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Design of Comput ationally Efficient 
Interpolated FIR Filters 

TAP10 SARAIdKI, YRJO NEUVO, SENIOR MEMBER, IEEE, AND 
SANJIT K. MITRA, FELLOW, IEEE 

Ahstract --The number of multipliers required in the implementation of 
interpolated FIR filters of the form H ( z )  = F ( z L ) C ( z )  is studied. Both 
single-stage and multistage implementations of G(z ) are considered. Opti- 
mal decompositions requiring fewest number of multipliers are given for 
some representative low-pass cases. An efficient algorithm for designing 
these filters is described. It is based on iteratively designing F ( z L )  and 
C ( z )  using the Remez multiple exchange algorithm until the difference 
between the successive stages is within the given tolerance limits. A novel 
implementation for G ( z )  based on the use of recursive running sums is 
given. The design of this class of filters is converted into another design 
problem to which the Remez algorithm is directly applicable. The results 
show that the proposed methods result in significant improvements over 
conventional multiplier efficient implementations of FIR digital filters. 

I. INTRODUCTION 
INITE impulse response (FIR) filters are known to F have some very desirable features like guaranteed sta- 

bility, absence of limit cycles, and linear phase, if desired. 
The major drawback is the large number of arithmetic 
operations required in the implementation. The number of 
multipliers required is, approximately, equal to or half of 
the length of the filter in the nonlinear and linear phase 
cases, respectively. The minimum length of the linear 
phase low-pass FIR filter to meet the frequency domain 
specifications is approximately 

-2010g,,{S~~ - 13 
N =  +1 

14.6A F 
where Sp and S, are the passband and stopband ripples, 
and AF is the transition bandwidth [l]. The above esti- 
mate is rather accurate when the passband and stopband 
ripples are small. If the ripples are large, a more accurate 
estimate is given by the more complicated expression in 
[21. 

Several authors [3]-[13] have observed that by letting 
the filter length increase slightly from the minimum, there 
can be significant savings in the number of multipliers 
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and, with some methods, also in the number of adders. 
This is due to the fact that optimal FIR filters are in a way 
too general structures to implement typical frequency 
selective filters. In the direct form implementation, each 
multiplier determines the value of one impulse response 
sample independently of the other samples. In the linear 
phase implementation, the same is true for approximately 
half of the impulse response values. However, in practical 
frequency selective filters there is a relatively strong corre- 
lation between neighboring impulse response values. By 
developing filter structures that exploit this correlation, the 
number of multipliers required in the implementation can 
be reduced. 

In a recent paper, Neuvo, Dong, and Mitra [12] intro- 
duced a FIR structure composed of a cascade of FIR 
filters: 

H ( z )  = F ( z L ) G ( z ) .  (2)  

F( z L ,  has a periodic frequency response with period 2r/L 
and is designed to perform passband, transition band, and 
stopband shaping in the vicinity of the passband. F ( z L )  
can thus be called the shaping filter. Because of the 
periodicity of the response of F ( z L ) ,  it has extra unwanted 
passbands. G ( z )  is designed to attenuate these extra pass- 
bands below the specified maximum stopband level. G(z)  
is called the interpolator section as it performs time do- 
main interpolation to the sparse impulse response se- 
quence of the shaping filter. The overall realizations are 
called Interpolated Finite Impulse Response (IFIR) filters. 
In [12], it was shown that the structure in favorable cases 
reduces the number of multipliers and adders by almost a 
factor of L. In addition, roundoff noise and coefficient 
sensitivities improve. 

The IFIR filter is a single-rate structure which is 
mathematically closely related to signal decimation by a 
decimator followed by filtering at the lower rate. In the 
IFIR approach the savings are obtained by interpolating 
the impulse response and in the decimation approach by 
decimating the input signal to the filter. These are dual 
operations in the sense that both approaches make the 
basic filter to have wider passband and transition band 
regions with respect to the signal sampling rate and 
according to (1) the required filter length decreases. Note 
that as the IFIR structure is a single-rate structure, there 
can never be internal aliasing problems. 

0098-4094/88/0100-0070$01.00 01988 IEEE 



S A R A M ~ K I  et U/ .  : DESIGN OF COMPUTATIONALLY EFFICIENT INTERPOLATED FIR FILTERS 71 

In the design of IFIR filters, one central parameter to be 
selected is the interpolation factor L. As L is increased, 
the complexity of the shaping filter decreases but the 
complexity of the interpolator increases. Note that in the 
design of decimators the decimation ratio is not generally a 
free design parameter. In [12], the design of IFIR filters 
was based on the use of simple interpolators. However, for 
more stringent filter specifications, this approach is inef- 
fective. 

In this paper, we show how the overall IFIR structure 
including the shaping filter, interpolator, and L can be 
optimized to arrive at the smallest number of required 
multipliers. Both single-stage and multistage implementa- 
tions of G ( z )  are discussed. The method is based on 
alternately designing the shaping filter and the interpolator 
using the Remez multiple exchange algorithm. We also 
derive approximate expressions that assist in finding the 
optimal lengths of the subfilters as well as the optimal 
value of L.  In addition to lowpass designs, the proposed 
approach is equally well applicable to design of high-pass, 
bandpass, and bandstop filters. The number of multipliers 
required by low-pass IFIR filters can be further reduced 
by developing interpolator structures that utilize the fact 
that the stopbands of the interpolator are equally spaced. 
One such structure based on the use of recursive running 
sums is advanced. Finally, the optimal IFIR filters are 
compared with other known multiplier efficient FIR filter 
implementations. The results show that among the single- 
rate structures the proposed approach is quite efficient. 
Multirate FIR implementations tend to have smaller mul- 
tiplication rates but require are multipliers and longer 
overall delays. 

11. DESIGN OF OPTIMAL IFIR FILTERS 

A .  Transfer Function Decomposition 

of the form 
Let the transfer function of a linear-phase FIR filter be 

H ( z )  = F ( z ' ) G ( z )  ( 3 4  
where 

Here L,'s are selected such that 

is an integer. Alternatively, G ( z )  can be expressed in the 
form 

K 

G ( z )  = n G i ( z i , )  ( 4 4  
1 = 1  

o p e  w 

Fig. 1. The specifications for the shaping filter F ( z L )  and the interpola- 
tor G ( z )  to meet the overall criteria. 

where 
r - 1  

L 1 = l ,  L r =  n L,, r = 2 , 3 ; . . , K .  (4b) 

The zero-phase frequency response of the overall filter can 
then be written as 

k = l  

H ( w )  = F ( L w ) G ( o )  ( 5 4  
where 

G (  U )  = GI(  L ~ w ) G ~ (  220)  . . . GK( L K w ) .  (5b) 
Here F( L w )  denotes the zero-phase response of F ( z L )  
and G, (2, U )  the response of G, (z  ' 1 ) .  

B. Approximation Problem 
Let the specifications of the composite filter be 

1 - 6, I F( L o ) G  ( U )  I 1 + 6, for w E [0, U,] (6a) 

- 6, I F( L w ) G ( U )  I 6, for w E [ us, T ] . (6b) 

Since the response F( L w )  is periodic with period of ~ T / L ,  
[O,v/L] is the largest interval where the Haar conditions 
are satisfied and which includes the zero frequency. There- 
fore, the design of F ( z L )  is centered on this interval. It is 
determined such that the overall filter meets the passband 
specifications of (6a) and the stopband specifications of 
(6b) on the subinterval [a,, T / L ] .  The requirements for 
F ( z L )  can be stated in terms of F ( o ) ,  the zero-phase 
response of F( z ) ,  as follows: 

1 - S, 5 F( w ) G ( w / ~ )  I 1 + a,, for w E [o, LU,] (7a) 

- 6 , s  F ( o ) G ( o / L ) 1 6 , , f o r o E [ L w , , a ] .  (7b) 

Because of the periodicity, F ( L o )  has extra undesired 
passbands centered at w = 2 ~ k / L  for k =1,2, . . . [L/2].' 
The desired attenuation is not achieved on the following 
multiband frequency region (see Fig. 1): 

Therefore, G ( z )  is determined to provide enough at- 
tenuation on this region (see Fig. 1). The requirements for 

' 1 x 1  stands for integer part of x 
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Flg 2 Design of a three-stage ( F  = 3 )  Lnterpolpor G ( z )  with L =18 
L ,  = L , ,  L,  = 3, L ,  =1,L, = 3 ,  L, = 9  

G( w )  can be stated as2,, 

G(0) =1 ( 9 4  
- S, 5 F( Lw)G( w )  I S,, for w E 0,. (9b) 

In the case of the multistage implementation, the desired 
G ( z )  can be obtained by determining each one of the 
subfilters G , ( z L , ) ,  i =1,2;.. ,  K ,  in such a way that the 
response GI ( w ) satisfies 

G,(O) =1 (104 
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where 

11 2a  - 
Li 

k - +  L,w,,a . ( 1 0 ~ )  

If GI(  w )  is determined to satisfy (lo), then the resulting 
periodic response GI(  L I w )  provides the desired attenua- 
tion for the overall response H ( w )  on the region 

where 

and the other 1 , ’ s  are given by (4b). Each one of the 
subfilters GI(  z I , , )  concentrates on providing the desired 
attenuation on a certain set of the stopbands of the overall 
multiband stopband region 0,. As an example, Fig. 2 gives 
the partial response: for the case- with K = 3, L =18, 
L ,  = 3, and L ,  = 3 ( L ,  = 1, L,  3, L,  = 9). Because of the 
periodicity, the response GK( L,w) gives the desired at- 
tenuation, in addition to the region a,, also elsewhere4 

L K + I  = L ( W  

’We note that F ( z ’ , )  and G ( z )  have the common scaling constant. 
Therefore, we can, without loss of generality, scale G ( w )  to have the 
value unitv at w = 0. 

except for those stopbands whch are centered at the 
points where the response has “extra” passbands. T h s  
occurs at the points w = k.2a/LK for k =l,2;. . , I iK /2 ]  
(at w = 2 ~ / 9 , 4 ~ / 9 , 6 a / 9 , 8 ~ / 9  in Fig. 2). Similarly, 
G,- 1( t,- lo) takes care of the remaining stopbands ex- 
cept for the ones centered at the extra passband of this 
stage, i.e., at w =  k.2a/LK-, for k=1 ,2 , - . . , [~ , - , / 2 ]  (at 
w = 2a/3 in Fig. 2). Finally, Gl(w)  provides the desired 
attenuation on the stopbands centered at w = k.2a/L, for 
k=1,2;-- ,[L2/2](at  w=2a/3inFig.2).  

C. The Design Algorithm 
The design of F ( z )  satisfying (6) can be performed 

directly by using the following error function in the arbi- 
trary magnitude FIR filter design program of McClellan 
et al. [14]: 

E A 4  = W F ( m ( 4 -  D F ( 4 1  (124 
where the desired function D F ( w )  and the weight function 
W,(o) are 

for w E [Lo, ,  T ]  

( G ( ~ / L )  for UE [0 ,  LW,] 

The above error function has been chosen in such a way 
that both the passband specifications of (7a) and the 
stopband specifications of (7b) are just met when the peak 
absolute error is equal to 6,. Therefore, the order of F ( z )  
has to be selected to make the peak absolute error less 
than or equal to 6,. Similarly, the desired G,(o)’s can be 
found using the same program with the error 
given by 

functions 

E , ( 4  = w , ( d G , ( w ) -  D , ( 4 l  (134 
where 

1, for w E [ O , E ]  
(13b) i 0 ,  for w E 6, D S 4  = 

/ for w E [O,  E ]  

(134 

By selecting E to be a very small number and a! to be very 
large, this error function forces G , ( o )  to take the value 1 
at w = 0.’ The specifications of (10) are met if the peak 
absolute value of the above error function is less than or 
equal to 6,. 

~ ~~ 

‘Becauie of the effect of G( U ) ,  the stopband attenuation of the overall 
amplitude response N ( w )  becomes higher on the extra stopbands of 
F ( L w )  than on [ w , , n / L ] .  

Due to of the effects of C,( i, a), i = 1.2; ., K - 1, the-attenuation of 
the overall filter is higher on the extra stopbands of G,(L,w). 

When a very small value of c is used, the program of McClellan et al.  
uses only one grid point in the passband. Therefore, there is only one 
extremum (of value 1) in the passband. 
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Fig. 3. Design of an optimum IFIR filter with two-stage G ( z )  meging 
the criteria: up = 0.05m, w, = O.ln, 8, = 0.01, 8, = 0.001. L = 6 ,  L, = 
3, NF =17, NG, = 6, Nc; = 4. (a) F( L a ) .  (b) G 2 ( i 2 u ) .  (c) G , ( w ) .  (d) 
Overall filter. 

The steps in the algorithm for simultaneously designing 
F( z ") and the subfilters GI(  z ' 1 )  (for given filter orders) 
are as follows: 

1) Set F ( o ) = l  and G , ( w ) = l , i = l , 2 ; . . , K .  
2) Determine successively G , ( o ) ,  I = 1,2; a ,  K ,  to 

minimize the maximum absolute value of E, (o )  on 

3 )  Determine F ( w )  to minimize the maximum absolute 
value of E F ( w )  on [0, Lop]UILo,, a]. 

4) Repeat steps 2 and 3 until the difference between 
successive overall solutions is within the given toler- 
ance limits. 

The above algorithm starts by initializing the amplitude 
responses of the subfilters. Then, the subfilters G,(zL1) are 
determined successively, using the remaining amplitude 
responses as a weighting function, such that the corre- 
sponding error function E,( U )  is minimized. At each stage, 
E, ( U )  becomes equiripple on d, with the maximum num- 
ber of oscillation around zero subject to the conditio~n 
G(0) = 1. This condition binds one degree of freedom. The 
maximum number of oscillations around zero on d, is thus 
[NG,/2]+ 1. After applying step 2) F ( z L )  is determined to 
give the desired equiripple behavior for the overall re- 

[O, €1 U 6,. 

~ 

13 

sponse on [0, up] U [ U,, a/L].  The number of alternating 
extrema is [NF/2]+2 as for conventional minimax FIR 
designs. 

At this point, the error functions E,(u)  have no longer 
the desired equiripple nature because of the change in the 
subfilters designed after G,(zLf ) .  Therefore, step 2 is re- 
peated. After that, f'( z ') is redesigned to compensate for 
the changes caused by the new subfilters G,(zLl) .  The 
resulting F ( z L )  does not differ much from the previous 
one and as the algorithm proceeds, two consecutive F( z ')'s 
approach each other. The same is true for the subfilters 
G , ( z L r ) .  Typically, three to five iterations of the whole 
algorithm are required to arrive at the desired solution. 

The resulting overall amplitude response H ( w )  has an 
equiripple behavior on [0, up] U [U,, a/L] and on each one 
of the regions 6!,, i = 1,2,. . ., K.  This is exemplified in Fig. 
3 for a filter with K = 2. (For this filter, L = 6 ,  

7/61, 3, = [ ~ / 3  - 0.17, a/3] and = [27/3-O.la, 
2a/3 + 0.171.) Because each one of these regions is Prim- 
arily shaped by an individual filter, the ripples on the regions 
differ slightly from each other. The final Parameters to be 
determined are the minimum subfilter orders to meet the 
given criteria. The optimality of the resulting Solutions with 
respect to the number of multipliers is considered in AP- 
pendix A. In addition, it is shown that by making the rip- 
ples equal, the largest ripple decreases only very Slightly. The 
algorithm of this section gives thus a good enough solution 
and a further optimization is not worth doing. Good 
estimates for the minimum subfilter orders are given in the 
nest section. 

L ,  =2, E = 1 ,L2 = 3, [O, up] U [a,, 7/L] = [0 ,0 .05~]  U [O.lm,  

111. PROPERTIES OF OPTIMAL IFIR FILTERS 
In this section, optimal decompositions of IFIR filters 

are discussed for both single-stage and multistage imple- 
mentations of G ( z ) .  In addition, it is shown how the 
minimum subfilter orders can be estimated very accu- 
rately. With the estimated values, it is possible to find a 
nearly optimum decomposition. Furthermore, the effects 
of finite wordlength are considered and compared to those 
of conventional direct-form designs. 

A. Optimal Decompositions 

To illustrate the dependence of the optimal filter decom- 
position on the stopband edge angle as well as on the 
relative transition bandwidth of the filter, we have consid- 
ered the following four cases: 

Case I:  wp = 0 . 0 5 ~ ~  w, = 0.117, 8, = 0.01,8, = 0.001 
Case 11: up = 0.09a, os = 0.117, 8, = 0.01, S, = 0.001 
Case 111: up = 0.017, a, = 0.0217, S, = 0.01, S, = 0.001 
Case IV: wp = 0.0187, U, = 0.0217, SP = O.Ol,S, = 0.001 
Fig. 4 shows the total multiplier requirements in these 

four cases to implement G ( z ) ,  F ( z L ) ,  and the overall filter 
as a function of L for the single-stage implementation of 
G ( z ) .  The case L =1 corresponds to the optimal direct 
form FIR filter. In these comparisons, the symmetry in 
filter coefficients has been exploited. As seen from the 
figure, the IFIR filters provide significant reductions in the 
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Fig. 4. Plots of the number of multipliers versus L for the shaping filter 
F ( r L ) ,  the interpolator G(z ) ,  and the overall filter H ( r ) .  

number of multipliers over equivalent optimal direct-form 
designs. Savings of the same order are obtained also in the 
number of adders. The price paid for these reductions is a 
slight increase in the number of delay elements, as shown 
in Fig. 5. 

As shown in Fig. 4, the number of multipliers of F ( z L )  
decreases approximately exponentially and that of G( z )  
increases exponentially as L increases. The minimum of 
the total number of multipliers is obtained by increasing L 
until the decrease in the number of multipliers of F ( z L )  
becomes smaller than the increase in the number of multi- 
pliers of G ( z ) .  The minimum value of the total number of 
multipliers occurs well below the theoretical upper limit 
L,, = [n/usj. When comparing the curves for Cases I, 11, 
111, and IV with each other, it is observed that as the 
relative transition bandwidth is made smaller whle keep- 
ing the stopband edge the same, the ratio of the optimum 
value Lopt of L to L,, becomes larger. This is because the 
relative contribution of F ( z L )  to the total multiplier re- 
quirements becomes larger. The larger value of Lopt results 
in larger savings in the number of multipliers and adders. 
As the stopband edge angle is decreased while keeping the 
relative transition bandwidth the same, the relative contri- 
bution of G ( z )  becomes larger and Lopt/Lmax decreases. 
However, the absolute value of Lqpt increases, resulting in 
larger savings in the number of arithmetic operations. 
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L 

Fig. 5. The ratio of the overall order of the new filter to that of the 
conventional direct-form minimax design. 

It is interesting to observe from Fig. 4 that the plot of 
total number of multipliers versus L is flat around L = 
Lopt.6 This means that optimizing the overall multiplier 
requirements for L = i K  with K being a small integer 
results in a nearly optimum solution. It is also interesting 
to observe that the plot of overall multiplier requirements 
versus L is unimoda17 (see Fig. 4). This fact simplifies 
considerably the workload needed to identify the true 
minimum. In the next subsection, it is shown how the 
subfilter orders can be rather accurately estimated. With 
these estimated values, it is possible to find out the esti- 
mated optimum value of L which is in the close neighbor- 
hood of Lopt. 

The optimum decompositions for each of the four cases 
for single-stage, two-stage, and three-stage implementa- 
tions of G ( z )  are given in Tables I-IV. In the cases where 
the same minimum number of multipliers is obtained with 
different decompositions, the one having the fewest num- 
ber of delay elements has been selected. Table V gives, in 
Case IV, the optimum decompositions for two-stage de- 
signs of G ( z )  for various values of t,. It is observed that 
the overall number of multipliers does not depend criti- 
cally on the selection of the value of t,. In addition, it is 
seen that the total number of multipliers as a function of 
2, is again unimodal. Table VI, in turn, gives the decom- 
positions for various values of L for a fixed value of 2,. 
As seen from this table, NG, remains the same indepen- 
dent of the value of L and the overall multiplier require- 
ments as a function of L behaves as that for a single stage 

We note that in Cases I11 and IV the minimum number of multi liers 
are obtained at various values of L .  In Case 111, the minimum vake is 
obtained with L = 14, 15.16, and 17 and in Case IV with L = 22,23,24, 
and 25. 

'This has been true in all cases considered so far. 
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TABLE I 
COMPARISON BETWEEN OPTIMAL IFIR FILTERS AND 

CONVENTIONAL DIRECT-FORM FILTERS IN CASE 1 

TABLE I11 
COMPARISON BETWEEN OPTIMAL IFIR FILTERS AND 
CONVENTIONAL DIRECT-FORM FILTERS IN CASE 111 

T h n c  
Stage 
G(4 

L = 8  
L, = 2 
Ls = 4 

" 

D k t -  
Form 
FIR 

L 
z,.. 
(E1 = 1) 

L = l  
L, = 3 

I 
N = 108 N p  = 12 

No, = 3 
Nc, = 4 
Nc, = 5 

15 

N p  = 17 
No, = 17 

NF = 17 
NG, = 8 
NG, = 4 

Orden 

Number 
of 
Multiplien 

55 

I Number 
of 
Adden 

108 24 

1 Number 
of Delay 
Elements 

108 

119 I lZO 

127 

I Saving over 
Dkt-Form 
Design 

1.00 

3'08 I 3'44 

3.07 

TABLE I1 
COMPARISON BETWEEN OPTIMAL IFIR FILTERS AND 
CONVENTIONAL DIRECT-FORM FILTERS IN CASE I1 

1 I , I 
N = 511 N I  = 65 

N c ,  = 34 

258 SI  41 I 
B. Order Estimation 

For the order of F ( z L )  in z L ,  a good estimate is 

NF = N / L  (14) 
where N is the minimum order of an optimum direct-form 
design to meet the given overall criteria.* This is because 
the order of a linear phase FIR filter is roughly inversely 
proportional to the transition bandwidth of the filter and 
the transition bandwidth for F ( z )  is N times that for the 
direct-form design. This can be seen by comparing the 
composite filter specifications of (6) and the specifications 
for F( z )  as given by (7). 

In Appendix B, a very fast and simple procedurejs 
described for estimating the orders of the subfilters G,( z ' 1 )  

very accurately. This procedure is based on the use of 
Chebyshev polynomials of the first kind. Considerable 

implementation of G ( z )  as a function of L. The above 
facts can be exploited in searching for the optimum solu- 
tions for multistage implementations of G(  z ) .  

When comparing single-stage and multistage implemen- 
tations of G( z )  given in Tables I-IV, it is observed that, in 
Cases I and 11, the two-stage implementation provides only 
a slight saving over its one-stage equivalent. This is be- 
cause for the single-stage implementation the order of 
G ( z )  is already very small. In Cases 111 and IV, the saving 
is significant. This is because for the two-stage implemen- 
tation, G (  z )  requires considerably fewer multipliers and 
the optimum decomposition occurs at a higher value of L,  
thus decreasing the number of multipliers of F ( z L ) .  

'If the order of the direct-form design is so high that the FIR filter 
design program of McClellan et al. [14] cannot be used for determining 
the minimum order, an estimate for it can be obtained using the formula 
given in [2]. 
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TABLE V 
OPTIMAL DECOMPOSITIONS IN CASE IV FOR TWO-STAGE DESIGNS 

OF G(z) FOR VARIOUS VALUES OF L2 

N ,  = 61 

No, = 19 

TABLE VI 
OPTIMAL DECOMPOSITIONS OF IN CASE rV FOR 90 -STAGE 

DESIGNS OF G(Z) FOR VARIOUS VALUES OF L2 = 5 

experience with this procedure shows that it gives an 
estimate which differs from the actual one typically less 
than 3 percent. Also, the estimated value of NF is typically 
within these limits. 

These facts are illustrated in Tables VI1 and VIII. The 
former table compares the actual and estimated subfilter 
orders for a single-stage implementation of G ( z )  for vari- 
ous values of L. In Case I both the estimated and actual 
values of NF for a given value of L are the same as in Case 
I11 for 5L. The same is true for Cases I1 and IV. This is 
because the passband and stopband edge angles in Case 
I11 (Case IV) are obtained by dividing the Case I (Case 11) 
values by 5 so that the specifications for the shaping filter 
in Case I11 (Case Iv) for L = 5K are practically the same 
as in Case I (Case 11) for L = K. The values of NG, and L 
given in the parentheses in Table VI1 are for Cases I and 
11. As seen from the table, the difference between the 

TABLE VI1 
ESTIMATED AND ACTUAL ORDERS FOR TWO-STAGE DESIGNS OF 

TABLE VI11 
DTIMATED OPTIMAL DECOMPOSITIONS IN CASE Iv FOR- 

TWO-STAGE DESIGNS OF G( 2) FOR VARIOUS VALUES OF L ,  

I 

actual and estimated filter orders is very small up to 
L = 45 ( L  = 9) in Cases I11 and IV (I and 11). The filters 
for L = 50 ( L  =lo) have the maximum value of L and 
they correspond to the decimators and interpolators con- 
sidered in [15]. For these filters, the role of F( z L ,  is totally 
different. It concentrates only on the passband shaping, 
whereas G (  z )  concentrates on shaping the stopband. 
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I1 

Therefore, the proposed estimation procedure does not 
apply very well in these cases. 

Table VIII, in turn, gives the best estimated filter de- 
compositions in Case IV for two-stage implementations of 
G ( z )  for various values of i2. For each value of 2, given 
in the table, all admissible' values of L have been checked 
with the estimated subfilter orders and the one giving the 
smallest number of multipliers has been selected. When 
comparing Table VI11 with Table V, it is observed that 
only in one case" the estimated orders give a non-opti- 
mum value for L. This comparison shows also that, for 
cases where the estimated optimum value L is the true 
optimum, also the estimated subfilter orders are near the 
optimum ones. 

The above comparisons show that with the estimated 
subfilter orders we can find the value of L (and the values 
of i , ' s  for a multistage implementation of G ( z ) )  which is 
at least in a near neighborhood of the actual optimum 
value. After obtaining the best estimated values, the final 
optimization can be done using the guidelines given in 
Section 111-A. 

C. Design Examples 
To illustrate the use of the estimated values together 

with the design algorithm of the previous section, we give 
some examples. As a first example, we consider the design 
of a Case I1 filter with a single-stage implementation of 
G( z ) .  The estimated best decomposition is L = 8, NF = 65, 
and NG, = 35. With these values, the stopband ripples of 
F( z L ,  and G (  z )  become 0.8996, and 0.7276,, respectively. 
Therefore, the specifications may be met with lower orders. 
By decreasing both orders by 2, the ripples become 1.156, 
and 1.176,. Thus these orders are too low. With NF=64 
and NG, = 34, we obtain 1.118, and 0.9256,. T h s  shows 
that NF = 64 is too low. Hence, NF = 65 and Nc, = 34 are 
the minimum orders to meet the specifications. The result- 
ing ripples are 0.8906, and 0.9266, (see Fig. 6(a)). If it is 
desired to check whether this solution is the best one with 
respect to the number of multipliers, it should be checked 
whether L = 9 or L = 7 gives a better result (recall from 
Section 111-A that the total number of multipliers has been 
observed to be a unimodal function of L).  If so, L should 
be increased or decreased until no improvement is ob- 
tained. In this example, the estimated orders give directly 
the optimum value of L. When comparing the above 
stopband ripples, it is observed that increasing one of the 
subfilter orders, while keeping the other one fixed, only 
slightly increases the ripple of the subfilter with fixed 
order. This shows that the minimization of the orders of 
F( z L ,  and G (  z )  can be done rather independently. 

As a second example, we consider Case IV with a 
two-stage G ( z ) .  As seen from Table VIII, for the esti- 
mated orders, 2, = 7, L = 42; 2, = 8, L = 40; 2, = 9, 

9L = i-. L2 where r i s  an integer 
"This occurs for L, = 6. If L = 42, instead of L = 36 which gives the 

optimum result with actual subfilter orders, is used, only one more 
multiplier is required. 
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(b) 
Fig. 6. Design examples. (a) Case I1 filter with one-stage G(z). L = 8, 

NF = 65, NG, = 34. (b) Case IV filter with two-stage G(r) .  L = 40, 
L ,  = 8 ,  NF 65, NG * 11, NG = 21. 

L = 45; and 2, = 11, L = 44 give the minimum number of 
multipliers. If we are interested only in a nearly optimum 
solution, any pair of these values can be selected. In this 
case, the orders of only one decomposition has to be 
minimized. From Tables IV and V, it is seen that the filter 
with actual minimum subfilter orders requires, in the worst 
case, at most two multiplier-more than the optimum solu- 
tion (obtained either with L,  = 8 ,  L = 40 or 2, = 9, L = 
45). Let us consider the case i2 = 8, L = 40. With the 
estimated orders NF= 65, Nc1=15, and NG,= 22, the 
stopband ripples on [U,, 77/L], Ql, and Q2 become 0.9lS,, 
2.32 a,, and 0.546,, respectively. Therefore, NG, has to be 
increased and NF and Nc2 might be decreased. With 
NF = 64, NG, = 16, and Nc, = 21, the stopband ripples be- 
come 1.116,, 1.166,, and 0.726,, respectively. Thus NF = 65 
is the minimum order for F ( z L ) ,  whereas NGl is still too 
low and N G ,  might be decreased. By increasing NG, by one 
and decreasing NG2 by one, the resulting ripples on Ql and 
a, are 0.786, and 1.046,. These ripples shows that the 
minimum values of NG, and Nc, to meet the given criteria 
are 17 and 21, respectively. With the minimum subfilter 
orders, the stopband ripples become 0.906,, 0.786,, and 
0.716,, respectively (see Fig. 6(b)). 

If the truly optimum decomposition is desired, the next 
step is to check, using the estimated subfilter orders as a 
starting point, whether L = 4 - i 2  = 32 or L = 6.L2 = 48 
gives a better result than L = 5 . i ,  = 40. Recall from Sec- 
tion 111-A that the overall number of multipliers is in 



78 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 35, NO. 1, JANUARY 1988 

lorn N m k d  
:U, b5c*.i 
: u s  Bib 

0.W 14 

0.u  12 

1 . 1 7 1 9  

0.W 10 

0.4s 14 

11.51 14 

0.m 19 

0 2 2  14 

0.49 12 

o.m N A  

0.18 15 

0 . 4 3 1 s  

TABLE IX 

CONVENTIONAL. DIRECT-FORM FILTERS 
EFFECTS OF FINITE WORDLENGTH ON OPTIMAL IFIR FILTERS AND 

N m b v  
o f L u d u g  
2.I.a 

3 

1.2 

1.1.2 

I 

2.1 

1.-2.2 

0 

2,T 

1.1.2 

N A  

1,a 

2.1.9 

general a unimodal function of admissible values of L for 
a fixed value of 2,. The following step is to find the 
optimal decomposition for 2, 7 and 2, = 9 as for 2, = 8 
and to decrease or increase L, until no decrease in the 
overall number of multipliers occurs (The overall number 
of multipliers is a unimodal function of L, when for each 
2, the optimal decomposition is used.) 

As a final example, we consider Case IV with a three- 
stage design of G ( z ) .  With the estimated orders, the best 
design is obtained with L = 45, 2, = 5, 2, =15. The 
estimated filter orders are NF = 57, NG, = 8, NG2 = 6, NG, 
= 16. As seen from Table IV, the estimated subfilter orders 
give directly the optimum values of L,  i,, and 2,. Also 
NF and NG2 are the optimum one, whereas NG, is too low 
by one and NG, is too high by two. 

D. Effects of Finite Wordlength 
To illustrate the effects of finite wordlength on IFIR 

filters, Table IX compares IFIR filters with one-stage and 
two-stage G ( z )  to direct-form designs, in terms of output 
noise gain." In addition, the comparison is made in terms 
of the number of bits required by the filter coefficients to 
keep the overall amplitude response within the tolerances 
to be given later on in ths  subsection. The output noise 
gain is given in two cases. In Case A rounding is per- 
formed after each multiplication, whereas in Case B round- 
ing is performed at the output of each filter section. For 
IFIR filters, the scaling was performed according to the 
L, norm and the filter sections were implemented in the 
order F ( z L ) ,  G K ( z L ~ ) ;  . -, G,( z ) .  As seen from the table, 

'IBy the output noise gain we refer to the roundoff noise power at the 
output in reference to a unit noise source. 

the noise gains are lower for IFIR filters in Case A, except 
for the Case I1 IFIR filter with two-stage G(z).' ,  The 
reduction is within 7-21 dB corresponding to a 1-3 bit 
reduction in the required data wordlength. In Case B, the 
noise gains of IFIR filters are very slightly larger. 

The number of bits required by the filter coefficients 
were determined such that the deviation from the infinite- 
precision design is less than 0.000112 in the stopband. This 
corresponds to a 1-dB deviation from the infinite-precision 
design in the case where the stopband attenuation is 
exactly 60 dB. The sign bit is included in the number of 
bits. If all the filter (subfilter) coefficients possess the same 
number of leading zeros, they are excluded from the 
number of bits. Again L,  scaling was used and the 
subfilter F( z L ,  was implemented first followed by 
G K (  z L ~ ) .  The number of leading zeros given in the table 
follows this ordering. As seen from the table, in most cases 
the IFIR filters require fewer bits. The reduction becomes 
larger if the leading zeros are not taken into account. 

IV. IFIR FILTERS WITH RECURSIVE RUNNING 
SUM INTERPOLATORS 

So far the interpolator G ( z )  is assumed to have been 
implemented in the conventional linear phase direct form. 
In this section, we show how the total number of multi- 
pliers as well as the number of adders can be further 
reduced by developing filter structures that more effi- 
ciently provide the desired attenuation on the region Qs. 

A .  Proposed Filter Structure 
A good candidate for such a structure is to combine 

recursive running sum (RRS) filters with the aid of a few 
tap coefficients and extra delay terms, as proposed in [6], 
[13]. The use of recursive running sums (RRS) in imple- 
menting FIR filters has been studied extensively in [6]-[8, 
161. In [7], [8], these filters are used as prefilters. In [6], the 
filters are used as basic building blocks in implementing 
the overall filter, whereas in [16] they are used in imple- 
menting efficient early stages for sampling rate alteration. 

The RRS filter can produce several zeros at equal dis- 
tances without any multipliers. However, the available 
stopband attenuation is only moderate in the cases where 
rather wide regions around these zero locations are desired 
to be supressed. To overcome the limitations of the RRS's, 
we propose the use of interpolated FIR filter structures of 
the type (3) where the interpolator G ( z )  can be expressed 
as 

M 

G (  z )  = 2TP1 [ R k L (  z ) ]  ' n [ R i L (  z )  - 6rz-(kL-')  1 (154 
r = l  

where 
1 - z - k L  

R k L (  z )  = 2-p2-. (15b) 1 - z - '  

'*In this case, G2(zi2) contains rather large coefficients amplifying the 
noise produced by the filter F ( z L ) ,  
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Fig. 8. Implementations of the term R i L ( z ) -  &z- lkL- l ) ,  

Here k and 1 are integers and 2-'1 and 2-'2 are scaling 
constants. 1 or M may also be zero. Since the order of 
R i L ( z )  in (15) is 2 ( k L - 1 ) ,  the use of the delay terms 
z p ( k L - l )  makes the overall response linear phase. 

If k =1, R , , ( z )  produces one zero at each one of the 
centers o = r . 2 r / L ,  r = l , 2 ; .  . , [ L / 2 ] ,  of the unwanted 
passbands of F ( z L ) .  If S , = O  in the term R ; , ( z ) -  
S , Z - ( ' ~ - ' ) ,  the term produces double zeros at these points 
(see Fig. 7). With increasing a,, these zeros separate and 
move away from the center frequencies. Since the ripples 
of Ri,(z)  are different in the stopband region, the move- 
ment is different around each center frequency. By ap- 
propriately determining the S,'s, we can effectively at- 
tenuate the unwanted passbands. In [17], it is shown how 
the optimization of 8,'s can be converted into another 
approximation problem to which the Remez multiple ex- 
change algorithm is directly applicable. 

Fig. 8 gives two implementations of the term Ri,(  z )  - 
S,z p ( k L - l ) .  The first implementation requires 2kL delay 
elements and the second one 3kL - 1 delay elements. We 
note that if 1's or 2's complement arithmetic (or modulo 
arithmetic in general) is used and L ,  scaling (corresponds 
to the worst case scaling in this case) is used, the output of 
the implementation of Fig. 8(b) is correct even though 
there may occur internal overflows. In the case of Fig. 8(a) 
there are no internal overflows. The implementation of 

not need initial resetting and as the effect of temporary 
miscalculations vanishes automatically from the output in 
a finite time. The above facts are explained in Appendix C. 

B. Optimal Decomposition 

Table X gives the optimal decompositions in Cases I-IV 
for k =1 and k = 2. The number of delay elements re- 
quired by equivalent direct-form designs are given in the 
parentheses for comparison purposes. The decompositions 
have been determined such that the overall number of 
multipliers is minimized. It has been assumed that the 
implementation of the RRS interpolator requires M multi- 
pliers and 1 in (15) is either zero or one. In the case where 
the same number of multipliers is obtained with different 
decompositions, the one having the lowest number of 
delay elements has been selected. In additions, it has been 
assumed that the term R;,( z )  - S , Z - ( ' ' ~ - ~ )  is imple- 
mented as shown in Fig. 8(a) and a possible term R k L ( z )  
is implemented with kL delay elements. When comparing 
Table X with Tables I-IV, it is seen that IFIR filters with 
RRS interpolator provide significantly more savings in the 
number of multipliers than the optimal IFIR designs at the 
expense of an increased number of delay elements. 

As seen from Table X, the optimal decompositions are 
obtained with values of L which are very near the maxi- 
mum allowable value L,, = 1~/o,] (10 for Cases I and I1 
and 50 for Cases I11 and IV). Figs. 9 and 10 show the 
amplitude responses for the overall Case I filters with 
k = 1 and k = 2 as well as the amplitude responses for 
the subfilters. In the case k = 2, G(z) also contributes to 
the attenuation outside the regions of the unwanted pass- 
bands, decreasing the order of F( z ,). 

It is interesting to observe from Table X that the opti- 
mal filters for Cases I1 and IV have the same number of 
multipliers. The only difference is that the values of L for 

Fig. 8(b) is very attractive as in this case the  system does the Case IV designs-are obtained by multiplying the values 
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Fig. 9. Amplitude responses for a Case I IFIR filter with RRS interpo- 
lator with L = 8  and k = l .  (a) F ( r L )  of order 12. (b) G ( z )  with 
M = 2 and I = 1. (c) Overall filter. 
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Fig. 10. Amplitude responses for a Case 1 IFIR filter with RRS interpo- 
lator with L =  7 and k = 2 .  (a) F ( z L )  of order 11. (b) G ( r )  with 
M = 2 and I = 0. (c) Overall filter. 

for the Case I1 designs by 5. Recall that the specifications 
of Case IV are obtained by dividing the edge angles of the 
Case I1 specifications by 5. This fact is also valid in 
general. If the edge angles of a low-pass design are divided 
by an integer, a filter meeting the resulting specifications is 
obtained by keeping the filter orders the same and by 
simply multiplying the L of the original design by t h s  
integer. The resulting design is a good candidate for the 
true optimum solution. However, since for the new specifi- 

cations there are relatively much more values of L avail- 
able, the resulting design is not necessarily the best one, as 
can be seen by comparing the Case I and Case I11 designs 
with each other. 

C. Order Estimation 

For k =1, the order of F ( z L )  can be estimated as in the 
case of the optimum interpolator. For the number of 
RRS’s, 2 M  + I, a good estimate can be obtained using the 
fact that the lower limit for 2 M + 1  is the order of the 
optimum G ( z )  divided by L - 1. Usually, the minimum 
value of 2 M  + I is the second or the third integer which is 
larger than this number. For instance, in Case I11 the 
minimum values of F( z L ,  and G( z )  for the optimum IFIR 
filter with L = 46 are 9 and 192. By dividing 192 by 45 we 
obtain 4.2. The minimum value of 2M + 1 is 7, as seen 
from Table X. The minimum order of F ( z L )  remains the 
same. The resulting RRS G ( z )  requires only 3 multipliers, 
whereas the optimum G ( z )  requires 97 multipliers. The 
price paid for this reduction is the increase of the order of 
G ( z )  from 192 to 315. 

For k = 2, the value of 2M + I can be estimated in a 
similar manner. Since in th s  case C ( z )  also contributes to 
the attenuation outside a,, the order of F ( z L )  is lower 
than that of the optimum IFIR filter. For instance, in Case 
I11 with L = 41 the orders of F ( z L )  and G ( z )  for the 
optimum IFIR filter are 12 and 148. The minimum 
value of 2M + 1 and the minimum order of F ( z L )  
to meet the criteria are 5 and 7, respectively. The resulting 
RRS IFIR filter requires 6 multipliers, whereas the opti- 
mum IFIR filter requires 82 multipliers. The price paid for 
this reduction is the increase of the overall filter order 
from 640 to 692. 

v .  DESIGN OF OTHER TYPES OF FILTERS 
The above discussion was concentrated on the design of 

narrowband lowpass filters. This section shows how the 
proposed approach can be applied equally well to the 
design of other types of filters. 

A .  Design of Wideband Filters and High-Pass Filters 

The design of a wideband low-pass filter can be accom- 
plished with the aid of a narrow-band low-pass filter based 
on the fact that if a narrow-band filter of even order N ,  
H ’ ( z ) ,  has the edge angles of wI, = T - w, and w: = T - wp 
and the passband and stopband ripples of 6; = 6, and 
6; = a,, then 

H (  Z )  = z-”* - H ’( - Z )  (16) 

has the edge angles of wp and w, and the passband and 
stopband ripples of 6, and 6,. The only restriction in 
designing the narrow-band prototype filter is that it has to 
be of even order. 

The design of hghpass filter can be based on the fact 
that if a lowpass filter H ’ ( z )  has the edge angles of 

= T - wp and w; = T - U, and the passband and stop- 
band ripples of 6; = 6, and 6; = s,, then H ( z )  = H’( - z )  
has the edge angles of 0, and U, and the passband and 
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stopband ripples of 6, and 6,. Based on this fact, we can 
design both narrow-band and wideband high-pass filters. 

B. Design of Bandpass and Bandstop Filters 
To illustrate the applicability of the proposed approach 

for synthesizing bandpass and bandstop filters, we con- 
sider the design of a complementary bandpass-bandstop 
filter pair with at least 60-dB stopband attenuations. The 
passband edge angles for the bandpass filter are wpl,  wp2 = 

0 . 7 ~  k 0 . 0 4 ~  and the stopband edge angles are U,,, ws2 = 

0.771 k 0 . 0 6 ~ .  The desired filter pair is obtained by design- 
ing a bandpass filter of even order and having the pass- 
band and stopband ripples of at most 0.001. If H ( z )  is the 
transfer function of the bandpass filter of even order N ,  
then the complementary bandstop filter is z P N l 2  - H ( z ) .  

The minimum even-order of a direct-form minimax de- 
sign to meet the given bandpass filter specifications is 336, 
requiring 169 multipliers. In the IFIR approach, the num- 
ber of multipliers is minimized by using L = 5. The given 
criteria are met with NF=68 and NG,= 32.  This filter 
requires 52 multipliers, providing a saving by a factor of 
3.25 over the direct-form minimax design. In this case, 
F( z '~ )  takes care of shaping the passband and of primarily 
providing the desired attenuation on the regions [0.6r, a,,] 
and [ws2,0.8r] (see Fig. ll), whereas G ( z )  attenuates to 
the desired level the unwanted passbands and transition 
bands of F ( z L ) .  The design of the overall filter can be 
done by slightly modifying the design algorithm of Section 
II-C. G ( z )  can be designed by forcing G ( w )  to go through 
the value 1 at the passband center frequency and by 
simultaneously minimizing F( Lw)G(  0) on those regions 
where F( L w )  has the .undesired passbands and transition 
bands. Because of the periodicity of the response F ( L o ) ,  
its design can be done most conveniently on the region 
[0, T / L ] .  Using the transformation * 4 r / L  - w ,  
the approximating function becomes F( L o ) G ( 4 r / L  - 
w )  (F(L(477/L - w )  = F ( L w ) )  and the resulting passband 
and stopband edge angles in the region [0, ?r/L] are obta- 
ined from the original ones using the given transformation. 

Generally, useful values of L for designing bandpass 
IFIR filters are those for which there exist an integer r 
such that as,, E [ r r / L , ( r  + ~ ) T / L ] .  For these values of 
L,  the design of G ( z )  can be accomplished as in the 
previous example. The design of F( z L ,  can be transformed 
onto the interval [0, T / L ]  by using the transformation 

o * h ( w )  (174  

07b)  

where 

for r even i ( r + 1) T / L  - w , for r odd. 
w - m / L ,  

h ( o )  = 

The resulting approximation function id3 F( Lw)G(  h( a)) 
and the edge angles are obtained from the original ones 
using the transformations of (17). The remaining problem 
is to determine L such that the given criteria are met with 

"Because of the periodicity. F ( L h ( o ) )  = F ( L w ) .  
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Fig. 11. Design of an optimum bandpass IFIR filter with one-stage 
G ( r )  meeting the criteria: w p l .  wp2 = 0 . 7 ~  k0.04n, yl. wJ2 = 0.7nk 
0.06n, 8, = 6, = 0.001. L = 5, NF = 68. = 32. (a) F ( L w ) .  (b) G ( w ) .  
(c) Overall filter. 

the minimum number of multipliers, as in the low-pass 
designs. 

VI. COMPARISON WITH OTHER DESIGNS 
We now compare the proposed IFIR filters with other 

multiplier efficient FIR designs. The comparison is made 
only with the designs whose structures are predetermined 
to provide a significant reduction in the number of arith- 
metic operations compared to direct-form designs. 

A .  Filters of Jing and Fam 
To compare the new filters with the filters of Jing and 

Fam [l l] ,  we have designed a filter meeting the Case I 
specifications using their approach. The optimum solution 
is obtained with M =  3, n ,  = n 2  = 2, a, = a2 = 1, N ,  = 6, 
N2 = 7, N3 = 27. This filter requires 22 multipliers, whereas 
the best new design with optimum interpolator requires 15 
multipliers and the new design with RRS interpolator 
requires 8 multipliers. Fig. 12 shows plots of the overall 
number of multipliers versus the stopband edge angle w, 
for filters with 6, = 0.01, 6, = 0.001, and w, = w s / 2 .  Case I 
and Case I11 designs are special cases in these plots. The 
plots are given for direct-form designs, the optimized new 
designs with optimum and RRS interpolators, and for 
optimized Jing-Fam designs. As seen from the figure, the 
Jing-Fam designs require approximately 40 percent more 
multipliers than the new design with optimum interpola- 
tor. It is also interesting to observe that the new design 
with optimum interpolator is better than the direct-form 
design even for 0, = 0.471. This shows that the proposed 
approach can equally well be used for designing rather 
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wideband filters. As explained in Secticn IV-B, the number 
of multipliers of the proposed design with RRS interpola- 
tor remains approximately the same as w, and U, are 
divided by the same number. Therefore, this design be- 
comes better compared to the Jing-Fam design as w, is 
made smaller. 

B. Filters of Adams and Willson 
To compare the new filters with the filters of Adams and 

Willson, we have designed the new filter meeting the 
criteria given in [SI: w,, = 0.04271, U, = 0.1471, S, = 0.0115, 
8, = 0.001. These specifications are met with L = 6 ,  M = 2, 
I = 0, k = 2, and F( z L ,  of order 5. The above criteria can 
be met by a small number of arithmetic operations since 
the specifications have been selected such that the relative 
transition band is very wide. The new filter requires 5 
general multipliers, 15 adders, and 78 delay elements. The 
corresponding numbers for the best filter of Adams and 
Willson are 17, 37, and 73. The proposed design provides 
thus a saving by a factor of 3.4 in the number of multi- 
plier. 

C. Filters of Boudreaux and Parks 
We consider the specifications [5]: S, = 0.009, S, = 

0.0193, U,, = 0.00271, U, = 0.0571. These criteria can be met 
by using only the interpolator G ( z )  and no shaping filter 
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F ( z L )  is needed. The specifications are met by an RRS 
interpolator with L = 27, k =1, M =1, and 1 =l. This 
interpolator has been designed to take care of the overall 
stopband shaping. Because of a very narrow passband 
region, the passband specifications are automatically 
satisfied. The resulting overall filter requires one Sr-multi- 
plier and a multiplier to give the passband average of 
unity. The overall number of multipliers is thus two. The 
Boudreaux-Parks design requires 14 multipliers so that a 
saving by a factor of 7 is provided by the new design in the 
number of multipliers. The price paid for this saving is a 
slight increase in the order of the overall filter (64 com- 
pared to 78). It should be noted that the given criteria can 
be also met by simply cascading three pure running sums 
with L = 31 and k =l .  In thls case, the overall filter order 
is 90. 

D. Filters of Chu and Burrus 
We consider the specifications [lo]: S,, = 0.114, 8, = 

0.033, U, = 0.0271, w, = 0 . 0 4 ~ .  These specifications are met 
by an IFIR filter with a RRS interpolator with L =18, 
N F =  5 ,  k =1, M = l ,  and I=1 .  Thls filter requires 4 
multipliers and the overall filter length is 141. The equiv- 
alent Chu-Burrus filter designed in [lo] requires 7 multi- 
pliers and the overall filter length is 198. The proposed 
design provides, in the number of multipliers, a saving by a 
factor of 1.75. 

E. Filters of Saramaki 
In [13], Saramaki has designed a filter meeting the Case 

I specifications with 4 very simple multipliers (sums or 
differences of two powers-of-two), which is half of that one 
of the best IFIR filter (cf. Table X). The number of adders 
and the overall filter length for the IFIR filter are 21 and 
129, respectively, whereas the corresponding values for the 
Saramaki design are 27 and 184. Thus the IFIR filter has a 
lower filter length at the expense of an increased number 
of multipliers. 

F. Filters Based on Decimator Designs 
It is well known (see, e.g., [15]) that if FIR filters 

designed for decimation purposes are implemented without 
sampling rate alteration, we obtain implementations which 
provide significant savings over direct-form designs in 
terms of the overall number of multipliers. Fig. 13 shows 
the most general implementation form [17] for a decimator 
in the case where the overall sampling rate conversion ratio 
can be factored into the product 

K 

D = ~ D ,  
k = l  

where Dk’s are integers. By substituting F( z )  = HK+ z )  

transfer function of the corresponding single-stage imple- 
mentation can be written exactly in the form of (3) and (4). 
In the case of conventional FIR decimators [18], [19], the 
last stage H K + l ( z )  is absent. In this case, the transfer 

and Lk=Dk and G k ( Z ) = H k ( Z )  for k = l , 2 ; * . , K ,  the 



SARAMLKI er ul. : DESIGN OF COMPUTATIONALLY EFFICIENT INTERPOLATED FIR FILTERS 83 

Fig. 13. A general implementation form for a D-to-1 decimator. 

function can be expressed in the form of (3) and (4) by 
substituting F ( z )  = H K ( z )  and Lk = D, and G k ( z )  = 

H,( z )  for k = 1,2, e ,  K - 1 and finally by substituting 
K - 1 c) K .  The basic difference between the most general 
decimator transfer functions and the transfer functions of 
the proposed designs is that for the decimator design w, 
and L are related via U, = ?r/L so that L is restricted to 
be the largest possible L,, = ?r/w,. For conventional FIR 
decimators, L is restricted to be an integer fraction of 
L,, to make the factorization of L,, possible. 

If the don’t care bands considered in [19] are used, the 
conventional two-stage FIR decimator meets the Case I 
specifications with L = 5, NF = 24, NG = 21. This corre- 
sponds to factorizing the overall sampling rate conversion 
ratio D = 10 into D, = 5 and D, = 2, which gives the best 
result. The resulting single-rate design requires 25 multi- 
pliers, whereas the best new design with one-stage opti- 
mum interpolator requires only 18 multipliers. Another 
advantage of the new design compared to the conventional 
decimator design is that for the new design we can use 
multistage G( z ) .  For the conventional decimator design, 
only the factorizations D, = 2, D, = 5 and D, = 5, D, = 2 
so that only two subfilters can be used. With a three-stage 
G ( z ) ,  the overall number of multipliers of the new design 
can further be reduced to 15. 

The basic difference between the above decimator filter 
and the new filter with a single-stage G ( z )  designed for 
L = 5 is that for the decimator design both F ( z L )  and 
G (  z )  are designed separately, whereas for the new design 
they are determined simultaneously. This reduces the order 
of G ( z )  from 24 to 14 (cf. Table VII). The order of F(zL) 
is the same for both designs. 

The best generalized FIR decimated design [17] (having 
the last stage of Fig. 13) meets the Case I specifications 
with K = 2 ,  L=10, z,=5, NF=7,  N =13,and NGz=9.  
The resulting single-rate design requires one multiplier 
more (16 multipliers) than the best new design with opti- 
mum interpolator. Ths design is a special case of the 
proposed filters. The best generalized FIR decimator for 
K = 1 is obtained with L =lo,  NF = 13, NG = 38. This 
filter is obtained by properly overdesigning F( z L ) .  The 
resulting filter requires considerably more multipliers than 
the new design with a single-stage G ( z )  (27 compared to 
18). 

G I  

G. Filters with Lth-Band Interpolators 
One alternative to construct an efficient interpolator 

G ( z )  is to use Lth-band filters [20] or a cascade of 
Lth-band filters as proposed in [21] by the authors. The 
advantage of these designs is that they simultaneously take 
care of passband shaping and every Lth impulse response 
value, except for the central value, are zero. Especially for 
half-band filters, approximately half of the impulse re- 

sponse values are zeros and the central impulse response 
value has an easily implementable value of 1/2. How- 
ever, these interpolators require more multipliers for rea- 
sons shown below. 

Multistage Lth-band filters considered in [21] have the 
transfer function which are exactly of the same form as 
that for G ( z )  as given by (4). The program described in 
[21] can be used for simultaneously optimizing the sub- 
filters such that the overall filter provides the desired 
attenuation on Q ,  as given by (8). Because of the proper- 
ties of Lth-band filters, the resulting filter has automati- 
cally a good passband behavior. The remaining problem is 
then to design the shaping filter to meet (7). The best filter 
to meet the Case I specifications is obtained using K = 3, 
L = 8, i2 = 2, i3 = 4. In this case, the interpolator is an 
eighth-band filter consisting of three halfband filters G,(z) .  
The given criteria are met with NG, = 6, NG, = 10, NG, = 34, 
and NF = 12. When comparing these orders with the orders 
of the new design of Table I with a three-gage interpola- 
tor, it is observed that the orders of G,(zLi))s are signifi- 
cantly higher for the design with an eighth-band interpola- 
tor. The reason is that the half-band designs are forced to 
have some zeros for shaping the passband. These zeros 
decrease, in turn, the stopband attenuation so that more 
zeros are needed for the stopband shaping. If we assume 
that the central coefficient of value 1/2 (and of course the 
zero-valued coefficients) are implemented without general 
multipliers, the overall design with eighth-band interpola- 
tor requires 21 general multipliers. This is six more than 
that for the proposed design. Also the overall number of 
delay elements is considerably higher (258 compared to 
127). 

H. Multirate Implementations 
In [22], Rabiner and Crohiere have designed a low-pass 

filter as a cascade of a decimator and an interpolator to 
meet the Case I specifications. When both the decimator 
and interpolator are single-stage designs, the resulting 
overall filter requires 18.4 multiplications per input sam- 
ple. The corresponding optimum IFIR filter with single- 
stage G ( z )  requires 18 multiplications per input sample 
(cf. Table I) so that the multiplication rates for both of 
these designs are about the same. The delay and the 
number of distinct multipliers of the proposed single-stage 
design are lower (59.5 samples compared to 120 samples 
and 18 multipliers compared to 61 multipliers). Also the 
number of delay elements required in the implementation 
is lower (119 compared to 240). The corresponding multi- 
rate filter with two-stage decimator and interpolator re- 
quires slightly less multiplications per input sample than 
the optimum IFIR filter with two-stage G ( z )  (11.7 com- 
pared to 16). The price paid for this reduction is the 
increase in the overall filter delay (158 compared to 60) 
and in the number of distinct multipliers (27 compared to 
16). The number of required delay elements is slightly 
lower for the multirate implementation (100 compared to 
120). 
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VII. CONCLUSIONS 
In this paper two methods for designing efficient FIR 

filters with same input and output rates were presented. In 
the first method, the shaping filter F ( z L )  and the interpo- 
lator G( z )  of the IFIR filter structure were simultaneously 
optimized with a method based on the Remez multiple 
exchange algorithm. The design examples and comparisons 
with other efficient methods indicate that the method is 
quite efficient in terms of the number of multipliers, 
multiplication rate, number of adders, number of delays 
and signal propagation delay. The main reason why the 
method is efficient even if compared with transfer func- 
tions designed for decimator purposes and multirate struc- 
tures is that the shaping filter and the interpolator can be 
optimized simultaneously for an optimal overall perfor- 
mance without any concern of internal aliasing errors. 

In the second method, an efficient interpolator was 
derived which further reduced the number of arithmetic 
operations required in the IFIR implementation. The 
method utilized the fact that the unwanted passbands of 
the shaping filter F ( z )  are equally spaced and zeros on 
them can be placed by suitably simultaneously displacing 
the zeros of two running sums with a single multiplier. The 
examples indicate that the second method is comparable in 
the number of multipliers to IIR structures. The number of 
multipliers remained essentially constant as the passband 
and transition bands were simultaneously made narrower. 
This behavior is typical to IIR structures, too. 

There is no established theoretical or empirical relation- 
ship between the required number of arithmetic operations 
and the required number of delays for FIR filters that are 
noncanonical in delays. This makes it difficult to compare 
the efficiency of different FIR structures. However, experi- 
ence shows that by increasing the number of delays the 
number of multipliers and adders can be decreased. The 
methods presented in this paper seem to be close to 
optimal as in addition to a small number of arithmetic 
operations, the number of delays is only 10-20 percent 
more than that in the canonical design. 

In this paper we concentrated only on the design of 
efficient IFIR structures. There are several approaches one 
can take to further develop the methods. For medium wide 
bandwidths these IFIR based methods can be combined 
with the methods of Lim [23] and Jing and Fam [ll]. For 
symmetrical bandpass filters, the approach presented in 
[24] gives an alternative design approach with efficient 
implementation and easy tuning of center frequency. This 
approach can use the optimal low-pass IFIR filters pro- 
posed in this paper as a starting point of the design. 

APPENDIX A 
The algorithm of Section II-C gives a solution where the 

shaping filter F( z L ,  provides for the overall error function 

where 

1, for w E [o,w,,] 
0 ,  for W E  [ o , , ~ ]  ( A 4  D( a) = 

[N,/2] + 2 alternating extrema- of values 6, on [0, up] U 
[U,,  77/L]. The subfilter G,( z ' 1 )  provides for the overall 
error function [NG,/2] + 1 alternating extrema of values 
f 6, on Q,, as given by (11). Thus the overall number of 
extrema on [O,W,]U[W,,T/L]U ,"=,Q, is 1N,/21+Cf=11N~,/2J 
+ K + 2. Since the subfilters have the common scaling 
constant, the number of adjustable variables for the overall 
filter is 

Therefore, the solution obtained using the algorithm of 
Section II-C has K extrema more than that required by the 
equiripple solution ( N  + 1). This shows that we can use K 
degrees of freedom for malung the ripples 6, and 6, for 
j =I,. . . , K equal and for malung the overall solution 
equiripple with N + 1 extrema. One possibility is to use as 
primary unknowns the location of the first unit-circle zero 
pairs of those K filter stages which provide the smallest 
ripples (only the filter stage whose ripple is the largest is 
not taken into consideration). For fixed values of these 
zeros, the overall filter can be determined using the al- 
gorithm of Section II-C such that the primary unknown 
zero locations are included in the weighting functions and 
the orders of the filter stages, except for that one providing 
the largest ripple, are decreased by two. The remaining 
problem is to find the unknown zero locations such that 
the ripples 6, and 6, foT i = 1,. . . , K become equal. 

As an Zxample, we consider Case I with two-stage G ( z )  
( L = 6 ,  L ,=3 ,  N,=17, NG,=6, NG2=4). In this case, 
the original algorithm results in a solution where the 
attenuations provided by F ( z L ) ,  GZ(zL1), and G I ( z )  are 
63.24 dB, 62.20 dB, and 67.34 dB, respectively (cf. Fig. 3). 
Therefore, the first unit-circle zeros of F ( z )  and G,( z )  are 
selected as primary unknowns. By moving the zero of F( z )  
from w = 0.6055~ to w = 0.6002~ and the zero of G 1 ( z )  
from w = 0 .6082~  to w = 0.5885~, we obtain an equiripple 
solution having a 62.66-dB attenuation (see Fig. 14). Thus 
making the ripples equal increases the lowest attenuation 
only by 0.46 dB, showing that in practice a further optimi- 
zation is not worth doing. The price paid for this improve- 
ment is a 4.67-dB reduction on the region which is prim- 
arily shaped by G,(z).  

As a second example, we consider the design of a Case I 
filter with a single-stage G ( z )  ( L  = 6, NF = NG, =17). In 
this case F ( z L )  provides a 63.27-dB attenuation and G ( z )  
a 61.52-dB attenuation (see Fig. 15(a)). By moving a zero 
of F ( z )  from w = 0.6055~ to w =0.597~, we obtain an 
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Fig. 15. Amplitude responses for Case I IFIR filters with one-stage 
G ( z )  and L = 6. (a) Solution of the algorithm of Section 11-C for 
NF = N,, = 17 (b) Optimized equinpple solution for NF = N,, = 17. (c) 
Optimized equiripple solution for NF = 15. NG, = 25. (d) Optimized 
equiripple solution for NGl = 15. NF = 69. 

equiripple solution with a 61.81-dB attenuation (see Fig. 
15(b)). Thus the improvement in the minimum stopband 
attenuation is only 0.29 dB. 

Sharing the frequency response shaping responsibilities 
in the manner described in Section I1 is only one possibil- 
ity. However, in all cases considered so far, this resulted in 
the minimum number of multipliers required in the imple- 
mentation. To illustrate ths, we consider Case I with 
single-stage G( z). The proposed design is obtained with 

NF = NG, = 17, and L = 6. Figs. 15(c) and 15(d) give the 
responses of the optimized equiripple filters for N F  = 15 
and for NG, = 15, respectively. In the former case, NG, = 25 
is required to meet the given criteria and, in the latter case, 
NF = 69 is required. These filters require considerably more 
multipliers than the original design.14 

The design of the filter of Fig. 15(c) was performed in 
such a way that F(zL) provides the desired attenuation on 
the region [U,, T/L - p ]  ( L  = 6). G(z) provides the de- 
sired attenuation, in addition to the region a,, as given by 
(8), also on the intervals [(2r - ~ ) T / L  - P,(2r - ~ ) T / L  + 
p ]  for r = 1,2,3, which are not shaped by F(zL). The 
remaining problem is to find p in such a way that the 
given criteria are met with the minimum value of NG, and 
the resulting solution becomes equiripple (this is achieved 
with p = 0 . 0 2 1 4 ~ ) .  In this case of Fig. 15(d), G(z) was 
determined to meet the given criteria on the intervals 
[ 2 ~ T / L  - p, min (2 ~ T / L  + p, T] for r = 1,2,3 (ap  < p < os). 
For p < w,, F(zL)  has to take care of the remaining por- 
tion of as. The extra requirements for F(zL)  are most 
stringent on [27r/L - 0 , , 2 ~ / L  - p] .  These extra require- 
ments can be met by including the transition band require- 
ment 

- ~ , s G ( ~ T / L - ~ ) F ( L ~ )  sa,, f o r o €  [ p , w , ]  

( '4 .5)  

in the design of F( z L ) .  The equiripple solution is achieved 
with j3 = 0.0477~. If NF is decreased from 17 by one, NG, 
has to be increased to 21, and if NG, is decreased from 17 
by one, NF has to be increased to 29. 

APPENDIX B 
For the orders of the subfilters G,(Z',), good estimates 

can be obtained with the aid of FIR filters whose ampli- 
tude responses oscillate the maximum number of times 
within the limits 8, in the stopband [Gsl, Gs2] and are 
uniformly decaying as w varies from 0 to GSl. The order of 
the filter taking the value 1 at w = Gp < G,, can be derived 
easily with the aid of the Chebyshev polynomials of the 
first kind in a manner similar to the derivation used for 
finding the formulas for the corresponding low-pass design 
[2]. The estimated filter order is 

2cosh-' (1/8,) 
cosh-' X (  G p ,  GSl, G,,) N (  G p ,  GSl, G S 2 ,  8,) = 

where 
2 cos w - cos G,' - cos G,, 

cos G,' -cos 4, x ( w ,  4 1 ,  GS2) = 

This filter has the response 

(B.la) 

(B.lb) 

T( w , G p ,  GSl, 3,, ,8,) = 8, cosh - N (  GP, Gsl, G,, , 8,) [: 
.cosh- ' X (  w , Gsl , G,, )] . (B.2) 

I4In the first case, 21 multipliers are required and, in the second case, 
43. whereas the original design requires 18 multipliers. 
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An estimate for the order of G , ( z )  can be obtained by 

G , ( L , w p )  =1 (B.3a) 

- S, I G,(w)  IS,, for E 6, (B.3b) 

considering the following specifications: 

where 

(B.3c) 

with 

(B.3d) 

+ a ( w ,  - u p ) ] ,  7~ 

These specifications have three differences compared to 
the specifications of (10). First, the effects of the other 
subfilters are ignored. Secondly, the bandwidths of the 
stopbands are made smaller. This is because F ( z L )  takes 
part in providing the desired attenuation in the very begin- 
ning and in the very end of the intervals [ 2 k r / L -  
wS,2k.rr/L + wJ] for k = 1 , 2 ; - . , [ L / 2 ]  (subintervals of as 
as given by (8)). Finally, G , ( o )  is normalized to have the 
value 1 at w = L I w p ,  instead of ,  w = O .  In this case, the 
resulting periodic response G , ( L , w )  takes the value 1 at 
o = up and provides the desired attenuation from up to the 
corresponding stopband region.I5 

The desired estimate can be obtained using the follow- 
ing procedure: 

1) Set S , = 1  for k = l , 2 ; - . , [ L I / 2 ] .  Set @ ? = ( 6 2 k - 1 +  

L&)/2 and NG, = 0. 
2) Determine successively 

Nk = N (  LIop ,  6 2 k -  1, G 2 k ,  s,), 
where 

k = 1 , 2 , .  . . , L , / 2 ]  

I/, /2l 1 
8 ,  = 6, n 

r = l  T ( w ~ , L , w p , 6 2 r _ l , 6 z r , s r ) ~  
r + k  

3) Evaluate 
I L, /2l 

N&,= N k .  
k = l  

4) If ING, - N&,I I c,  stop. Otherwise set NG, = N;, and go 
to step 2. 

the desired attenuation for the overall filter on the subin- 
terval [ G Z k - , ,  6 2 k ] .  All these subfilters attain the value of 1 
at w = L,w,,. When determining for the first time the order 
of the first filter, the stopband ripple is initially SS.l6 For 
the other filters, the contribution of the previously de- 
termined responses are taken into account by determining 
the product of these responses in the middle point of the 
interval. 8, is then divided by this product in order to 
obtain the desired overall attenuation at t h s  point. In the 
following iterations, the effects of all the other responses 
are included. The algorithm is repeated until the sum of 
the orders of the subfilters remain the same. All the orders 
in the above algorithm are considered as real numbers. 
Finally, the resulting NG, is rounded to the nearest integer. 

For high values of L, ( L ,  > 25) ,  we can utilize the fact 
that the order of the filter satisfying (B.3) with L,  = rK is 
approximately K times that of the filter meeting 

e,( Kirwp) =1 (B .4a) 

for w E 6; (B.4b) - 6, I e, ( 0) I S,, 
where 

I L, / ( 2 K  )I 
6:= U [ G ; h & & k ]  (B  .4c) 

h =1 

with 
G;=min(KG,,n). (B .4d) 

Using this fact, the orders can be estimated for values 
L, = rK, r = 1,2,  . . . . In between values can then be found 
using linear interpolation. 

Considerable experience with the above procedure shows 
that by selecting a in (B.3) to be 2/3, it gives an estimate 
for the subfilter order which differs from the actual one 
typically less than 3 percent. 

APPENDIX C 

The basic building block of the structure of Fig. 8(b) is 
shown in Fig. 16. Assuming that the initial values of the 
delay elements are zero, the filter is characterized in the 
time domain by 

y ( n )  = w ( n ) - w ( n  - k ~ )  (C.la) 

for n < 0 

x ( k ) ,  for n 2 0. (C.la) 
k = O  

w ( n )  = 

In this algorithm, it is assumed that the overall filter is a 
cascade of [ L , / 2 ]  filters where the kth subfilter provides 

Calculating the output sample y ( n )  involves thus only 
additions. On the other hand, 2’s (or 1’s) complement 
arithmetic has the desired property that as long as the final 
sum of the numbers to be added is within the range 
[ - 1, I), partial sums can overflow and still cause no prob- 
lems. Therefore, if this arithmetic are used, the output 

lSThe desired function for F(zL),l  G ( w ) ,  is monotonously increasing 
in the passband. Therefore, the hglest value in the passband is ob- 
tained at w = ~ p ,  Because of the periodity, F ( L w )  attains this vahe 
also at w = 2 r / L  i w p 4 r / L  +_ wp . . . . Therefore, it is required that 
G,( i , ? ) / G , (  i , w p )  attains at most the specified value of 8, at w = 

2kr(Z,,+, +_ w? for k = 1,2; . . , lL , /2 l  Or, equivalently, G , ( w ) /  
G , (  L, up) attams at most this value at w = 2kr/L, f i ,up for k = 

1.2, .  . ..IL,/21. 

“Ths  is achieved by setting initially 8 ,  =1  for k=1,2;. . ,(L,/2].  
This makes the orders of the T( .)-functions for r = 2,3; . . , lL,/2] equal 
to zero and these functions become identically equal to 1. 
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Fig. 16. An implementation of a recursive running sum filter. 

sample y ( n )  is correct as long as 

~ ( n ) = w ( n ) - ~ ( n -  k L ) =  x ( k )  
k = r n a x ( O , n - k L + l )  

( C . 4  

is within the above limits. This means that if a scaling 
constant whose value is less than or equal to l / ( k L )  is 
used, there are no uncontrollable overflows in the structure 
of Fig. 16. 

Let us assume that there is an initial state variable value 
in the feedback loop at time n = 0. In th s  case, 

n 

w ( n ) = c x +  x ( k )  (c.3) 
k = O  

and 

y (  n )  = w( n ) ,  for n < kL. (C.4) 

Hence, the output is not correct for n < kL. However, for 
n 2 kL,  both w(n) and w(n - k L )  contain the initial state 
variable value cx and the output is as given (C.2). Accord- 
ing to the above considerations, the output is correct if the 
input samples are scaled in such a way that the right-hand 
side of (C.2) is within the desired limits. Hence, the initial 
state variable value has no effect on the output value for 
n 2 kL regardless of its value. Using a similar reasoning, it 
is clear that the effect of a temporary miscalculation of the 
state variable value vanishes from the output after kL 
samples. Thus there is no need for resetting the system 
initially or during the actual operation. 

Similarly, it can be shown that the output of the struc- 
ture of Fig. 8(a) is correct if a proper scaling and 1’s or 2’s 
complement arithmetic is used. In this case, initial reset- 
ting is needed. 
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