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Abstract -If each delay element of a linear phase low-pass digital filter 
is replaced by M delay elements, an (M + l)-band filter is produced. The 
transition-width of this (M + l)-band filter is l/M that of the prototype 
low-pass filter. A complementary filter can be obtained by subtracting the 
output of the (M + l)-band filter from a suitably delayed version of the 
input. The complementary filter is an (M + l)-band filter whose passbands 
and stopbands are the stopbands and passbands, respectively, of the 
original (M + l)-band filter. If the frequency responses of the original 
( M + l)-band filter and its complementary filter are properly masked and 
recombined, narrow transition-band filter can be obtained. This technique 
can be used to design sharp low-pass, high-pass, bandpass, and bandstop 
filters with arbitrary passband bandwidth. 

I. INTR~~KJ~TI~N 

L INEAR PHASE FIR digital filters have many ad- 
vantages such as guaranteed stability, free of phase 

distortion, and low coefficient sensitivity [l], [2]. A serious 
disadvantage of FIR filters is its complexity. This problem 
becomes particularly acute in sharp filters. Fig. 1 shows a 
filter length versus transition width plot [3], [4] for mini- 
max optimum low-pass filters with 0.2-dB peak-to-peak 
bassband ripple and 40-dB stopband attenuation. As can 
be seen from Fig. 1, the filter length is inversely propor- 
tional to transition-width and the complexity becomes 
prohibitively high for sharp filters. 

Several methods have been proposed in the literature for 
reducing the complexity of sharp FIR filters [5]-[13]. In 
multirate filtering [8]-[12], the input signal’s bandwidth is 
first reduced by using a moderate transition-width 
narrow-band filter. The sampling rate is then reduced and 
the output signal is further filtered at the reduced sampling 
rate. Finally, the sampling rate can be restored by interpo- 
lation. In recursive running sum prefilter implementation 
[5], [6], a large number of evenly spaced zeros are placed on 
the unit circle. The zero at dc is then eliminated by a dc 
pole. Interpolating the impulse response of a low-pass filter 
has the effect of reducing its passband width and transition 
width by the interpolation ratio. The interpolated impulse 
response [7] approach makes use of this property to syn- 
thesize sharp filters. The above methods are very attractive 
for narrow-band filtering. They can also be used to syn- 
thesize wide-band filters by subtracting the narrow-band 
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output from the delayed version of the input signal. The 
bandwidth of the resulting wide-band filter can again be 
reduced using the interpolated impulse-response method 
1131. 

In this paper, we present a new method which uses a 
frequency-response masking technique for implementing 
sharp filters with arbitrary bandwidth. The resulting filter 
has very sparse coefficients. For a given frequency- 
response specification, its effective filter length (including 
both zero and nonzero coefficients) is only slightly longer 
than the infinite wordlength minimax optimum filter meet- 
ing the same specification. Since only a very small fraction 
of its coefficient values are nonzero, its complexity is very 
much lower than the infinite wordlength minimax opti- 
mum filter. When the frequency-response masking tech- 
nique is used together with the multiplierless design method, 
the complexity of the resulting filter is reduced to a mini- 
mum. 

This paper is divided into seven sections. The usefulness 
and shortcoming of a simple frequency response masking 
approach are presented in Section II. Our new technique is 
based upon the masking of the frequency responses of 
complementary filters. Its underlying principle is presented 
in Section III and design details are presented in Sections 
IV-VII. 

II. FREQUENCY RESPONSE MASKING: 
NARROW-BAND FILTER DESIGN 

In this section, we present the principle of frequency 
response masking, its usefulness and shortcoming for im- 
plementing narrow-band filters. 

Consider a low-pass filter with z-transform transfer 
function H,(z), transition width A,, and frequency re- 
sponse HU(ejw) as shown in Fig. 2(a). Replacing each 
delay of this filter by M delays, a filter with z-transform 
transfer function Hb( z) = H,(z”) and frequency response 
Hh( e+) = H,( eiMo) as shown in Fig. 2(b) is obtained. If 
H,,( e““) is masked by the frequency response H,(ej”) as 
shown in Fig. 2(c), the resulting frequency response 
Hd(e’w) = H,(ej”)H,(ej”) is shown in Fig. 2(d). The 
transition width of Hd( e“‘) is Au/M. If H,,( eJ“) is masked 
by H,(ej”) as shown in Fig. 2(e), the resulting frequency 
response H,(ejw) = H,(ej”‘)H,(ej”) is shown in Fig. 2(f). 
The transition width is again Au/M. Fig. 2 illustrates a 
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Fig. 1. Filter length versus normalized transition-width plot for an FIR 
low-pass filter with 0.2-dB peak-to-peak passband ripple and -40-dB 
stopband ripple. The frequency axis is normalized with respect to 
sampling frequency. 

n 
Fig. 2. The simple frequency-response masking method of obtaining 

sharp filters. This method is inherently only suitable for narrow-band 
filters. 

method of’ deriving sharp filters from filters with much 
wider transition bands. 

This simple frequency-response masking technique 
suffers a serious difficulty. While replacing every delay in 
H,(z) by M delays reduces the transition width by a factor 
of M, the passband bandwidth is also reduced by the same 
factor. Hence, it is suitable only for narrow-band design. It 
can be shown that the interpolated impulse-response ap- 
proach [7] is a special case of this frequency-response 

masking technique where the frequency response of the 
interpolator belongs to the same category as that of Fig. 
2(c). 

III. FREQUENCY-RESPONSE MASKING: ARBITRARY 
BANDWIDTH DESIGN 

Two linear phase filters F, and F, are said to be a 
complementary pair if ] F,(e@) + Fc(e’o)l = 1, where 
F,( ej”) and Fc(eJw) are the frequency responses of F, and 
F,, respectively. For a linear phase FIR filter of length N, 
its frequency response F,(ej”) can be expressed as 

F,(ejm) = e-jKN-l)/2)wR(W) (1) 
where R( w ) is a trigonometric function of w [l], [2]. 

The frequency response of the complementary filter is 

F,( eja) = ,-j((N-W2b{ 1_ R(~)} _ (2) 
If the z-transform transfer function of F, is Fu(z), then the 
z-transform transfer function of F, is given by 

F,(z) = z-((~-~)‘~) - F,(z) (3) 
where F, can be implemented by subtracting the output of 
F, from the delayed version of the input as shown in Fig. 
3(a). The extra delays for deriving F, from F, need not be 
implemented explicitly since the delays in F, can be used 
for this purpose as shown in Fig. 3(b). Consider a low-pass 
filter F, with R(w) as shown in Fig. 4(a). The cutoff 
frequencies are 8 and +, respectively. The frequency re- 
sponse of its complementary filter F, is shown in Fig. 4(b). 
Two filters Fd and F,’ are formed by replacing each delay 
of F, and Fc by M delays. The frequency responses of Fof 
and Fc’ for odd N are F,‘(ej”) and F,‘(ej”), respectively, 
as shown in Fig. 4(c) where Fa’(ej”) = Fcl(eJMU) and 
F,‘( e+) = F,( eiMw ). Two masking filters F,,,. and FM, 

with frequency responses F,,( ej”) and F,,( ej”), as shown 
in Fig. 4(d), may be used to mask F:(ej”) and F,‘( ejw), 
respectively. If the outputs of F,,,,, and FM,, are added, as 
shown in Fig. 5, the frequency response F(ej”) of the 
resulting filter F is shown in Fig. 4(e). If wP and o, are the 
band edges of F, it can be shown that 

and 

2mm+8 
wp = 

A4 (44 

2mr-bc$ 
0, = 

A4 (4b) 

where m is an integer less than M. The following points 
should be noted. First, the group delay of FM, and that of 
FM, must be equal. This means that the length of FM, and 
FM, must either be both odd or both even and that leading 
delays must be added to either FM, or FM, to equalize their 
group delays if necessary. Second, in order to avoid half 
sample delay, (N - l)M must be even. 

In Fig. 4(e), the frequency response of F near the 
transition-band is determined mainly by that of FL. If the 
frequency responses of FM, and FM, are those shown in 
Fig. 4(f), the frequency response of F will be that shown in 
Fig. 4(g) and that the frequency response near the transi- 



LIM: SYNTHESIS OF LINEAR PHASE DIGITAL FILTERS 

Fig. 3. Realizations of 4.. 
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Fig. 4. Frequency-response masking of complementary filters. This 
method can be used to synthesize wide-band sharp filters. 
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Fig. 5. The structure of a filter synthesized using the frequency-response 
masking technique. 

tion-band will be determined mainly by that of F,‘. It can 
be shown that in this case the band edges wP and o, are 
given by 

2ma-$3 
%’ J,.y (54 

and 

2ms-9 
a3 = 

A4 . (5’4 

In a synthesis problem, oP and w, are given and m, M, 8, + 
must be determined. In particular, we wish to choose A4 
such that the overall complexity of the filter is minimized 
with respect to some criterion. Hence, it is necessary to 
express 8, 9, ,and m in terms of oP, wS, and M. To achieve 
this end, we observe that 

o<e<+<7r. (6) 

To ensure that (4a) and (4b) yield a solution with 0 < 8 < 9, 
we have 

m = [w,W(W] (44 

d=w,M-2mm (44 

+=w,M-2mn (44 

where [w,M/(2a)] is the largest integer less than 
w,M/(2~). To ensure that (5a) and (5b) yield a solution 
with 0 c 0 < +, we have . 

m = lG4/(277)1 (54 
8=2m77-g4 (54 
+=2mm-u,M 64 

where [o,M/(27r)l is the smallest integer larger than 
o,M/(2m). For any set of tip, oS, and M, only one of (4) 
or (5) (but not both (4) and (5)) will yield a set of 8 and + 
satisfying the constraint + < r. 

Since the transition width of F,(d”) is M(w, - a,,), for 
a given wP and o,, the transition width of F,( ej”) increases 
with increasing M. Hence, the complexity of F, decreases 
with increasing M. The sum of the transition widths of 
F,,,,,( ej”) and F,,,,,( ej”) is l/M and decreases with increas- 
ing M. Before embarking on a discussion on finding the 
value of A4 which gives the minimum overall complexity, 
we shall examine the effects of F,‘(e“‘), F,,,,,(ej”), and 
F,,( ej“) on F( ejw); this is presented in the next section. 

IV. RIPPLES OF F( ej”) 

Let G:(w) and S:(w) be the desired value and deviation, 
respectively, of F:( ej“), i.e., G;(w) = 1 in the passband of 
F:( ejw) and G:(o) = 0 in the stopband of F,‘(ej”). The 
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ripple is S:(w). In the transition band of Fd( e“‘), we shall 
define G:(w) to be equal to F,‘(ej”) (with an error in the 
linear phase term), i.e., S:(o) = 0. Similarly, let GMO( w) 
and G,,( w ), and 6,,,,,(w) and 6,,(w) be the desired values 
and deviation, respectively, of F,+,,(P) and F,,( ej”). If 
G(w) and 6(w) are, respectively, the desired value and 
deviation of F(ej”), then we have 

G(w)+ +4 

= k&) + L,(d) {G:td + 4X4> 

+~G,,t~)+~,,t~)}{l-G:t~)-~:t~)}. (7) 
We shall examine the effects of the frequency responses of 
FL, Fjo, and FMC on the frequency response of F in three 
frequency ranges. 

Frequency range I: G,,(w) = G,,,Jw) = 1. In this 
frequency range, G(w) = 1, and (7) can be simplified to 

6(w) =G:t~)(~,,t~)-~,,t~)}+~,,t~) 

+ %t~){hob)- Ltd)- (8) 

Ignoring the second-order term, (8) simplifies to 

+) -G,:t+h,,b)- b,,(d) +Lb)- (9) 
When 

When 

G,‘(w) =l, S(U) =S,,(w). (104 

G;(w) = 0, S(w) =6,,(w). (lob) 
When 

0 <G;(o) ~1, 

VWI aaxof {Pd4L I4d4). w 
Frequency range 2: G,,(w) = G,,,,(w) = 0. In this 

frequency range, G(w) = 0, and, after ignoring the second 
order term, (7) can be simplified to 

+) = G:td{ &&J)- h&-+) + b&-+ (11) 

When 

When 

G;(w) =l, S(w) = S,,(w). (124 

G;(u) = 0, 6(w) =6,,(o). tl2b) 
When 

0 <G;(w) ~1, 

PWl waxof Md417 I&&-W ow 
Frequency range 3: The remaining not covered by 

frequency ranges 1 and 2. This corresponds to (2mm - 
0)/M < o < (2(M + 1)~ - $)/A4 for the frequency re- 
sponses of G,,(o) and G,,,,Ju) shown in Fig. 4(d), and 
corresponds to (2(m - 1)~ + $)/A4 < o < (2mn + 8)/M 
for G,,,,(w) and G,,(o) shown in Fig. 4(f). Consider the 
case where G,,,O(~) and G,,(o) are shown in Fig. 4(d). 
For (2mn - 8)/M < w < up, G(o) = G;(w) = G,,(o) = 1. 
Neglecting the second-order term S:(o)S,,(o), we have 

6(o) =s,,(~)+s,:(w){l-G,,(o)}. (13a) 

~~r&z~~*u 
0 

Fig. 6. FM, and FM. Fe low-pass filters with don’t care bands within 
tLe,r passbands and stopbands. 

TABLE I 
THE ESTIMATEDLENGTHSOF F,, F,, ,AND F,, FORVARIOUS M; 

THECONSTRAINTSONTHEPARITIESOF N, N,,,,,AND N,,,,, 
ARENOT~ONSIDERED 

2 
3 
4 
6 
7 1 0 
9 

11 
12 
13 
IL 

M N N N,, N*N,,o’t&c E,f&$f Effectwe 
length 

2 200 1 26 227 424 424 
3 134 5 33 172 432 432 
4 100 13 19 132 415 415 
6 67 19 33 119 429 429 
7 58 18 60 136 459 459 
0 50 100 19 169 492 492 
9 45 41 33 119 437 437 

11 37 6L 34 135 160 160 
12 34 93 33 160 409 409 
13 31 30 193 254 583 583 
IL 29 53 60 142 452 452 

200 
134 
100 

67 
58 
50 
45 
37 
34 
31 

29 

NW N*N..‘IJI 
26 227 
33 172 
19 132 
33 119 

I 
60 136 
19 169 
33 119 
34 135 
33 160 

193 254 
60 142 

GMJw) decreases from unity to zero as o increases from 
(2mm - 6)&l to wP. Hence, for (2mn - 8)/M < w -C tip 

For w, < w < (2(m + 1)~ - +)/M, G(o) = G;(w) = 
G,,,,c(~) = 0. Neglecting the second-order term 
S:( u)S,,( w), we have 

G,,(w) decreases from unity to zero as o increases from 
w, to (2(m + 1) T - $)/M. Hence, for U, < w < 
Mm + 1)~ - (PI/M 

The bounds of (13b) and (14b) are overly pessimistic. 
G,(w) can be designed in such a way that 6;(w) partially 
compensates for 6,,(w) and S,,(u). 

Similarly, bounds as those of (13b) and (14b) can be 
derived for the case of Fig. 4(f). 

Remark: In this section we have shown that where 
%&4 and G,,( 1 o are both equal to zero or one, 6(w) is 
determined mainly by 6,,(o) or 6,,,,(o) depending on 
whether G:(w) is zero or one; the effect of 6:(o) is of 
secondary important. Hence, FM, and FM, are lowpass 
filters with don’t care bands within their passbands and 
stopbands as shown in Fig. 6. These don’t care bands help 
reduce the complexity of F,,,,, and F,,,,,. (Warning: This will 
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Fig. 7. (a) and (b) show the frequency response of a filter synthesized 

using frequency res 
the subfilters are 

onse masking technique. The frequency response of 
s K own m (c)-(f). The frequency axes are normalized 

with respect to sampling frequency. The filter lengths are N = 45, 
N ,,,,” = 41, and NMC = 33. 

work if 6,” and a,,,, in the don’t care bands are not large. 
Hence, it is safer to apply a low weighting to 6,, and a,, 
instead of “don’t care” in the don’t care bands.) Near the 
transition-band of F, G,,(o) is not equal to GMC( w); 
6(w) is a function of 6:(w), 6,,(o), and awC(w). It is 
possible to design the filter F, such that 6:(w) partially 
compensates for S,,(o) and 6,,(w). 

V. OPTIMIZATION OF F,(u) 

It is shown in Section IV that it is possible to design 
R(w) so that 6:(o) partially compensates for 6,,,,(w) and 
6,,(w) for those frequencies near the transition-band of F. 
It should be pointed out that the converse is not true; if 

F:(u) is obtained first, it is not possible to derive FMo(w) 
and F,,( w ) to produce significant effects in compensating 
for 6:(o). This is because the effective length of F,’ is 
(N - l)M + 1 and is much larger than that of F,,,,, and 
F,,,,,. Hence, F,,,,, and FM, should be designed first and 
then FL designed to compensate for aMMa and 6,,(u). 
The magnitude of SMO(w) and 6,+,,(o) should be 10 per- 
cent-15 percent smaller then the maximum allowable mag- 
nitude of S(w) to give room to the second order error term 
due to S:(w). 

In order to optimize R(w) so as to compensate for 
6,,(w) and 6,,(o), a linear equation relating 6(w) and 
R(w) in a useful form must be obtained. This can be 
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Fig. 8. (a) and (b) show the frequency response of a filter synthesized 
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normalized with respect to sampling frequency. The filter lengths are 
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Fig. 9. (a) and (b) show the frequency response of a filter synthesized 
using frequency-response masking technique. The frequency responses 
of the subfilters are shown in (c) and (d). The frequency axes are 
normalized with respect to sampling frequency. The coefficient values 
are shown in Table II. 
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Fig. 10. The structure of a two-level frequency-response masking filter. 
The subfilter F; is synthesized using frequency-response masking tech- 
nique. 

achieved by rearranging (7) to the form of (15) 

S(w) = R(Md{ G&d+ Lb)- G&)- bcb)) 

+G,,(w)+6,,(w)-G(u). (15) 

Equation (15) should be evaluated on a dense frequency 
grid covering the frequency range (2mr - 9)/M < o < 
(2(m + 1)~ - +)/M for the case corresponding to Fig. 
4(d), and covering the frequency range (2(m - 1)n + +)/M 
c w < (2mn + c#I)/M for the case corresponding to Fig. 
4(f). The minimization of 16(w)] in (15) is a linear pro- 
gramming filter design problem [14]-[16] and can be solved 
by a standard mathematical programming package. If finite 
wordlength coefficient values are needed then finite word- 
length filter design methods [17]-[22] may be used. The 
RemCz exchange algorithm can also be used for the optimi- 
zation if the desired gain and ripple weighting are properly 
selected. 

VI. OPTIMIZATION OF M 

There is no known closed-form analytic expression for 
finding the optimum M. However, a good choice of M can 
be obtained by estimating the filter complexity for each M 
and then selecting the M which corresponds to the lowest 
estimate. We shall illustrate this method by an example. 
Consider the design of a linear phase FIR low-pass filter 
to meet the following specifications: 

passband frequencies: 0 < 0/2~ < 0.3 
maximum passband ripple: + 0.1 dB 
stopband frequencies: 0.305 G w/2~ < 0.5 

I 

(16) 

minimum stopband attenuation : 40 dB _ 

For any given transition bandwidth and passband- 
stopband ripples, the filter length of the infinite word- 
length minimax optimum low-pass filter can be estimated 
using the formular reported in [3], [4]. To meet the specifi- 
cations of (16) the estimated length of the infinite word- 
length minimax optimum filter is 383. 

In the frequency response masking technique, the 
frequency response ripple magnitudes of F,, and F,, 
must be 10 percent-15 percent less than the allowed ripple 
magnitude. The ripple magnitude of F, depends on those 
of F.. and F.,.. For the nurnose of estimating the filter 
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TABLE11 
COEFFICIENTVALUESOFTHE FILTERSOFFIG. 10 

h,( 0)~ 2.‘-2.’ zh,(416) 

h,( 16) = -2.’ - 2” = h,(400) 

h,( 32): -2.’ : h,(384) 

h,( 48): -2.’ f 2-9 = h,(368) 

h,( 64): 2.’ * 2-O z hJ352) 

h,( 80)~ is . i” z hJ336) 

h,( 96)= 2.’ l 2-l’ =h,(320) 

h,(112). -i” -2-I .h,(304) 

h,(12t3): -2.’ - i6 = hJ288) 

h,(144): -2.’ - 2.’ 3 h,(272) 

h,(1601= 2-l * ip = h,(256) 

hx(176): 2-j *i‘ =hx(240) 

’ h,(192): 2.’ + 2-l =h,(224) 

h,(208)= 2.’ -2.‘ 

h,,( 01 : 2 
.10 

I h,,l104) 

h,,( 4 I =- 2-7 * 2-l’ : h,, (100) 
.o -9 

h,,(E)=-2 -2 : h,J 96) 

hxt (12): 2-O * 2.’ = hxcl 92) 

h,, (161: 2.’ * 2” = h,,( 88) 

h,,120)--2-6 + 2” zh,,(84) 
-6 .1 

h,,(241:-2 -2 :h,,(801 

h,,(28) = 2.’ + 2 -’ = h,,(76) 

h,,(32) = 2 -5 * 2.’ : h,,(72 1 

h,,(36) = -2 -6 2.” z h,J68) 

h,,(LO) 2 -i’ - 2 
-6 

: hxc (64 I 

-I h,,(44)= i’ ‘2 : h.c(60) 

h,,l48): i’ -2.” .h,,l56) 

h,,l52) = 2.’ +i’ 

h.,(O): -2.’ = h,. (48 I 

&al4): -2-‘f2-’ = h,,l441 

h..(8)= -2.’ = h.. (401 

h,,l12) I 2.’ .2-6 i h.,, (36) 

h,l16) = 2-3 *2-L = h..l32) 
h,, PO) = I’ -2-O = h., (28) 

h,,(24): 2“ f2.6 

h.,(O) = -2-O - 2-9 E h,,,(14) 

~,(I,= 2-6’2+ E hM,(13) 

h,,.lZl: -2-6 -2.’ z hMa(12) 

b,,(3) = 2.‘+2-” z h,,(ll) 

h.,(4) = 2-5 .2-’ = h,,(lO) 

b.15, : -2 .2-’ = haI 9) 

h,,(6) : 2.’ f 2.‘ z h,, ( 8 ) 

l&(7) : 2” *i’ z 

h,,(O):-2-O = h.,(22) 

h,,l I ):-2-O = h.,l21) 
h,,l 2 1: 2.’ + 2-O = hM,(20) 

hm I 3 I : 2-O = h&19) 

h,,(4)-2-l-2’ :hM,(18) 

h.,(5)=-2.’ = h,,(l7) 

h.,l 6) 2 2-$ . 2-6 = h&16) 

h.,( 7 ) : 2.’ = h&l 5) 

h,,,( 8).-i -2.’ =h.,(14) 

htic19)=-2-’ -2.’ :h.,l13) 

h,,(lO)- 2.’ *i =h,,(lZ) 

h,,(ll): 2-l * 2.’ 

complexity, we shall assume that the ripple magnitudes of 
Fll, FMll~ and F,, are each 85 percent of the allowed 
magnitude. Using this assumption, the estimated lengths of 
FL, hm and FM, to meet the specification of (16) are 
shown in Table I. The parities of N, NM,, and NM, are not 
considered in the tabulation of Table I. The sum N + N,,, 
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+ NM, gives the total number of nonzero multipliers and 
can be used as a measure of complexity. This sum is also 
tabulated in Table I. It is minimum when M = 6 or 9. The 
frequency response of a design with M = 9 is shown in Fig. 
7. Note the compensation effect of S:(w) in Fig. 7(c) and 
7(d). Also note the large ripple magnitudes of IFMU(ej”)l 
and IFMC( ej”) 1 in their respective don’t care bands in Fig. 
7(e) and Fig. 7(f). 

The compensation effect of S:(w) can be further utilized 
to reduce the complexity of F,,,, and F,,, by relaxing the 
constraints on 6,,(o) and S,,(o) near wP and 0,. 
It should be pointed out that the compensation of 
6,,(w) and S,,(w) by 6;,(w) is effective only when 
IFMu( FMc(o)l is large, i.e., when w = oP or w = w,. A 
design (with M = 9) which exploit this ripple compensation 
effect is shown in Fig. 8. The lengths of F,, F,,, and F,, 
are 45, 38, and 30, respectively. 

VII. HIGHER LEVEL MASKING OF FREQUENCY 
RESPONSES 

The frequency-response masking method can be applied 
to reduce the complexities of the subfilters F,, F,,, and 
F,,,,,.. We shall use the example of Table I with M = 4 as an 
example. In this case the estimated length of F, is 100. The 
filter F, may be implemented as a system of subfilters 
using the frequency-response masking technique. The com- 
plexity of the filter may be further reduced by constraining 
all the coefficient values to be a sum or difference of two 
powers-of-two using the powers-of-two design technique 
[17]-[19]. Fig. 9 shows the frequency response of such a 
design. The coefficient values are tabulated in Table II. 
The subfilters are organized as shown in Fig. 10. This filter 
requires 202 shift-add operations per sampling interval. 
Comparing with the infinite precision minimax optimum 
design which requires 383 multiply and 382 add operations 
per sampling interval, our new technique produces a sig- 
nificant saving in the arithmetic operations. 

‘VIII. CONCLUSION 

A new technique for synthesizing sharp linear phase 
digital filters is presented. In this technique, the frequency 
responses of complementary pair filters are masked by the 
frequency responses of two appropriate masking filters. 
The outputs of the masking filters are combined to pro- 
duce the desired output. This technique produces filters 
with very sparse coefficients and so the resulting filter has 
very low arithmetic complexity. 
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