Convergence Law

Proof of Prescribed Convergence Law

When s = 0, we have x2 = −β|x1|
1
2 sign(x1), so

ṡ = −αsign(s)− 1
2β

2sign(x1)

≤ −ηsign(s).

Thus, once the trajectories hit s = 0, it can never leave it provided α > β2

2 and hence,
the sliding mode is enforced in finite time.

System Dynamics

During sliding, we obtain ẋ1 = −β|x1|
1
2 sign(x1). Consider V = 1

2x2
1 . Then,

V̇ = x1ẋ1 = −x1β|x1|
1
2 sign(x1) = −β|x1|

3
2

= −β2
3
4 V

3
4 .

We see that V goes to zero in time t1 = t0 + 4
β23/4 V 1

4 (t0). Thus, finite time stability is
ensured.
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Summary

Remarks
Prescribed convergence law and TSM are similar except in their control structures.
NTSM is proposed to avoid the singularity issue in TSM.
There is no singularity in the prescribed convergence law.
These all control structures belong to second-order sliding mode control.
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Discrete Terminal Sliding Mode Control
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Terminal Sliding Mode: Recap

Sliding mode control concept which tries to make x = 0 in finite time (not just
s = 0).
In continuous time it is accomplished by using a non linear sliding surface of form
(given here for 2nd order).

ẋ1 = x2
s = x2 + αxγ1 + βxρ1 ,
α, β, γ, ρ > 0,
0 < γ < 1
γ < ρ.

γ, ρ→ p/q; p, q odd
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Discretization

Let us assume the system is discretized at a sampling interval τ , and the system
state is moving along the sliding surface (somehow).
If there is a k∗ such that x = 0 after k∗, then

0 = x1(k∗ + 1) = x1(k∗) + τx2(k∗)
0 = s(k∗) = x2(k∗) + αxγ1 (k∗) + βxρ1 (k∗)
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The possibilities
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The Improbability

There are only a finite number of points from which the states can go to origin.
It is highly unlikely that the system would cross these points.
Hence, it can be assumed that due to discretization, the finite-time part of terminal
sliding mode is no longer true.
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Stability Analysis

Analysing around the origin, the discrete-time system

f (x1(k)) = x1(k + 1) = x1(k)− αxγ1 (k) + βxρ1 (k)

it is found that∣∣∣∣df (y)
dy

∣∣∣∣
y→0

= |1− ατγyγ−1 − βτρyρ−1|y→0 =∞ > 1

It is required that
∣∣∣∣df (y)

dy

∣∣∣∣ < 1, so system is unstable around origin and it diverges

from origin.

Periodicity
Analysis shows that if f (y∗) = −y∗, then {y∗,−y∗} form a limit set. (Not much
can be said in this case).
Further, this is the only possible 2 period.
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2-period analysis

Let us assume that x∗ is a point that has a 2-period motion. Then, f (f (x∗)) = x∗,
i.e

x∗ − ατ(x∗)γ − βτ(x∗)ρ − ατ(f (x∗))γ − βτ(f (x∗))ρ

Or equivalently

(ατ(f (x∗))γ + βτ(f (x∗))ρ) = −(ατ(x∗)γ + βτ(x∗)ρ) = ατ(−x∗)γ + βτ(−x∗)ρ

Using the fact that (ατ(x∗)γ + βτ(x∗)ρ) is monotonic it can be said that
f (y∗) = −y∗ is the only 2-periodic orbit possible (if it exists).
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Condition for Stability of 2-period orbits

Consider there exists a 2-period orbit satisfying f (x∗) = −x∗,
Using the discrete system stability condition around x = x∗, the stability of the
2-period can be assured if∣∣∣∣df (f (x))

dx

∣∣∣∣
x=x∗

=
∣∣∣∣df (x)

dx

∣∣∣∣
x=f (x∗)

∣∣∣∣df (x)
dx

∣∣∣∣
x=x∗

< 1

= (1− ατγ(x∗)γ−1 − βτρ(x∗)ρ−1)2 < 1
− 2 < −ατγ(x∗)γ−1 − βτρ(x∗)ρ−1 < 0
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Conditions

From the conditions imposed on γ, ρ it can be said that

−ατγ(x∗)γ−1 − βτρ(x∗)ρ−1 < 0

Thus, stability condition reduces to

− 2 < −ατγ(x∗)γ−1 − βτρ(x∗)ρ−1 (1)

Condition (1) further reduces to

2 > ατγ(x∗)γ−1 + βτρ(x∗)ρ−1 (2)
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Conditions

As said earlier, 2-period orbits are only those satisfying

f (x∗) = −x∗

Thus,

x∗ − ατ(x∗)γ − βτ(x∗)ρ = −x∗

which cab be simplified into

ατ(x∗)γ−1 + βτ(x∗)ρ−1 = 2

for x∗ 6= 0.
Substituting the LHS of above equation instead of 2 in the inequality (2), we get

ατ(x∗)γ−1 + βτ(x∗)ρ−1 > ατγ(x∗)γ−1 + βτρ(x∗)ρ−1 (3)
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Conditions

Now due to the restrictions on γ and ρ, as defined earlier, we can write

(x∗)γ−1 = |x∗|γ−1, (x∗)ρ−1 = |x∗|ρ−1

which avoids complex case of x∗.
Now dividing (3) by τ |x∗|γ−1 and rearranging, we get

α(1− γ) > β(ρ− 1)|x∗|ρ−γ (4)

Hence for ρ > 1 the condition for stable 2-period can thus be derived to be

α(1− γ)
β(ρ− 1) > |x

∗|ρ−γ , ρ > 1 (5)

If ρ ≤ 1, we get β(ρ− 1)|x∗|ρ−γ < 0 and α(1− γ) > 0 for all x∗.
Thus, in case of ρ ≤ 1, there is no extra condition other than f (x∗) = −x∗ for
existence of stable 2-period orbits.
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Otherwise

If no such y∗ exists, then there are no periodic orbits (Sarkovskii Theorem).
Sarkovskii Theorem :

I The existence of a period i orbit implies the existence of all periodic orbits of period j
where j follows i in the table.

I The non existence of a period j orbit would imply the non existence of a period i orbit
where i precedes j in the table.

3 5 7 9 · · ·
6 10 14 18 · · ·
...

2n3 2n5 2n7 2n9 · · ·
2n 2n−1 · · · 2 1

Consider there is no 2-period orbit (stable or unstable) existing in the system.
Since system is not stable around origin (the only stationary point), the system
would diverge. (while still on the sliding surface).
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Analysis

Discretization of continuous terminal sliding mode.
I Almost never leads to finite time convergence.
I Certainly leads to an instability around origin.
I May lead to periodic / chaotic behavior (Chaotic behavior can exist only if periodic

behavior is also possible).
I Failing which system is unstable

Discrete-time terminal sliding mode should be handled differently from
continuous-time terminal sliding mode.
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Discrete TSM

Aim
Given a discrete-time system,

x(k + 1) = F (x(k, u(k))

the terminal sliding surface is such that the the system dynamics confined to the surface
(brought about by control) has the property

x(k + 1) = Fc (x(k))

x(k + kd ) = F kd
c (x(k)) = 0, kd <∞⇒ nilpotent function
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Algorithm for Discrete TSM

Using appropriate transformation ψ, transform the system into Brunowsky canonical
form,

zi (k + 1) = zi+1(k), i = 1, 2, · · · , n
zn(k + 1) = adx(k) + bdu(k)

Sliding surface is zn(k) = 0.
Reaching law is zn(k + 1) = 0.
Design appropriate control to achieve DSM.
It is to be noted that control should not be based on continuous SMC idea
(Bartoszewicz, Bartolini-Utkin).
Can be converted to MROF also.
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Example

Consider the system[x1(k + 1)
x2(k + 1)
x3(k + 1)

]
=

[ x2 + f 2
x (k)

fx (k)
x1(k) + 2x2(k)f 2

x (k) + f 4
x (k)

]
, fx (k) = x3(k)− x2

1 (k) + u(k)

In a transformed co-ordinate frame with

z(k) =

[x3(k)− x2
1 (k)

x1(k)− x2
2 (k)

x2(k)

]
we have

z(k + 1) =

[0 1 0
0 0 1
1 0 0

]
z(k) +

[0
0
1

]
u(k)
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Results
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Terminal Sliding Mode: Motivation

Terminal Sliding Mode
In TSM, a nonlinear sliding surface is proposed
The equilibrium is a terminal attractor, i.e., the states can be reached in finite time
and are stable
The term terminal is referred to the equilibrium which can be reached in finite time
and is stable

Discrete Terminal Sliding Mode
Finite-time convergence of system states are not ensured
Results in periodic motion
Established only period-2 motion in steady-state

B. Bandyopadhyay (IIT B) IEEE IES Distinguished Lecture, UERJ, Brazil April 8-12, 2019 41 / 55



Terminal Sliding Mode: Concept

Terminal Sliding Mode
Consider a second order system

ẋ1 = x2
ẋ2 = f (x) + g(x)u

where g−1(x) 6= 0. Select the TSM manifold as

s = x2 + βxq/p
1 , β > 0

where p and q are odd integers such that q < p. Differentiating s, we obtain

ṡ = ẋ2 + β
q
p x

q
p−1
1 ẋ1

= f (x) + g(x)u + β
q
p x

q−p
p

1 x2.

The control as u = −g−1(x)
(

f (x) + β q
p x

q−p
p

1 x2 + Ksign(s)
)

results finite-time stability

of

ṡ = −Ksign(s), K > 0.
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Discrete TSM

Discretized Plant
Consider Euler discretization of the continuous-time system

x1(k + 1) = x1(k) + hx2(k)
x2(k + 1) = x2(k) + hf (x(k)) + hg(x(k))u(k)

and the sliding manifold as s(k) = x2(k) + βxη1 (k). If the control is chosen such that
s(k + 1) = 0 for all k, then

Φ(x1) = x1(k + 1) = x1(k)− hβxη1 (k).

The stability of the system is given by the solution of Φ(x1)
It has been shown that it results periodic solutions
To guarantee the stability of the system, all the possible periodic orbits are found
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Periodic Orbits

Period-1 Orbit
There exits only period-1 is Φ(x1(k)) = x1(k) if x1(k) = 0 and it is seen that this point is
unstable. To see this

Φ(x1(k)) = x1(k)− hβxη1 (k) = x1(k) =⇒ x1(k) = 0.

Period-2 Orbit
For period-2 point there exists a point x (1)

2 such that Φ2(x (1)
2 ) = x (1)

2 i.e.,
Φ(x (1)

2 ) = x (2)
2 ,Φ(x (2)

2 ) = x (1)
2 , then

x (2)
2 = x (1)

2 − hβ
{

(x (1)
2 )η

}
x (1)
2 = x (1)

2 − hβ
{

(x (1)
2 )η + (x (2)

2 )η
}

and further

(x (2)
2 )η = −(x (1)

2 )η.

Since (x (1)
2 )η is an odd function, then x (2)

2 = −x (1)
2 is the solution. Then period-2 points

can be given as {(x (1)
2 ,−2x (1)

2 /h), (−x (1)
2 , 2x (1)

2 /h)} and the limit set as {x (1)
2 ,−x (1)

2 }.
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Periodic Points

Period-4 Orbit
Let x (1)

4 , x (2)
4 , x (3)

4 and x (4)
4 be the four points such that it satisfies period-4 motion, i.e.,

Φ(x (1)
4 ) = x (2)

4 , Φ(x (2)
4 ) = x (3)

4 , Φ(x (3)
4 ) = x (4)

4 , Φ(x (4)
4 ) = x (1)

4 , then

x (2)
4 = x (1)

4 − hβ
{

(x (1)
4 )η

}
x (3)
4 = x (1)

4 − hβ
{

(x (1)
4 )η + (x (2)

4 )η
}

x (4)
4 = x (1)

4 − hβ
{

(x (1)
4 )η + (x (2)

4 )η + (x (3)
4 )η

}
x (1)
4 = x (1)

4 − hβ
{

(x (1)
4 )η + (x (2)

4 )η + (x (3)
4 )η + (x (4)

4 )η
}
.

Thus, we obtain the relation

(x (1)
4 )η + (x (2)

4 )η + (x (3)
4 )η + (x (4)

4 )η = 0

and

(x (1)
4 )η + (x (2)

4 )η = −(x (3)
4 )η − (x (4)

4 )η

= (−x (3)
4 )η + (−x (4)

4 )η.
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Periodic Points

Period-4 Orbit
Due to odd nature of the function Φ(x(k)), we arrive at

x (1)
4 = −x (3)

4 and x (2)
4 = −x (4)

4 .

The period-4 motion can be given as O4 = {(x (1)
4 , (x (2)

4 − x (1)
4 )/h), (x (2)

4 ,−(x (2)
4 +

x (1)
4 )/h), (−x (1)

4 ,−(x (2)
4 − x (1)

4 )/h), (−x (2)
4 , (x (2)

4 + x (1)
4 )/h)}.

Period-2m Orbit
The period-2m would have in general the periodic motion restricted on the set given as
O2m = {(x (1)

2m , (x
(2)
2m − x (1)

2m )/h), . . . , (x (m)
2m ,−(x (m)

2m + x (1)
2m )/h), (−x (1)

2m ,−(x (2)
2m −

x (1)
2m )/h), . . . , (−x (m)

2m , (x (m)
2m + x (1)

2m )/h)}.
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Stability Conditions of Periodic Orbit

Lemma(Period-2 Stability)

Period-2 is stable if |x (1)
2 | >

( hβη
2

) 1
1−η .

Proof
We know that period-2 orbit is stable if∣∣∣∣dΦ2(x)

dx

∣∣∣∣ =
∣∣∣∣dΦ(x)

dx

∣∣∣∣
x=−x(1)

2

∣∣∣∣dΦ(x)
dx

∣∣∣∣
x=x(1)

2

< 1.

Using the relation dΦ(x)
dx = 1− hβηxη−1, we obtain

0 < (1− hβη(x (1)
2 )η−1)2 < 1.

This can be reduced to

−1 < 1− hβη(x (1)
2 )η−1 < 1.

Using left side inequalities, we obtain |x (1)
2 | >

( hβη
2

) 1
1−η and thus proof is completed.
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Stability Conditions of Periodic Orbit

Lemma(Period-4 Stability)

For the given period-4 points {x (1)
4 , x (2)

4 ,−x (1)
4 ,−x (2)

4 }, the period-4 is stable if any one of
the following conditions satisfy

C1)
∣∣∣x (1)

4

∣∣∣ > (hβη)
1

1−η ,
∣∣∣x (2)

4

∣∣∣ > ( hβη
1 + p1

4

) 1
1−η

C2)
(hβη

2

) 1
1−η

<
∣∣∣x (1)

4

∣∣∣ < (hβη)
1

1−η ,
∣∣∣x (2)

4

∣∣∣ > ( hβη
1− p1

4

) 1
1−η

C3)
∣∣∣x (1)

4

∣∣∣ < (hβη
2

) 1
1−η

,

(
hβη

1− p1
4

) 1
1−η

<
∣∣∣x (2)

4

∣∣∣ < ( hβη
1 + p1

4

) 1
1−η

where p1
4 = 1

1−hβη(x(1)
4 )η−1

.
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Stability Conditions of Periodic Orbit

Proof
The period-4 is stable if∣∣∣∣dΦ4(x)

dx

∣∣∣∣ =
∣∣∣∣dΦ(x)

dx

∣∣∣∣
x=−x(2)

4

∣∣∣∣dΦ(x)
dx

∣∣∣∣
x=−x(1)

4

∣∣∣∣dΦ(x)
dx

∣∣∣∣
x=x(2)

4

∣∣∣∣dΦ(x)
dx

∣∣∣∣
x=x(1)

4

< 1.

Using the relation dΦ(x)
dx = 1− hβηxη−1, we obtain

(1− hβη(x (1)
4 )η−1)2(1− hβη(x (2)

4 )η−1)2 < 1.

This can be rewritten as

−1 < (1− hβη(x (1)
4 )η−1)(1− hβη(x (2)

4 )η−1) < 1.

We find the different stability conditions for x (1)
4 and x (2)

4 .
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Stability Conditions of Periodic Orbit

Proof
i) 0 < 1− hβη(x (1)

4 )η−1 < 1
Dividing by (1− hβη(x (1)

4 )η−1) on both the sides, it gives

−1
1− hβη(x (1)

4 )η−1
< 1− hβη(x (2)

4 )η−1 < 1
1− hβη(x (1)

4 )η−1
.

From 0 < 1− hβη(x (1)
4 )η−1 < 1, we obtain

∣∣∣x (1)
4

∣∣∣ > (hβη)
1

1−η . Note that
1

1−hβη(x(1)
4 )η−1

= p1
4 ∈ (1,∞). Using this in the left inequality, we write

∣∣∣x (2)
4

∣∣∣ > ( hβη
1 + p1

4

) 1
1−η

.

Similarly, it can be shown other cases.
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Main Result

Theorem
The system Φ(x1) shows only period-2 motion in steady-state for all sampling period.

Remark
The proposed discrete TSM results only period-2 motion while the direct
discretization continuous-time TSM may not result period-2 for all sampling period.
Desired steady-state bounds can be obtained by choosing suitable sampling period.
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Main Result

Proof
Consider the Lyapunov function V (k) = x2

1 (k). The stability is guaranteed if and only if
∆V (k) = V (k + 1)− V (k) < 0 for all k ∈ Z≥0. So,

∆V (k) = ∆x1(k)(2x1(k) + ∆x1(k)) < 0.

We have ∆x1(k) = x1(k + 1)− x1(k) = −hβxη1 (k), so we can write

2x1(k) + ∆x1(k) = 2x1(k)− hβxη1 (k).

Now, we consider the three region as

Ω =
{

x1(k) : |x1(k)| ≤
(hβ

2

) 1
1−η
}

∂Ω =
{

x1(k) : |x1(k)| =
(hβ

2

) 1
1−η
}

Ω0 = {x1(k) : x1(k) = 0}
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Main Result

proof
It can be verified that

∆x1(k) < 0 and 2x1(k) + ∆x1(k) > 0 for all x1(k) > 0 and x1(k) /∈ Ω
∆x1(k) > 0 and 2x1(k) + ∆x1(k) < 0 for all x1(k) < 0 and x1(k) /∈ Ω. This implies
V (k + 1) < V (k), i.e., the region Ω is attractive.
For all x1(k) ∈ ∂Ω, it follows

x1(k + 1) = ∓
(hβ

2

) 1
1−η

,

this means x1(k) ∈ ∂Ω and ∂Ω is a positively invariant set.

Similarly consider x1(k) ∈ Ω\(∂Ω ∪ Ω0). So, for x1(k) = ±α
( hβ

2

) 1
1−η with

α ∈ (0, 1), we obtain

x1(k + 1) = ∓(2− α1−η)αη
(hβ

2

) 1
1−η

The quantity (2− α1−η)αη−1 is always greater than one for α ∈ (0, 1), so the
trajectories in very next sampling instant trajectory goes to the opposite side with
magnitude higher than the previous instant. Eventually reaches ∂Ω.
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Main Result

proof

The period-2 discrete points can be calculated by Φ(x (1)
2 ) = −x (1)

2 . So

x (1)
2 − hβ(x (1)

2 )η = −x (1)
2

and then, we obtain

x (1)
2 =

(hβ
2

) 1
1−η

.

Therefore, the period-2 motion occurs in the limit set {(hβ/2)
1

1−η ,−(hβ/2)
1

1−η }.
It can be seen that the steady-state points satisfy period-2 stability conditions and
only period-2 motion occurs
No periodic orbits occurs other than period-2 since there is no other periodic points

This completes the proof.
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Thank You
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