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IES History

IES Timeline
February 21, 1951 First meeting of
the IRE Industrial Electronics Group.

May 8, 1951 Name change to IRE
Professional Group on Industrial
Electronics (PG-IE).

August 1953 Published the first
volume of the Transactions on
Professional Group on Industrial
Electronics.

August 21, 1963 IRE merged with
AIEE and become IEEE. The PG-IE
approved the merger of IRE’s PG-IE
and AIEE’s group on control
instrumentation (GCI).

August 22, 1963 The merger of the
PG-IE and the GCI into Professional
Group on Industrial Electronics and
Control Instrumentation (PG-IECI)

was approved by the IEEE Executive
Committee.

October 14, 1964 Name change to
Group on Industrial Electronics and
Control Instrumentation (PG-IECI).

Year 1975 First IECON was held in
Philadelphia. Until then there had
been only a sponsored session at the
Industry Applications Society
Conference.

March 20, 1978 Name change to
Industrial Electronics and Control
Instrumentation Society (IECIS).

June, 1982 Name change to
Industrial Electronics Society.
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Fields of interest

The Industrial Electronics Society through its members encompasses a diverse range of technical
activities devoted to the application of electronics and electrical sciences for the enhancement of
industrial and manufacturing processes.

These technical activities address the latest developments in:

intelligent and computer control systems
robotics
factory communications and automation
flexible manufacturing
data acquisition and signal processing
vision systems
power electronics
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Activities

Over 5,000 members world-wide.

3 international, general interest conferences (spring, summer, autumn).

Several other focused conferences (motion control, factory automation, informatics, electric machines
and drives, etc).

About two dozen technically co-sponsored conferences and workshops.

Over 20 technical communities covering the scope of IE.
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Technical Activities

1. Automotive Technology

2. Building Automation, Control and Management

3. Control, Robotics and Mechatronics

4. Data Driven Control and Monitoring

5. Education in Engineering and Industrial
Technologies

6. Electrical Machines

7. Electronic Systems on Chip (ESOC)

8. Energy Storage

9. Factory Automation

10. Human Factors

11. Industrial Agents

12. Industrial Informatics

13. MEMS and Nanotechnologies

14. Motion Control

15. Network-based Control Systems and
Applications

16. Power Electronics Technical Committee (PETC)

17. Renewable Energy Systems

18. Resilience and Security for Industrial
Applications (ReSia)

19. Sensors and Actuators

20. Smart Grids

21. Standards
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Events

Large Conferences

IECON (1500)
ISIE (500-800)

Small conferences and workshops

AMC (200)
ICM (200)
ETFA (250)
INDIN (150)
· · ·
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Upcoming Conferences: Status

ISIE2019 in Vancouver, Canada: June 12-14, 2019
Acceptance/rejection decisions sent to authors.

IECON2019 in Lisbon,Portugal: October 14-17, 2019
Paper submission is now open.

ICIT2020 in Buenos Aires, Argentina: Feb. 26-28, 2020

ISIE2020 in Delft, Netherlands: June 17-19, 2020

IECON2020 in Singapore: October 18-22, 2020

IECON, ISIE and ICIT are the major conferences for IES. IES conferences move round the globe
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IES Transactions/Journals

IEEE Trans. on Industrial Electronics
Impact factor: 7.05

IEEE Trans. on Industrial Informatics
Impact factor: 5.43

IEEE Industrial Electronics Magazine
Impact Factor: 10.429

IES also supports other trans./journals e.g. IEEE Trans. on Sustainable Energy/ Smart Grid etc.
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Discrete-Time Sliding Mode Control
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Outline

1 Need for DSMC

2 Introduction
Design Steps

3 Reaching the Sliding Surface
Reaching Conditions
Reaching Law or Algorithm

4 Control Law Derivation
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Need for DSMC

With the increase in use of digital computers and microcontrollers for the implementation of
control algorithms, a discrete time model of the system is justified.

In many practical situations one cannot achieve performance one would expect on the basis of
the continuous time theory.

When continuous-time algorithm is implemented in practical systems by digital controllers, not
only may the chattering be generated around the sliding mode, but the stability of the sliding
mode may also be compromised.

Relatively low switching frequencies are required than continuous time sliding mode control, so
discrete control algorithm is more practical to implement.

A large class of continuous time systems are computer controlled and information about the
system measurements are available only at specific time instances and control inputs can only
be changed at these time instances. Eg. - biological systems, thyristor, radar system, economic
systems, etc.
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Early Works

The first work in the area of discrete variable structure control system was published in Russia.

But more famous works in discrete-time sliding mode control literature are done by
Milososavljevic, Utkin, Darkunov, Sarpturk et.al., Furuta, Sira-Ramirez, Spurgeon, Hung et.al.,
Bartolini et. al., Gao et. al., Bartoszewicz and others.

The term ‘discrete-time sliding mode’ was first introduced by Utkin and Darkunov.

In case of DSM design, the control input is computed only at certain sampling instants and the
control effort is held constant over the entire sampling period.
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Two Schools of Thought

Switching Based Control
Upon direct discretization of switching based control laws for continuous times cases, we get discrete
control laws based on a switching function.

However, Gao et al. shows that due to the use of the switching function, the system states would reach
the vicinity of the origin , but cannot get arbitrarily close to the origin.

This happens necessarily because of finite switching frequency in case of discrete time systems.

Control Without Switching
Sliding mode may be achieved in discrete-time systems without the use of a switching function.

This is due to the fact that discrete-time control is inherently discontinuous in nature and thus may not
require an explicit discontinuity in the control law to bring out sliding mode control.

Such control laws are proposed by Bartoszewicz and Bartolini et al.
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Design Steps

Stable Sliding Surface
The first step of the design procedure is exactly the same as for the continuous sliding mode surface
design.

It is assumed that the closed-loop system is kept close enough to the sliding surface to approximate the
switching function by zero and design the surface for stable sliding mode dynamics.

A Reaching Control
The second step of the design procedure is different for continuous and discrete sliding mode.

Due to the limited switching frequency, the closed-loop system cannot be driven into a sliding mode.

The reaching conditions are not as straightforward as for the continuous time case.
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Milosavljevic’s Reaching Law

Reaching Law by Milosavljevic
Milosavljevic proposed a necessary reaching condition

s(k)(s(k + 1)− s(k)) < 0

where s(k) is the sliding variable.

This is direct discretization of the continuous counterpart

sṡ < 0.

However, this reaching condition only gives the direction of movement of s(k), and does not guarantee
convergence of s(k). Hence it is only a necessary condition, and not sufficient one.
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Sarpturk’s Reaching Law

Reaching Law by Sarpturk
Sarpturk gave the reaching condition

|s(k + 1)| < |s(k)|.

In this case not only the direction is given, but also the norm of the switching function is defined to be strictly
decreasing. It can be decomposed as

necessary Condition for existence of sliding mode

(s(k + 1)− s(k))sgn(s(k)) < 0.

The Condition for convergence, or stability, of the quasi sliding mode -

(s(k + 1) + s(k))sgn(s(k)) > 0.
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Lyapunov-Type

Lyapunov Based Reaching Law
An equivalent form of a Lyapunov-type reaching condition has been proposed for discrete case by Furuta

∆V = s
2
(k + 1)− s2(k) = 2s(k)∆s(k) + ∆s

2
(k) < 0

which can be rewritten further as

s(k)(s(k + 1)− s(k)) < −
1

2
(s(k + 1)− s(k))

2
.
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Gao’s Reaching Law

Reaching Law by Gao
This reaching law is given as

s(k + 1) = (1−Qτ)s(k)−Kτsgn(s(k)).

This is obtained by the Euler discretization of the continuous reaching law

ṡ = −Qs(t)−Ksgn(s(t))

where τ is the sampling interval and Q,K > 0 such that 0 < (1−Qτ) < 1.

Such a reaching law possesses the following attributes:
1 Starting from any initial state, the trajectory will move monotonically towards the switching plane and

cross it in finite time.
2 Once the trajectory has crossed the switching plane the first time, it will cross the plane again in every

successive sampling period, resulting in a zig-zag motion about the switching plane.
3 The size of each successive zigzagging is non-increasing and the trajectory stays within a specified band.

The motion of a discrete SMC system satisfying the first two attributes is called a Quasi-Sliding Mode (QSM)
motion.
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Gao’s Reaching Law

Sliding Mode Control
Let x(k + 1) = Φx(k) + Γu(k) be the discrete model of the continuous system and s(k) = cT x(k) be a
stable sliding surface.

s(k + 1) = c
T
x(k + 1) = c

T {Φx(k) + Γu(k)}

⇒ u(k) = −(c
T

Γ)
−1

[(c
T

Φ− cT +Qτc
T

)x(k) +Kτsgn(s(k))]

QSM Band
In QSMB, the sign of s(k + 1) will be opposite to s(k). So, the quasi sliding mode band can be obtained by
substituting s(k + 1) = −s(k) with s(k) > 0 as

s(k + 1) = (1−Qτ)s(k)−Kτsign(s(k))

−s(k) = (1−Qτ)s(k)−Kτ
0 = (2−Qτ)s(k)−Kτ.

So, QSMB is given as

s(k) =
Kτ

2−Qτ
.
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Utkin’s Reaching Law

Utkin’s Reaching Law
s(k + 1) = 0

Here the control input brings the sliding trajectory to sliding surface in a single time step.
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Control Law Using Gao’s Reaching Law

Linear Time Invariant Model
Let the discrete-time system be

x(k + 1) = Φx(k) + Γu(k) + d̃(k)

y(k) = Cx(k)

The disturbance term d̃(k) is matched and assumed to be bounded. The sliding variable is designed as

s(k) = c
T
x(k)

such that it results a stable sliding mode dynamics.
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Control Law Using Gao’s Reaching Law

Design of Discrete-Time Sliding Mode Control
The control law can be designed as follows. First we consider the case disturbance free case, i.e., d̃(k) = 0

s(k + 1) = c
T
x(k + 1)

= c
T {Φx(k) + Γu(k)} .

Thus if the control law is designed as

u(k) = −(c
T

Γ)
−1

[(c
T

Φ− cT +Qτc
T

)x(k) +Kτsgn(s(k))]

then, the closed loop system becomes

s(k + 1) = (1−Qτ)s(k)−Kτsgn(s(k)).
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Control Law Using Gao’s Reaching Law

Design of Discrete-Time Sliding Mode Control
If the matched Uncertainty d̃(k) is considered, then

s(k + 1) = c
T
x(k + 1) = c

T
{

Φx(k) + Γu(k) + d̃(k)
}
.

Then the following control

u(k) = −(c
T

Γ)
−1

[(c
T

Φ− cT +Qτc
T

)x(k) +Kτsgn(s(k))]− (c
T

Γ)
−1
c
T
d̃(k)

is not implementable because it contains unknown term (cTΓ)−1cT d̃(k).
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Control Law Using Gao’s Reaching Law

Assumptions
In order to design discrete-time sliding mode control with matched disturbance, the following assumptions are
made on the disturbances

dl ≤ cT d̃(k) ≤ du.

The mean and spread of the disturbance are defined as d0 =
du+dl

2 and d1 =
du−dl

2 , respectively.

Modified Reaching Law
The reaching law in case of disturbance is given as

s(k + 1) = (1−Qτ)s(k)− (d1 +Kτ)sgn(s(k)) + d(k)− d0

where d(k) = cT d̃(k). This law ensures for all d(k)

s(k)(s(k + 1)− s(k)) < 0
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Control Law Using Gao’s Reaching Law

Design of Discrete-Time Sliding Mode Control
The control law can now be designed from the dynamics

s(k + 1) = c
T

Φx(k) + c
T

Γu(k) + d(k)

and is given as

u(k) = −(c
T

Γ)
−1

[(c
T

Φ− cT +Qτc
T

)x(k) + d0 + (d1 +Kτ)sgn(s(k))]

where Q > 0, K > 0 and (1−Qτ) > 0.

Condition for Quasi Sliding Mode
In order that trajectory cross and re-cross in each time step after reaching the sliding surface, it must be
satisfied

sgn(s(k + 2)) = −sgn(s(k + 1)) = sgn(s(k)).
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Control Law Using Gao’s Reaching Law

Condition for Quasi Sliding Mode
Thus, we find first s(k + 2) as

s(k + 2) = (1−Qτ)s(k + 1)− (d1 +Kτ)sign(s(k + 1)) + d(k + 1)− d0

= sgn(s(k))
(

(1−Qτ)
2|s(k)|+QτKτ + d1Qτ

)
+ (1−Qτ)(d(k)− d0)

+ d(k + 1)− d0.

To ensure that sgn(s(k + 2)) = sgn(s(k)) irrespective of d(k) and s(k)

(QτKτ + d1Qτ) + (1−Qτ)(d(k)− d0) + (d(k + 1)− d0) > 0.

The above is true if the lower bound of right hand side quantity greater than zero

(QτKτ + d1Qτ) + (1−Qτ)(−d1) + (−d1) > 0

⇐⇒ Qτ (Kτ + d1) > (2−Qτ)d1

⇐⇒ d1 <
QτKτ

2(1−Qτ)
.

Thus if the disturbance satisfies this there will be crossing and recrossing successively.
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Quasi Sliding Mode Band

Quasi Sliding Mode Band
QSMB can be calculated for Modified Gao’s Reaching Law from the condition that if s(k) > 0 then
s(k + 1) < 0. So, it gives with s(k) = δ

(1−Qτ)δ − (Kτ + d1) + (d(k)− d0) < 0

(1−Qτ)δ < (Kτ + d1)− (d(k)− d0)

δ <
(Kτ + d1)− (d(k)− d0)

1−Qτ
<
Kτ + d1 + d1

1−Qτ
<
Kτ + 2d1

1−Qτ
.

Since d1 <
QτKτ

2(1−Qτ)
, we write further δ <

Kτ+
QτKτ
1−Qτ

1−Qτ = Kτ
(1−Qτ)2

.

Quasi Sliding Mode
Discrete sliding mode is more practical for real time implementation.

Not exact sliding mode.

There is always chattering even in theory.
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Analysis of Chattering in Quasi Sliding Mode

Why the chattering ?
QSMC is derived from discretizing continuous SMC logic

ṡ = −Qs(t)−Ksign(s(t))

⇓
s(k + 1) = (1−Qτ)s(k)−Kτsign(s(k)) (1)

In discrete-time system the sign(s(k)) changes abruptly near s(k) = 0, but Control cannot be changed at any
time. This results always chattering.

Fresh Approach:-Control Without Switching Function
Aim of Discrete Sliding Mode: To get the system to the sliding surface and maintain the state on the surface.
Mathematically, one can write s(k + 1) = 0 with s(k) 6= 0 for the fulfilling the both requirement. Actually this is
motivated by the concepts of Dead beat Control.

Note:-In discrete-time control theory, the dead beat control problem consists of finding what input signal must
be applied to a system in order to bring the output to the steady state in the smallest number of time steps.
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Control Without Switching Function :- Utkin’s
Reaching Law

So, apparently the reaching law is simply s(k + 1) = 0.

Consider the discrete time representation of continuous time
linear time invariant system(where r(t) is reference input)

ẋ(t) = Ax(t) + Bu(t) +Dr(t)

x(k + 1) = A
∗
x(k) + B

∗
u(k) +D

∗
r(k) (2)

where A∗ = eA∆t, B∗ =
∫∆t
0

eA(∆t−t)Bdτ,D∗ =
∫∆t
0

eA(∆t−t)Ddτ

For the existence of DTSM, control law is

s(k + 1) = CA
∗
x(k) + CB

∗
u(k) + CD

∗
r(k) = 0

⇒ u(k) = −(CB
∗
)
−1 (

CA
∗
x(k) + CD

∗
r(k)

)
(3)
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Control Without Switching Function :- Utkin’s
Reaching Law

Control Law can be represented as sum of two linear function as

ueq(k) = −(CB
∗
)
−1
s(k)− (CB

∗
)
−1 ((

CA
∗ − C

)
x(k) + CD

∗
r(k)

)
(4)

And

s(k + 1) = s(k) + (CA
∗ − C)x(k) + CB

∗
u(k) + CD

∗
r(k) (5)

Note above two extension are used to prove the forward move of trajectory.

Problem with above approach
Probably of too much control in the one step.
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Control Without Switching Function :- Utkin’s
Reaching Law

Solution:-
Go slow but, be sure you are going forward direction.

Let the maximum applicable control be ‖u(k)‖ ≤ u0 and use the
control as

u(k) =

{
ueq(k) if ‖ueq(k)‖ ≤ u0

u0
ueq(k)

‖ueq(k)‖ if ‖ueq(k)‖ > u0
(6)

Now, to be sure this is enough i.e., we are moving forward, we get the condition

|s(k + 1)| < |s(k)| (7)
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Control Without Switching Function :- Utkin’s
Reaching Law

Proof for forward move
Consider the case ‖ueq(k)‖ ≥ u0. Putting the value of u(k) in the modified equation of s(k + 1)

s(k + 1) = s(k) + (CA
∗ − C)x(k) + CD

∗
r(k)

−
[
s(k) + (CA

∗ − C)x(k) + CD
∗
r(k)

] u0(k)

‖ueq(k)‖
(8)

Taking norm on both sides

‖s(k + 1)‖ = ‖s(k) + (CA
∗ − C)x(k) + CD

∗
r(k)

−
[
s(k) + (CA

∗ − C)x(k) + CD
∗
r(k)

] u0(k)

‖ueq(k)‖
‖ (9)

where

‖ueq(k)‖ = ‖ − (CB
∗
)
−1
s(k)− (CB

∗
)
−1 ((

CA
∗ − C

)
x(k) + CD

∗
r(k)

)
‖ (10)
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Proof for forward move

Using norm inequality

‖s(k + 1)‖ ≤ ‖s(k)‖+ ‖(CA∗ − C)x(k) + CD
∗
r(k)‖ −

u0(k)

‖(CB∗)−1‖
(11)

For convergence

‖(CB∗)−1‖‖
((
CA
∗ − C

)
x(k) + CD

∗
r(k)

)
‖ < u0(k)

⇒ ‖s(k + 1)‖ < ‖s(k)‖ (12)
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Robust Non-switching type DSMC

Consider the system

x(k + 1) = Φτx(k) + Γτu(k) +Dτf(k) (13)

Uncertainty satisfied matching condition

Dτ =Γτ D̃τ (14)

State equation becomes using above matching condition

x(k + 1) = Φτx(k) + Γτ (u(k) + D̃τf(k)) (15)

Stable sliding function

s(k) = c
T
x(k) (16)
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Robust Non-switching type DSMC

Control law
Using the reaching law s(k + 1) = 0, we get

c
T

(Φτx(k) + Γτ (u(k) + D̃τf(k))) = 0

u(k) = −(c
T

Γτ)
−1
[
C
T

Φτx(k)
]
− D̃τf(k)︸ ︷︷ ︸ (17)

Above control is not feasible because control part contains uncertain term D̃τf(k).
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Robust Non-switching type DSMC

Modified Control law can be obtained by ensuring at all instants of the time that the maximum deviation of the
trajectory form the sliding surface is the spread of the disturbance d1. We define

d̃(k) = c
T

ΓτD̃τf(k)

Assumptions:-
dl ≤ d̃(k) ≤ du, and the mean and spread of the disturbance are defined as d0 =

du+dl
2 , d1 =

du−dl
2 .

The modified reaching law is given by

s(k + 1) = d̃(k)− d0 (18)

And the modified control law is given as

u(k) = −(c
T

Γτ)
−1
[
C
T

Φτx(k) + d0

]
(19)
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Bartoszewicz’s Reaching Law
Another approach to the DSMC problem is to design a control algorithm that would inherently go
slow.

Instead of trying to reach the surface in one step. Try to reach it in say k* steps.

Bartoszewicz proposed the reaching law
s(k + 1) = d(k)− d0 + sd(k + 1) (20)

where sd(k) is an a priori known function such that the following
applies

Conditions
If |s(0)| > 2d1, then

sd(0) = s(0) (21)

sd(k).sd(0) ≥ 0 for any k ≥ 0 (22)

sd(k) = 0 for any k ≥ k∗ (23)

|sd(k + 1)| < |sd(k)| − 2d1 for any k < k
∗ (24)
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Bartoszewicz’s Reaching Law...Cntd.

These relations state that sd(k) converges monotonically and in finite time from its initial position
sd(0) = s(0) to the sliding surface.

Furthermore, in each control step, sd(k) moves by the distance greater than 2d1.

This, together with the reaching law, imply that the reaching condition is satisfied, even in the case of the
worst combination of disturbance.

If |s(0)| ≤ 2d1, then sd(k) = 0 for any k ≥ 0 and the reaching law becomes same as Utkin’s reaching
law.

Parameter k∗

The constant k∗ is a positive integer chosen by the designer in order to achieve good trade-off between the fast
convergence rate of the system and the magnitude of the control u(k). For any k ≥ k∗, the quasi-sliding mode
in the d1 vicinity of the sliding plane s(k) = cT x(k) = 0 is reached.

A Priori Function sd(k)
When |s(0)| > 2d1,

sd(k) =
k∗ − k
k∗

s(0) with k
∗
<
|s(0)|
2d1

(25)
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A plot of sd(k)

Figure: A plot of sd(k)

Computed Control
u(k) = −(c

T
Γτ )
−1

[c
T

Φτx(k) + d0 − sd(k + 1)] (26)

QSM Band
For any k ≥ k∗,

|s(k)| = |d(k − 1)− d0| ≤ d1 (27)
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Thank You
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