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Frequency-Response Masking Approach for
the Synthesis of Sharp Two-Dimensional
Diamond-Shaped Filters

Yong Ching Lim and Seo How Low

Abstract—The frequency-response masking (FRM) technique the method to the design of bandpass filters. Several authors,
is an efficient method for realizing sharp one-dimensional (1-D) notably [5] and [6], sought to reduce the implementation com-
filters. Sharp 1-D filters realized using the FRM technique have plexity further by combining the frequency-response masking

considerably lower complexity than those realized in the direct . . . .
form. In this paper, we present an extension of the FRM tech- approach with the interpolated impulse response technique [7]

nique to the synthesis of sharp two-dimensional (2-D) diamond- Or using half-band filters to serve as one of the masking filters.
shaped (DS) filters. The new technique, based upon dividing the Applications of the FRM method in the implementation of

frequency spectrum into four complementary components and |inear phase filter banks are demonstrated in [8] and [9] while
the utilization of four masking filters, achieves large reductions the optimum design of filters using the FRM technique is con-

in filter implementation complexity when the transition width of idered in [101. Sub td I t | ted i
the desired DS filter is very narrow. An expression for the impulse sidered in [10]. Subsequent developments are also reported in

response up-sampling ratio that produces the design with the [11]-{14]. Despite all these developments, the FRM technique
least complexity is derived. Extensions of the technique for the has not been applied very successfully to the synthesis of
synthesis of 2-D filters other than the DS filters are also discussed. two-dimensional (2-D) filters.

The high complexity problem of implementing sharp FIR
|. INTRODUCTION filters is even more acute for 2-D filters. For the 2-D diamond-

INEAR phase finite impulse response (FIR) digital filterghaped (DS) filter, empirical results indicate that the filter

are frequently used in signal processing applications 1‘£S)lrmport size is inversely proportional to the square of the
their guaranteed stability and freedom from phase distorti ansition width [15]-{17]. Thus, the complexity of a sharp

) : : o n 'Bs filter would be prohibitively high. To implement shar
One disadvantage of FIR filters is their high |mplementat|051_D filters. new eﬁ‘iEient techn)i/quegs are negded. In [10]pa

clomplexmgg. Th'$ IS gspemally so for Sh?rp filters since thn%ethod for the design of sharp 2-D filters using the FRM
filter transition width is inversely proportional to the flltert chnique was described: however. the technique presented can
length [1]. Thus, the implementation of a sharp filter would q ’ ' que p

entail an extremely long filter length and considerable arito-nly design filters with narrow passbands. In this paper, we

. . : . : present a design methodology that overcomes this limitation.
metic complexity. One technique that alleviates this problem\lﬁe extend the FRM technique to the synthesis of sharp
to implement the filter using the frequency-response maSkiEQD DS filters. The synthesis procedure is very similar to the
(FRM) approach [2]. one-dimensional (1-D) FRM counterpart; the difference is in

The FRM technique uses the fact that up-sampling th

. . . . the way the complementary components are selected. In our
impulse response of a filter by inserting zeros reduces [ts, . : A

chnique, instead of utilizing two complementary components

transition width by the up-sampling ratio. For example, i . )
each delay element of a prototype low-pass FIR filietw) and two maslgmg _fllters, four complement_ar_y components
and four masking filters are used. By combining the outputs

subsequently called the band-edge shaping filter) is replaced_. :
E)y M c?elay glements another Flg fiItéW’F()w)g whic)h haspa Obtained from passing the complementary components through

transition width that is1/M times that of the filterf, (), carefully selected masking filters, sharp DS filters can be

is formed. The complement of the filtf” («), denoted by synthesized. This approach gives efficient realizations of sharp

F'(w), can be easily obtained by subtracting the output of th%s filters with arbitrary bandwidths and is not limited to
narrow passband cases.

filter F!(w) from a suitably delayed version of the input. By This paper is organized as follows. In Section I, we give

properly masking the frequency responses of the filfi(s) S N £ . .
and F’(w) and then recombining them, narrow transition-band formal definition of the 2-D filters used in this paper,

. . while in Section lll, we demonstrate the design of DS filters
filters can be obtained [2]. : . ; S
. with narrow passbands. This design methodology has limited
Further developments of the FRM technique have been . :
. . ractical usage. The FRM approach for the synthesis of DS
reported in the literature. For example, [3] and [4] exten

ilters is presented in Section IV. This section presents the
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Fig. 1. Band-edge specifications of the DS, RS1, and RS2 filters.

band-edge shaping and masking filters. This provides valuable
insight for the filter designer on how to optimize the ripple
performance of the synthesized filter. Details on how to select
the impulse response up-sampling ratio that produces the
design with the minimum complexity is presented in Section
VI. Finally, a design example and a brief discussion of the
possible extensions of the 2-D FRM technique are presented © @
in Section VII. Fig. 2. Design of a DS filter with narrow passband.

I1l. NARROW PASSBAND FILTER DESIGN
Il. DEFINITIONS AND NOTATIONS

The parameters that define the 2-D filters used in the FRMIn this section, we C(_)n3|der how DS fllters. W't.h harrow
i assbands may be designed. The procedure is similar to the
technique are as follows. The passband- and stopband-edges ! : : .
) : “Tarrow-band 2-D filter design technique presented in [10].
the DS low-pass filter are denoted by andw;, respectively; . :
X Consider the DS filterF'(£2) where 2 = (w;,w2), shown
wp andw, are the frequency values where the respective band_. . L
. n Fig. 2(a). If the impulse response of the filter is up-sampled
edges (extrapolated if necessary) meet the frequency axes [see

) o . . L y a factor ofM (M = 2 in the example) in the vertical and
Fig. 1(2)]. The transition width of the DS filter is given by horizontal dimensions by inserting zeros, the frequency re-

W, — w sponse of the filte#”(£2) shown in Fig. 2(b) is obtained. The
Agy = — o L. (1) up-sampling process introduces “images” of the DS passband
into the 2-D regior{—, 7]2. A low complexity square-shaped
We define two rectangular-shaped (RS) 2-D low-pass filtei§er [shown in Fig. 2(c)], easily derived by cascading two
which are used as masking filters. The first RS filter, denotéeP filters, can be used as a masking filter to remove these
by RS1, has the longer side of the rectangular passband atigges” to give the filter with the frequency response shown
angle of 135 to the horizontal frequency axis as illustrated Fig. 2(d). _ _ _ _
in Fig. 1(b). The second RS filter, denoted by RS2, is shown!t iS evident that this technique produces a DS filter with
in Fig. 1(c). It has the longer side of the rectangular passhafdransition width that isl/M times the original transition
at an angle of 45to the horizontal frequency axis. For bothWidth. However, the bandwidth of the filter is also reduced by
the RS1 and RS2 filters, the passband and stopband ed§€ssame factor. Indeed, to obtain a filter with a very narrow
are defined byw,;,wys,ws1, andw,y, respectively.w,; and transition width, the bandwidth of the filter would be very nar-
ws define the band edges which are at an angle of 138W. Such a design technique is therefore useful only for some
to the horizontal frequency axis; these are, respectively, thgCific applications and is not suitable for synthesizing wide-
frequency values where the passband- and Stopband_eg&_@g f|lters. Our proposed design methodology overcomes this
meet the horizontal frequency axis. The band-edges whiditation.
are at an angle of 45to the horizontal frequency axis are

defined byw,, andw,>. These are the frequency values where IV. ARBITRARY BANDWIDTH DESIGN
the passband and stopband edges meet the vertical frequeneshe FRM filter design technique hinges on how the fre-
axis. The transition width of the RS filter is given by quency spectrum is divided into suitable complementary com-
ponents. For the case of 1-D filters, this can be done by split-
A, = 2, -2, ) ting the frequency spectrum into two components [2]. There
2m is no known simple rule that extends this two-complementary-

component procedure to synthesize arbitrary-shaped 2-D filter.
However, in this paper, we show that by dividing the fre-
- quency spectrum into four suitably chosen complementary
2, =wp1  wp2] (32) components and using appropriate masking filters, the FRM
2, =[wa wa]’. (3b) technique can be applied to the design of DS filters.

where
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between two “islands” of the same type is the allowance for
the transition band of the masking filter for that component.
Let the prototype band-edge shaping fil#y (£2), where
Y € {A,B,C, D}, have the ideal frequency response such
thatif M = 1in Fig. 3, the gain is unity in regioRy and zero
elsewhere. Componeiit is then obtained by passing the input
through the filterFy.(£2). In general, M # 1 and component
Y is obtained by applying’%(!)) to the input instead, where
F7.(£2) is the filter obtained by up-sampling by times the
impulse response dfy.(£2) with zeros in both the horizontal
and vertical dimensions.

Fig. 3. The four frequency regions for the complementary components. .
B. Implementation
In the FRM technique for the design of 1-D filters, it is
a trivial matter to obtain the two complementary components
The complementary components are defined by four gnce the complement of one component can be easily obtained
D frequency regions,R4, Rp,Rc, and Rp. In the 2-D by subtracting the filtered output from a suitably delayed
region [—x /M, n/M]?, where M is the impulse responseversion of the input. However, this is not the case when
up-sampling ratio, these are shown in Fig. 3 and defined @%ir complementary components are required. One way to
follows: overcome this problem is to design the four band-edge shaping
filters and introduce an “error” filte#(£2) associated with
Ri- {rz

A. Complementary Components

an “error” component=({2) to enforce the complementary

[l ] + o] = == > 22
1 2 M M7

criterion.
The block diagram of the technique is illustrated in Fig. 4.
1] < — ws| < l} (4a) In Fig. 4, X(£2) is the input and™, (£2), F',(£2), F,(£2), and
M M F]’j(ﬂ) are the 2-D band-edge shaping filters with the desired
W W frequency responses as described previously. The components
Rp =4 2| |w1 +wa| > i w1 — wa| > i A(2), B(2),C(£2), and D(S2) are given by
_ v
o7 o7 " A(R2) = Fi () X(2) +(2)/4
il < 37 lw2l < 57 (4b) B(R2) = Fiy(2)X(2) + (£2) /4
" o C(R2) =F (D)X (2) +(2)/4
Re = {9 jwi +ws| > 7 Wi+ wa| < D(R2) = Fi,(2)X(2) +=(2)/4 (5)
W and the “error” componert(f2) is given by
|w1 — CUQ| < M (4C)
e(2) = F/(2)X(2) (6)
« +
RD:{'-Q |w1—w2|>wM,|w1 wa| < WMwA’, where
. FI(2)=1-F{(2) - F,(2) - F.(2) - F(2). (7)
for +ws| < M} (4d) We shall use the notatiod.(£2) to denote the transfer
function from X (£2) to component’(£2), i.e.,
In (4), w./M is the frequency value at the intersection of the Y (2) = FL(2)X(2) (8a)
)=F (S {

four regions (see Fig. 3) and, = 7 — w,.
Note that while the definitions above are explicitly for thgyhere F1.(2) is given by

2-D region [—7 /M, n/M]?, it should be interpreted in such

a way that these regions are also defined for the periodic FL(2)=F.(02)+ 1 F/(0). (8b)

repetitions of the 2-D regiofi—= /M, r/M]?. For example, v )

2; € Ry would imply that{2; + (27 /M)k € Ra, Wheresis |f p/(Q) = 0V Q, then I, (£2), F'.(2), F.(£2), and F". (£2)

the set of all two-component integers. form a set of complementary filters. For practical band-edge
From Fig. 3, it can be observed that each component forggaping filters F(£2) is nonzero and™, (£2), F'. (£2), F..(£2),

an “island” and is surrounded by the other complementagyg £/ () do not form a complémentary set. However,

components. For example, componedtis surrounded by \yith the introduction of F/(£2), F',(£2), F,(£2), F..(£2), and
componentsB, C, and D. Four complementary components (£2) do form a compIEmentary set. ie.

are used because, geometrically, it is not possible to synthesizDe
a DS filter by using three or fewer components. The separation Fi(2)+ Fp(2)+ FL(R2)+ Fr,(2) =1. 9)
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Fig. 4. Block diagram illustrating the frequency-response masking tech=s: o
niq ue. N D transition band
o &‘A /@‘ % D stopband
Note the distinction betweehy, (£2) and F, (£2); the relation- [17] masking fier
ship between them is defined in (8b). (d) (e)

In the subsequent step, each of the componemg.s. Frequency response masks for CASE A.
A(£2),B(2),C(£2), and D(L2) is passed through the
respective masking filter (Fp;4(82), Frrp(£2), Frre(£2),
or FJWD(..Q)) to obtain A]w(..Q),B]w(..Q),C]w(..Q), and
Dy(£2). The final output F'(£2)X(£2) is obtained by
summingA s (£2), Ba(£2), Crr(£2), and Dy, (£2). Obviously,
appropriate delay elements, which are not shown in Fig.
must be added in an actual implementation.

The band-edge shaping and masking filters may be deix -
signed using the linear programming filter design technique. (a) (b) (©
This technique is well reported in the literature [18]-[20]. It

involves the optimization of the frequency response of thg” Fal&) passband

filter to satisfy a given set of specifications on a dense grith [ P passband o
of frequency points. The masking filters may be designe@?X @\ A\ Fe( passband

by the direct application of this technique. However, for Y Fip(€2) passband \
the band-edge shaping filters, the design procedure shou [[] twansition band g:(g) 9
be modified. The reason is as follows. If the four band%i : | stopband

edge shaping filters are designed independently, there is no i~ masking filter

guarantee that(£2) will be small in the transition area between (d) (e)

any two regions. This poses a potential problem sine&f) iy 6  Frequency response masks for CASE B.
is large, the ripple magnitude of the overall synthesized filter

can be severely degraded. Thus, instead of designing the four )
band-edge shaping filters independently, they should be jointfS: £3.4(42), Fr p(£2), Fyc(£2), and Fyp(42), with the

optimized. The set of design constraints should be as followfEquency responses as shown superimposed onto the com-
plementary filters in Fig. 5(a)—(d), are cascaded to the filters

—6u S Fp () < b (108)  p, (2, Fi,(£2), FL.(£2), and F/,(£2), respectively. By sum-
1 =6, SFp(Q,) <146, (10b) ming the outputs from the masking filters, the frequency
1= péy < FL(Q) + FL(Q) + FL(Q) responsel’(£2) of the resulting filter, shown in Fig. 5(e),
U —="A B C

, is obtained. Notice that the corners of the filtEk{2) are
+ () contributed from the passband of the filtgf, (£2). We shall
<1+pbu (10c) refer to this as CASE A.
for Y € {A,B,C,D} and wheres, is the ripple variable, On the other hand, if thg masking filters have the frgquency
1, and {2, are, respectively, in the stopband and passbaﬁ%SponseS_ as shown n F|g. 6(a)(d). then the resulting filter
of F{,(£2) and {2, is in the transition band of any of the f€Sponse is that shown in Fig. 6(e_). In such a case, the corners
filters {7, (£2), . (2), F..(£2), F. (2)}. The quantityp in of the passband of'(£2) are contributed by the passband of
4 Bao 1o Con b . F2(£2) and shall be designated as CASE B.
(10c) controls the “tightness” of the bounds on the summatlcFrﬁ( 9
of F’i(()), Fl’g(()), F’C(Q),Fj’j(ﬂ). As will be evident later in i ) ) o
Sections V and VI, should be selected such thats 1. C. Band-Edge Shaping and Masking Filters Specifications
We shall illustrate the FRM technique for the case whdre  We shall now derive the specifications of the band-edge
is three. The frequency responsesHif(£2), Fi;(£2), F..(£2), shaping and masking filters given the specifications of the final
and F[,(£2) are shown in Fig. 5(a)—(d). Four masking fil-desired DS filter. Suppose the band edges of the desired filter
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F(£2) arey, andy,, i.e.,wp = ¢p, ws = 15, and the transition TABLE |
width is Ay, = (?/)s — 1/)p/27r). Also, let the transition width SPECIFICATIONS OF THEMASKING FILTERS FOR CASE A
of the band-edge shaping filters in the horizontal (or vertical) Filter |Type | w,, €2, ws, O,
frequency dimension bé,, (all the transition widths of the Fua(Q) | DS | Zmeil Amiln g
band-edge shaping filters being equal) and define Fpp(€) | DS | 2mz=t )
9 =Wy — WAQ, (f) = Wq + WAQ. (11) F (Q) RS1 2"3\7; ) 27}?— p
MC mrt 2(m =
It can be shown thag, and, are related t& and ¢ by G Tt i=s
M M
2mm + 6 Fup(2) | RS2 | |,.7, ol
Pp = 7 (12a) H M
s = 2m + ¢ (12b) TABLE I
M SPECIFICATIONS OF THEMASKING FILTERS FOR CASE B
where0 < m < M — 1 for CASE A, and Filter | Type W O, w,, O,
2 _ FMA Q DS 2 mf‘l T+¢ 2m‘7r70
Py = mﬂTd) (13a) 7 Eﬂi DS Tr=3 T il
M M M
2 — @ 2mr—¢ 2mn+8
o= (130) Fucl®) | BS2 || s fss | | [ amis
M M
wherel < m < M for CASE B, m being an integer. Fon(@) | RST Hmogmte | 1| 2t
In a synthesis problemg, and ¢, are known and ‘ e el
m, M, 0, ¢, ws, A, and the band edges of the masking
filters must be determined. We shall express ¢, and ¢ in . .
. where  is an integer. In such a case, another value\bf
terms of,, s, and M. Since .
must be selected. The value 81 selected must satisfy the
0<Oo<op<m (14) conditionsy, > (rk/M) andy, < (w(k+1)/M), i.e.,
i i k k+1
to ensure that (12) yields a solution for CASE A, we have 71;_ <M< ( Z/Jr ) (19)
D Ds
m = [, M/(2r)] (15a) g
6 =1, M — 2mn (15b) vyherek = [¢pM/7]. Th_is cor_wditio_n ensures that the transi-
tion band of the synthesized filter lies completely between two
¢ =vsM — 2mm (15c¢)

adjacent folding frequencies. For example, it is not possible
where |z| denotes the largest integer less tharFor CASE 0 synthesize a filter with, = 0.67, ¢, = 0.77 for M =3

B, we have since(wk/y,) = 1.667 and (n(k + 1)/15) = 2.857 in (19).
The specifications of the masking filterd’y;4(£2),

m = [t M/(2m)] (1623)  Fy, p(2), Fare(£2), and Fiap(£2) depend on whetheF(£2)

6 =2mnw — ;M (16b) belongs to CASE A or CASE B. For CASE Al 4(£2)

b =2mm — M (16¢) and Fyp(£2) are diamond-shaped filters andé;c(£2)

and Fyp(£2) are RS1 and RS2 filters, respectively. The
where [z] denotes the smallest integer larger tharFor any band-edge specifications are given in Table I. For CASE B,
given set ofw,,, w5, and M, at most one of CASE A [(12) and the specifications are given in Table Il. As in the 1-D case,
(15)] or CASE B [(13) and (16)] will yield a set of and¢ “don’t care” bands may be introduced when designing the
that satisfies (14). Irrespective of CASE A or CASE B8y, masking filters to reduce complexity.

is given by Up to this point, nothing has been said about how the value
T A, of M should be selected [other than the conditions listed in
Ay, = o L= M (17)  (19)]. One selection criterion is to choose the valuébthat

» ) ] ) ) results in a design with the minimum number of multipliers.
The transition width of the band-edge shaping filters is ther¢pis ghall be discussed in Section VI. Before we proceed to

fore M times the transitipn width of the synthesigeq filter. Thf’nat, we must first examine the effects of the ripple magnitudes
value ofw, may be obtained from (11) by substituting for theyt the pand-edge shaping filters and masking filters on the

values ofA,.6, and¢. _ overall ripple magnitude of'(£2).
Note that it is also possible that for a given value idf,

neither CASE A nor CASE B is valid. Such a situation occurs

when the transition band of the filter to be synthesized does not V. RIPPLES OF F/(12)

lie completely between two adjacent folding frequency axes. In the discussion that follows, I€y (£2) denote the desired
The folding frequency axes are the diagonal lines (at both 48ain of the filtery (£2), i.e., Gy (£2) has a value of unity in
and 135 to the horizontal axis) passing through the passband and zero in the stopband. The ripple or deviation
of Fy(£2) from Gy (£2) is defined as

by (2) = Iy (2) - Gy (92). (20)

TR

Wi = {WIw = M} (18)
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For convenience, we shall assume that for the filters
F(£2), Fp(2), F.(£2), and F1,(£2) NRiy o ® ”;m

Ga(2) =F4(2), Gp(R) =TIy ‘ N

Ge(2) =FL(Q), Gp(2) = Fp(R) (21) N2 N

R8T :
in their respective transition bands, i.e., the ripple magnitudes & L e
are zero in the transition bands. To simplify the analysis, we R \\3?4\ o \\\\
will only consider the first-order terms and neglect the higher A = N RAT
order terms. = R3T
N AN
\\\ > \§

A. Ripplest’, (12), 81,(£2), 6.(£2), and &,(2)

We shall first obtain expressions for the ripples of th
complementary filterst™, (£2), F(£2), FL.(£2), and F},(£2).
Note that we do not consider the transition bands since the

Eig. 7. Definition of the frequency regions for ripple magnitude analysis for
EASE A.

ripple magnitudes are defined to be zero, i.e., for the filtdm? % RILT
FI.(£2), we neglect the region that falls into the transitior N R .
band of F{.(£2). 1 e
From (8b), F/,(£2) is given by 5 R6
! 1 ! / / / : R;T R
(22) R8T £ « R7
Using (20), we can write (22) as A0 %
R R - b
Gy () + 8, (2) - [L - G(2) — §,(2) — Ga(2) — 6.(2) N o :
—G'5(2) — 85(92) + 3G (2) + 36',(£2)]. (23) R3T
R

For the band-edge shaping filters, we have
Fig. 8. Definition of the frequency regions for ripple magnitude analysis for

G+ G (D) + G () + G (2) =1 VYQ. (24) CASEB.

Therefore, (23) becomes ) _
whereG(£2) and(42) are, respectively, the desired value and

Gy (2) + 64(02) the deviation of the synthesized filté#(£2). To analyze the
1 ripple magnitude of the synthesized filter, we shall divide the

= /" - - /" - - /" - - /" - - /" - . . . . !

= G+ 4[3(5 (2) = 03(2) = 0 (2) = O (D). (25) 2-D region[—m, 7]? into several regions.

For regions not in the transition band &F,(£2), G, (£2) = The first regionR; is thg region Where Fhe desired val-

@'.(£2). So we have ues of the four masking filters are unity, i.€3y4(2) =

‘ GJWB(.Q) = G]wc(..(l) = GJWD(..Q) =1, Q€eR,. This region

is illustrated in Fig. 7 for CASE A and Fig. 8 for CASE

B. Substituting these values ar@(f2) = 1 into (27) and

using the fact thatr”, (£2), F;(2), FL(£2), and F,(£2) are

complementary filters, we have

§,(02) = 3[3%(9) — 6(2) — 6L(2) - 8,(R)].  (260)

For the ripplesé; (£2),6-(£2), and §,(£2), it can be easily
shown using a similar procedure that the following results

hold: 6(92) = 6ma(2)G4(2) + SnB(2)GR(2)
8(92) = L [~8(12) + 36, (£2) — 61.(2) — & (2)] (26b) + mc(D)Ge(2) + Syp(R)GH(£2).  (28)
5c(82) = £ [~84(2) = 85(82) +36,(2) = 8,(D]  (260) g0 (24, we obtain
8y (12) = L [~8,(92) — 85(2) — 5L.(£2) + 38/, (£2)]. (26d)
16(42)| < max {|6r04(82)|, |621B(L2), |6rsc(12)]; |61 (£2)|}.
B. Ripples of the Synthesized Filter (29)

Using the notations defined earlier, we can write ) ) ) )
The second regioni,, is defined to be the region where

G(£2) + 6(2) the desired gains of the four masking filters are zero, i.e.,
= [Gura(9) + S A @GR + ()] Cralfh = Gup() = Guolfd) = Gup(fd) =0, @ €
+ [Carn(@) + 5 (][ (2) + ()] R, (as |IIu_strgted in Fig. 7 for CASE A ant_j Fig. 8 for _CASE
MBLZ MB B B). Substituting these values together with{£2) = 0 into
+[Gunc(£2) + dpc(R)[Ge(£2) + 6c(£2)] (27), we obtain (28). As in regiom;, it can be shown that
+ [Grp(£2) + 6mp(R)][GH(2) + 6,(2)]  (27) 6(£2) is also given by (29).
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TABLE Il (26a)—(26d). From (10), we have
DESIRED FILTER GAINS IN EACH FREQUENCY REGION FOR CASE A
max {[6%(2)], [65 ()], [6(D)], 165 (D]} < 6. (31)

Q€ |G |Gy |Gz | Gue | Gup | Gy | G5 | G | Gy | Remarks . .
B (B, 1l 1T | T T 1]olo]o in the passbhands and stopbands. So we can write
700 72 N N N e IR N 6(2)] < |34 ()] + Jaz(2)5, (32)
R |BRa|1l 1Tl T|2]o]o]o R
% By |1l 1| T | T 1lo]lolo]1 where J.43(f2) is given by

: S 1 T | T 1|1 1

m T T T T T e () =413 = Gun(®) - Gue(@) - Gun ()
Ry | Re |1 1 T 1 T|T|O0o|T|O|8=6868=0 1
Rer |Rp|1| 1 | T | T |1 |T|0|O0]|T 52:5;:0 +Z|_1+3GMB(*Q)_GMC(*Q)_GMD(*Q)|
Ry |Ryf1| v Tl {T]ololT|o=0=0 1
Rs |Rplo] TJ]o o o ]o|1]o]o + Z|_1 — GyB(2) +3Gnc(£2) — Guyp(2)]
Ry |RplolTlo|Tlolololo]1 1
Ry |Rglo] Tlo | T]olo|1]o]o + Z|_1 — Grp(2) — Gre(2) + 3Gy p(12)).
Ry |RelolTlolo|T]o]lo]|l1]o (33)
Ry |ReglolT|loflo|Tlol1]lo]o
R |Ry|0| T | 0| T o0 o|T|o|T]|d=0-0 Giventhatd < Gra(92), Grp(2),Gre($2),Gup(2) <1
Ry |Rplol T o T |olo|T|o]|T |&=6,=0 it can be shown thab < J,3(£2) < 2. Thus, the expression
Ry | Re 0| T | 0] 0| T |0 |T|T|O0 |dp=04=0 for the ripple inR3 is
Ror|Rplo| T oo [T ]olT|[T]|o0|dh=0=0

[6(2)] < |6ara(£2)] + 264- (34)

RegionR3y is in the transition band of”, (£2) and F/.(£2).

. . . Thus, & (..Q) = ¢ (..Q) = 0. Also, G _1(..()) G]wc(..()) =1
The above two regions cover the ripple magnitudes ghd G’A( Q) = 5, ' (2) = 0. Substituting these values into

frequencies not near to the transition band of the synthe5|z@d,) and using (26), we have
filter. To obtain the ripple magnitudes near the transition band ,
of the synthesized filter, CASE A and CASE B must be 6(92) = Ga(2)ora(£2) + G (2)onc(R2)

Note: T = transition band; the desired gain ranges from zero to unity.

analyzed separately. For CASE A, the regidig; through +GMB(~Q)53;(~Q)
Ryo7) are defined as shown in Fig. 7 and the desired values y 1
+ Gup(2)85(2) + 5 [-Gup(2) — Grup(£2)]
of F(£2), Frpa(2), Fyup(2), Fye(2), Fyp(£2), 1 (£2), ) ) ; )
Fi(£2), FL(£2), and '}, (£2) in each of the region are tabulated [05(92) + 65 (2) + 64.(02) + 6 (£2)]. (35)
in Table Ill. The values for the regions not explicitly defined From (10c), (24), and (31), we obtain the following expres-
in Fig. 7 may be obtained by symmetry. sion for the ripple inRsr:

From Table Ill, in regionRks, we haveG(£2) = G/, (£2) =1 16(£2)| < max{|6az4(2)], [621c(2)]}
andG’;(2) = G(2) = G',(£2) = 0; the frequency response + [Gu(£2) + Gup(2)]6
of the masking filter ;.4 (£2) has unity gain while the other 5 “
three masking filters(Z s 5(£2), Gy (£2) and Gy p(£2), are p4“ [GrB(£2) + G p(£2)]
< max{|6ara (D), [6r1c(2)]} + (2 + g)é (36)

in their transition bands. Substituting these values into (27),
we obtain
§(2) = 6ara(2) + 8,(2) + Garp(£2)84(2) Notice that for the),, term, there is an additional factor pf2
, , in (36) when compared to (34). This additional factor can be
+Guc(D)6c(8) + Gup()ép(2)  age negligible by choosing < 1.

which can be written as The ripples in the regionsk, through R;»r and that
§(2) = Sara(82) + 1 [3 Crn(f2) — G () for CASE B may be obtained using a similar analysis.
) The appropriate values of(£2),G’,(2),G5(2), G.(12),
- GMD(‘Q)]‘SA'(‘Q) G'H(2),Grra(2), Gys(2), Gue(£2), and Gy p(£2) may
1 be obtained from Table 11l for CASE A and Table IV for CASE
-|-1+43G G 02
+ 4 [ 3G (S ) wc(f) B. The regions for CASE B are defined in Fig. 8. A summary
— Gup(2)]8;(02 of the results is as follows. Denoting the maximum ripple
1 magnitudes in the passbhand and stopband of the synthesized
ty [-1-Gus (Q) + 3GMC(“Q) filter by &, andé,, respectively, we have, for CASE A
— Gup(2)]6.
|Gl 6 < mae{[8aa(@)], |62 (D], 1800 (2)]} + (24 5 ).
+3 [-1— Gup(2) — Gue(£2) (37a)
+3G1\4D(- )]6 ( ) (30) 65 S InaX{|6]\4B(..Q)|,|(5]\4c(n9)|,|61\4D(-Q)|}+ (2+§)6u
after substituting fot’, (£2), 65(£2), 6-(£2), and 6%, (£2) using (37b)
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TABLE IV -
DEeSIRED FILTER GAINS IN EACH FREQUENCY REGION FOR CASE B D |
Q|G| Gy | Gus | Guc | Gy | Gy | G5 | G | G5 | Remarks - * heeo
Ry |Rgl1]T]1]T]T]ol1]o]o =z
R |Rp|1| T |1 | T|1]0|o0]0]1 5
R |Rpl1|T |1 ] T]1]o]1]o]o0 =
e |Re |1 T ] 1 1T lolol1]o0 =
R |Reg|t| T 1] 1t]T]o]1|o]o =
Ry [ Ry 1| T |1 [T ] 1]o|T|o0o]|T]|d=6=0 =
Ryp |Rp |1 | T | 1 | T |1 |0 |T|O0|T|dp=48=0 0.01 0.1 1 10
R |Re|1| T |11 [T ]o[T|T]o0 |dh=6=0 o
Rop |Rg |1 T | 1 11 | T |0 ]T|T]O0|dp=058=0 Fig. 9. (8./{6ulp—oo}) versusp plot for filters with N = 17 and
Ry |Ralol o] T ! o0o]o]1]oflo]o wo = 0.55T.
Ry |Rejol o T lo|[T]o]o 0
21? gg g 2 E 2 E (1) g (1) For A.qv small, the term®;(6,,65)/Aeqv is dominant. We
Ry (Ril0l 01T | T 0 1]00]o0 shall neglect the constant term and write
Ry | R4 | 0] O T 0 T[T 0 |T|0|&=06=0 (1)2((5],, (55)
Ryr |Ro |0l 0| T ]oOo | T |T|Oo|T]|oO0]|&=6=0 N = BN (40)
Rur|Rplo| ol T[T ]lo|T]o]o]|T]|&=a=0 eqv
Rop|[Ra |O] O | T ] T 0 ]T)|0]J0|T]|8H=0=0 Consider a diamond-shaped filt&¥ £2) with passband and
Note: T = transition band; the desired gain ranges from zero to unity. Stopband rlpple magnitudes of not more thé&ntransition
width Ay, and a support size aWVy by Ny. Using (40), the
and for CASE B number of multipliersF, required to implement this filter is
6op < max{[6n 5(£2)], [Src(£2)], |6rp(£2)|} + (2 + g)éu given by ,
(38a) Py= N~ [‘I’QA(& 6)} . (41)
b < max{|8rsa(D)]. |83 (D], 83 (D]} + (2+ 5 )b o -
(38b) Suppose that the FRM technique is used to synthesize this

. _ filter. Let the filter support sizes of the prototype band-edge
I the passband and stopband ripple magnitudes of the maskiiigping and masking filters be denoted usigx Ny-, where
filters are equal, the results for CASE A and CASE B arg s the notation for the respective filter. To simplify the

identical. analysis, we shall assume that
Onrny = max {|6a,4(2)], [6218(2)], [6r1c(2)], |63 (2) |}
VI. MINIMUM -COMPLEXITY DESIGN @ (42)

In this section, we shall derive an expression for the valuie both the passbands and stopbands of the masking filters.
of M that minimizes the FRM implementation complexity. We now consider the number of multipliers required to
The number of multipliers required in an implementatiormplement the band-edge shaping filters. The formula for
will be used as a yardstick to measure the complexity ektimating the filter order was developed based upon the
the technique. To facilitate the derivations for the minimurstatistics of low-pass filters without imposing any transition
complexity design, the characteristics of the band-edge shapband constraints. In the design of the band-edge shaping
and masking filters must be known. We shall use the resulii¢ers, the additional constraints in (10c) have been added.
in [16], which state that for a rectangular-shaped filter witRrom our experience, the addition of the constraints does
a support size of¥ by N, passband and stopband ripplaot significantly alter the value of the objective function
magnitudes of6, and &,, respectively, and transition width (when compared to the case where the filters are designed
A, = [A; As]T, the relationship between the variables caimdependently). This is illustrated in Fig. 9 which shows the
be approximated by amount of alteration for different values pfand A, for the

set of filters with’V = 17 andw, = 0.557. The amount of
o (6, 05) 41 (39a) alteration is computed by normalizing, against(s,|,—.c),
Aeqv where (6,|,—o0) is the value ofé, when the filters are
designed independently (corresponding#o— oc). It can
where be observed from the graph that the deviation is larger for
larger A,. Nevertheless, fop = 0.1, the amount of alteration
$o(6p, 6,) = —0.299 — 0.568 log, 5 6, — 0.85210g;( 6, (39b) is not more than 0.3 dBA, < 0.09). Since the majority
of the band-edge shaping filters haxe, < 0.09 and since
and the filter order is relatively insensitive to ripple magnitude,
we can therefore use (39) to estimate the filter orders of the
Aeqv = min(Aq, Ag) + 0.07v/]|A1 — Agl. (39c) band-edge shaping filters.

N~
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The transition width of each band-edge shaping filtekdis  The total number of multipliers required in the FRM tech-

times the transition width of'(f2), so we have nigue is thus given by
. - . ~ (I>2(6'u,a 6'11,) (1)2(6u7 6u) 2
Nj=Np=Ne=Np~— 7 (43) Pt:Pc—i—sz2{m}
The impulse responses of the band-edge shaping filters have +16[M<I>2(5MM,5MM)]2-(50)

the characteristic that alternate coefficients are zero (see the o _
Appendix). Thus, the number of multipliers required to imple?hen the value ofi/ is increased, the complexity of the band-

ment the four band-edge shaping filters is given by edge shaping filters decreases while that of the masking filters
) increases and vice versa. There is therefore an optimum value

2
P—y Nil_ ON2 ~ 9 {‘52(5%%)} . (a4) Of M thatminimizes the total complexity;. By differentiating
¢ A MAys P, with respect toM and equating the derivative to zero, it
an be shown thaF, is minimized whenP. = P,,. The value

Notice that the complexity required to implement the ban f M at minimum complexity, M., is given by
opts

edge shaping filters is inversely proportional 7.
Let A; and A; be the transition widths of the filters /e B9 (6, 64)

Fr4(£2) and Fiyy5(£2), respectively. Then from Tables | and Mopy = 8 Ausda(6 TR

II, the transition widths of the filterdy;(£2) and Fi;p(£2) s TRATMAM CMM

are given by[A; A;]* and[A; A;]* (the order may need to The above expression provides valuable information on how

be interchanged depending on whether it is CASE A or CASBe value ofM can be selected.

B; in any case, it does not affect our subsequent analysis) andf we further assume that, ~ 6ys5s, then Mg, is simply

(51)

that given by
1 _
4 T 8=(/4  0.595
Bt =g 43) Mope ™~ 0 2 (52)
Ads Ads

From (40), the number of multipliers required to implement o . i
the filters Fy, 4 (£2) and Far(£2) are given by and the number of multipliers at minimum complexi®y,;,, is

Oo(6 5 Iy 8\/5[@2(6“,, 6'11,)]2
Nagpa ~ W Prin = R (53)
and The total complexity is proportional td/Ay;, which is a

significant improvement from proportional ta/Ag,)? for
the case of a direct-form implementation.

From (37) and (38) and choosing« 1, we can write the
respectively. The filterd;«(£2) and Fy;p(£2) are similar ripple magnitude of the synthesized filter as
since one filter can be obtained from a°Q@tation of the

Do(Enrna, Oninr)

Nyp = A ;
J

other. Without loss of generality, assume thst > A;; in 6 < dnna + 20 (54)
that case Ny (or Nysp) is given by Writing
Do (dnra1, Onrn)
Nye = ! . 46 S~ 6/3 55
MO A 007 /A, — A, (46) / (59)
. . . we have
The number of multipliers required to implement the four
masking filters can therefore be approximated by Do (84, 6.) 22 ©2(6,6) 4+ 0.678. (56)
Do(Snrar, Sine) 1% | [ 2(Sninss 6naan) ]’ The FRM technique will produce a savings in the number
P | ——MMmMm | +|——M—= - . . .
A, A of multipliers when compared to direct-form implementation
2 provided that the transition width is smaller than a given limit.

9 Do (Snrnrs Oarnr)
A 4007 /A; = A;

By substituting forA; in (47) using (45), it can be shown that

(47) Thus, an important quantity is the transition width at the break-
even point. This transition widthh, occurs whenP,;;,, = Fp.
Equating (41) and (53), we have

P, attains its minimum value when V2 0.088
| 25666~ ) &0
2M where
Substituting forA; and A; in (47) using (48) leads to ©4(8,8) + 0.678 2
P = 4N3, , = 16[M®o(5nsa1,6000)]% (49) & = [ ®2(6,0) } 9)

It is clear from the above expression that the complexity ré&he value ofA, depends on the ripple magnituéld=rom (58),
quired to implement the masking filters is directly proportional is clear that{($) > 1 and approaches unity whernis small,
to M?2. i.e., an absolute bound fak; is A, < 0.088. The behavior
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Fig. 10. A, versusé plot.

of A, with respect ta$ is illustrated in Fig. 10. Fo6 ranging
from —80 dB to —20 dB, A, ranges from 0.069-0.034.

In the derivations above, the minimum complexity is ob-
tained whenA; ~ A;. In practice, this condition may not be
true as the band edges of the masking filters are determined
by M and the band-edges df({2). However, it is always
possible to varyM! in the vicinity of M, so that the condition
holds. We shall therefore examine the sensitivityfwith
respect toM in the vicinity of M.

Let the value ofM in the vicinity of M, at which the
conditionA; &~ A; holds be given by, . +9M, wheredM
is small compared td4,,;. Neglecting the higher powers of
OM /M., it can be shown using (50) that

(b)

Fig. 11. The frequency response magnitude of the synthesized DS filter: (a)
perspective plot and (b) contour plot.

a very dense gridto check the frequency response of the
synthesized filter, the maximum ripple magnitude was found
to be—20.0 dB in the passhand ardL9.6 dB in the stopband.

It therefore satisfies the design requirements.

To appreciate the amount of computational savings, we shall
compare this design with a direct-form implementation. From
the relationships presented in [15] and [16], a direct-form
minimax DS filter with the same specifications would require
a filter support size of at least 101 by 101. A rough estimate

the complexity reduction can be obtained by counting only

oM
M, opt

2 oM 13
} _2[MOPJ. (59)

P, is thus not very sensitive to the value &f in the vicinity
of M,p. For example, a 20% variation in the value bf
aboutM,; causes a variation of only 6% in the value /f

Py | pi=p, oo

~142
Py |vr=p, e [

VII. DESIGN EXAMPLE AND EXTENSIONS

We shall illustrate the FRM technique by synthesizing a

filter with w, = 0.57, w, = 0.527 and passband and stopban

ripple magnitudes of not more than 0.12 (et8.4 dB). From

(52), we obtainM = M, = 5.95. Checking with (12)—(16),

D{%\:e number of multipliers involved. In our implementation,
ere are approximately 2500 multiplications. This compares
favorably with the 10 000 multiplications required in a direct-

we find that neither CASE A nor CASE B is valid. So Weform implementation. There is therefore a savings in terms of

chooseM = 5 instead, in which case the desired filter belong

to CASE A withm = 1, 6 = 0.57, ¢ = 0.6m, A, = 0.05,

the number of multipliers by a factor of four. For filters with
sharper transition bands, higher orders of complexity reduction

andw, = 0.55r. Using these values, the band edges of t ig possible. Note that the implementation complexity can be
maskiTng_fiItérs ére obtained from Ta’ble | urther reduced by applying the singular value decomposition

To ensure that the ripple magnitude of the synthesiz'fﬁ:hnlque [21}-[23] on the band-edge shaping and masking
filter satisfies the design requirements, from (54) and (5 sers.

we require the band-edge shaping and masking filters to eag nthesize sharp 2-D DS filters with an eight-fold symmetry.

have passband and stopband ripple magnitudes of not m . . )
" 25,0 cB. Th banedge shaping flers that et i ch e PR (echaue s geners and can e appled o
above requirements have filter support sizes of 33 by 33 e ﬁhnsupport as well as\I-D filters. We illustrate in Fig. 12

and the masking filters have filter support sizes ranging fro . : .
. i some of the other 2-D filters that can be synthesized using the
17by 1710 21 by 21. In the design of the band-edge shaplﬁ M technique. Fig. 12(a)—(b) illustrates how DS filters with

filters, we have use@g = 0.1. . .
Applying the FRM technique, the perspective and conto&?ur'fmd symmetry may be implemented. The synthesis of

plots of the frequency magnitude response of the synthesized
filter are shown in Fig. 11(a) and (b), respectively. Using 14096 by 4096 points in the frequency regipar, 7]

rI1n this paper, we have introduced a new technique to
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. N . p=P na=P
: C D " CTDA . A B ’ G A G + Z Z h 7117712 ejnlwlejnzwz
A B A B A C’// . D C F B ni=—P ny=—P 1 +ns=even
D c D C B A | e (A-3)
AN w E c /
B A B A B D’ /\C \D g /D JH and
. ‘ ’ H(—wl, _CUQ)
ni=r ne=r
= Z Z h(ny,ng)ed ™t gdnzwe
ni=—1I ng=—r nyi+ng=odd
ni=r ne=r
+ Z Z h(ny,ny)eimrer ginzwe
ni=—0I ng=-"r ni+ng=even
(A-4)

(b)

() ®

Fig. 12. lllustration of the synthesis of DS filters with (a), (b) four-fold.

symmetry, (c), (d) fan-shaped filters and (e), (f) hexagonal-shaped filters. I.€.,

fan-shaped filters and hexagonal-shaped filters are illustrated
in Fig. 12(c)—(d) and (e)—(f), respectively. (1]

VIII. (2]

We have presented a new technique to implement sharp
DS filters. This technique, which is an extension of the FRM3]
approach for the synthesis of 1-D filters, produces filters with
a considerably lower complexity when compared to directi4]
form implementations. The design procedure as well as the
definitions of the band edges of the band-edge shaping ar[gf,j
masking filters are presented in this paper. We have analyzed
the relationship between the ripple magnitudes of the overz{b
synthesized filter and that of the band-edge shaping and ma:
ing filters. An expression for the impulse response up-samplin
ratio that produces the design with the minimum complexit
is also derived. We have demonstrated the effectiveness of our
design technique using a design example. Other 2-D filter§]
that can be implemented using the FRM technique are alﬁg]
discussed.

C ONCLUSION

[20]
APPENDIX

The frequency response of an FIR filter, with filter suppm[iu]
size N by N (N odd) and impulse responggn,ns), can

be written as (12]
ni=r no="r

H(wy,ws) Z Z W(ny,n2)e —Iniwr g inaws [13]
ni=—D0" ny=—-D_

(A1) (14
where P = (N — 1)/2. From the symmetry of the frequency
response of the band-edge shaping filters, we have 1]

H(wi,wo) =H(r —wy, 7 —w2) = H(—wy, —w2). (A-2)
We can writeH(r — wy, 7 — ws) and H(—w1, —w2) as (16]
H(r —wy,m—ws) (17
1—P 2—P
o DD R e 8]
nl—fp nz—f

ni1+ngs=odd

] M. G. Bellanger,

respectively. Since (A-3) and (A-4) must be equal for all values
of (w1, w2), itis clear thati(ny,n2) = 0 whenn, +n. is odd,

alternate coefficient values are zero.
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