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ABSTRACT 

A very efficient technique for drastically reducing the number of 
multipliers and adders in implementing linear-phase finite impulse 
response filters is to use the frequency-response masking approach. 
A drawback in the synthesis techniques proposed up to now is that 
the subfilters in the overall implementation are designed separately. 
In order to further reduce the arithmetic complexity of these filters, a 
two-step optimization technique for simultaneously optimizing the 
subfilter is introduced. In the first step, a good suboptimal solution 
is found using a simple iterative algorithm. In the second step, this 
solution is then used as a start-up solution for further optimization 
carried out by using the hecond algorithm of Dutta and Vidyasagar. 
An example taken from the literature is included illustrating that 
the number of adders and multipliers for the resulting filters are less 
than 80 percent compared with the earlier ones. 

1. INTRODUCTION 

One of the most efficient techniques for synthesizing lowpass linear- 
phase finite-impulse-response (FIR) digital filters with a drastically 
reduced number of multipliers and adders compared to the conven- 
tional direct-form implementation is the frequency-response mask- 
ing approach [1-4]. The price paid to the significant reduction in 
the computational complexity is a slight increase in the filter order. 

A drawback of the existing synthesis techniques is that the sub- 
filters have been designed separately. This paper introduces a two- 
step approach for simultaneously designing the subfilters. In the 
first step, a simple iterative design scheme is used to generate a start- 
up solution for further optimization. In the second step, this is ac- 
complished by using the second algorithm of Dutta and Vidyasagar 
[ 5 ] .  It is shown, by means of an example, that the number of adders 
and multipliers of the resulting filters are less than 80 percent com- 
pared to those filters obtained by using the existing design schemes. 

2. FREQUENCY-RESPONSE MASKING APPROACH 

This section reviews how to use the frequency-response masking 
approach for synthesizing linear-phase FIR filters. 

2.1. Filter Structure and Frequency Response 
In the frequency-response masking approach, the linear-phase FIR 
filter transfer function is constructed as (see Fig. 1 )  

H ( ; )  = F ( z L ) G i ( ; )  + [z-LJVFi3 - F ( ; L ) ] G z ( ~ ) ,  (la) 
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Fig. I An efficient implementation for a filter. synthesized using the 
kequency-response masking approach. In this implementation. G;1 (t ) and 
G? (:) can share their delays if a transposed direct-form implenientation 
(exploitjng the coefficient s.vinmetry) is used. 

where 

n = O  

IV 1 AY2 

Egi(n)Cn, Gz(2) = ;-": E g 2 ( n ) ~ - ~ .  

(IC) 

-- .VI GI(:) = 2 

n=O f l=O 

Here, the impulse response coefficients f ( n ) ,  g1 (n), and 9207) pos- 
sess an even symmetry. NF is even, whereas both Nl and Nz are ei- 
ther even or odd. For A'1 2 A;, A41 = 0 and AI, = (iYl - 1V2)/2. 
whereas for N I  < h - 2 ,  A41 = (N2 - iV1)/2 and 1\12 = 0. These 
selections guarantee that the delays of both of the terms of H (  :) are 
equal. 

The cera-phnsc firqiierzcy resparise of H ( ; )  (the phase term 
with A I  = LNF + max(iV1,NZ) is omitted) can be e - 3  n 1Y / 1 

expressed as 

where 
H ( d )  = Hl(U)  + H2(LLf), ( 2 0 )  

H I ( u )  = F ( L u ) G ~ ( u ) ,  H ~ ( L J )  = [I - F ( L u ) ] G ~ ( u )  (2b) 

with 

A., /?  

F(U)  = . f ( i V F / 2 )  + 2 f ( N ~ / 2  - 11) cos1zw' (2c)  
,t=l 

and G I  ( U )  and Gz(~c')  being the zero-phase frequency responses of 
G I  (z) and G2(;).  respectively. 
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Fig. 2 Generation of a co~nplementa~y periodic filter pair by starting with il 
lowpass-highpass coniplemenraiy pail: (a) Protorype filter responses F ( w )  
and 1 - F(cJ) .  ( b )  Periodic responses F ( L w )  and 1 - F ( L d )  for L = 6. 

2.2. Efficiency of the Use of the Transfer Function F (  ,I ) 
The efficiency of H ( 2 )  as given by Eq. (1 )  lies in the fact that of 
the pair of transfer functions F(?)  and z-L'vF/2 - F ( z L )  can 
be generated from the pair of protorype transfer functions F(:)  = 
C ~ V F  f ( n ) 2 - n  and :-JvF/2 - F ( 5 )  by replacing z- l  by z - ~ .  
Th{i%creases the filter orders to L N F ,  but since only every Lth 
impulse response value is nonzero, the number of adders and mul- 
tipliers remain the same. The above prototype pair forms a coin- 
pleirientary filter pair since their zero-phase frequency responses, 
F ( J )  and 1 - F ( d )  with F ( w )  given by Eq. ( 2 ~ ) .  add up to unity. 
Figure 2( a)  illustrates the relations between these responses in the 
case of a lowpass-highpnss filter pair with edges at 0 and 0. 

2- l  pre- 
serves the complementary property resulting in the periodic responses 
F ( L J )  and 1 - F ( L d ) ,  which are frequency-axis compressed ver- 
sions of the prototype responses such that the interval [0, L x ]  is 
shrunk onto [0, 7r]. Since the periodicity of the prototype responses 
is 'LT. the periodicity of the resulting responses is 27r/L and they 
contain several passband and stopband regions in the interval [0, 7r]. 

For a lowpass filter If(:), one of the transition bands provided 
by F ( : L )  or z-L.y1..'2 - F ( z L )  can be used as that of the overall 
filter. In the first case. denoted by Case A. the edges are given by 
(see Fig. 3 )  

As illustrated in Fig. I@), the substitution z - L  

LJ, = (217r + 0 ) / L ,  ds = ( 2 l x  + d)/L, ( 3 )  

where I is a fixed integer. and in the second case. referred to as Case 
B. by (see Fig. 4) 

dY = (217r - Q ) / L ,  d, = ( 2 h  - 0 ) / L .  (4) 

The widths of these transition bands are (d - 0 ) / L ,  which is only 
l/L-th of that of the prototype filters implying that the arithmetic 
complexity of the periodic transfer functions to provide one of the 
transition bands is only l/L-th of that of a conventional nonperiodic 
filter'. 

2.3. Use of the Masking Filters GI (2) and G P  ( z )  in Earlier Syn- 
thesis Schemes 
The role of the moskiizg Jilter.s GI (2) and Gz (2) is two-fold. First, 
they are designed in such a manner that in the passband of the over- 
all filter, the subresponses HI(J) and H ~ ( w )  as given by Eq. (2b) 

'Recall that the order of a linea-phase FIR filter is roughly inversely 
proponional to the transition bandwidth. Note that the orders of both the 
periodic filters 'and the corresponding nonperiodic filters are approximately 
the si". but the conventional filter does not contain zero-valued impulse- 
response coefficients. 
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Fig. 3 
masking technique. 
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Case A design of a lowpass filter using the frequency-response 
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Fig. 4 Case B desig of a lowpass filter usin,o the frequency-response 
niaskng technique. 

approximate F ( L w )  and 1 - F ( L d ) ,  respectively. Hence, N ( u )  = 
H l ( i ~ )  + H ~ ( u J )  approximatm unity, as is desired. In the stopband, 
these filters attenuate the exlra unwanted passband and transition 
band regions of F ( L w )  and U - F(Lw) .  These goals are achieved 
in Cases A and B by selecting the passband and stopband edges of 
the two lowpass masking filter to be located 2s shown in Figs. 3 and 
4, respectively. 

2.4. Existing Filter Design 'Technique 
Based on the observations made in [ I ] ,  the existing design of I C ( = )  
with passband and stopband ripples of 6, and 6, can be accom- 
plished for both Case A and Case B in the following two steps: 
Step I: Design G,.(:) for k = 1 , 2  such that their zero-phase fre- 
quency responses approximate unity in their passbands with toler- 
ance less than or equal to 0.96, and zero in their stopbands with 
tolerance less than or equal to 0.96,. 
Step 2: Design F ( L w )  such that the overall response H ( u )  approx- 
imates unity with tolerance S,, on (see Figs. 3 and 4) 

[(2/7r - e w ,  ( 2 i r  + 
[[2(1 - 1)" + 4 / L ,  ( 2 1 ~  - o ) / L ]  

for Case A, 
for Case B @F)  = { 

and approximates zero with tolerance 6, on 

[(217r + o ) / L ,  [2 (1+  1 ) ~  - o ] / L ]  
[ (2iT - q / ~ ,  (2iT + e ) / ~ ]  

for Case A 
for Case B.  
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3. PROPOSED TWO-STEP DESIGN SCHEME 

This section describes the proposed two-step algorithm for design- 
ing filters with a reduced arithmetic complexity. How to select the 
filter orders and the design parameters I ,  L ,  0 and 4 will be consid- 
ered in the next section. 

3.1. Algorithm For Finding a n  Initial Filter 
Assuming that the filter orders and other design parameters have 
been predetermined, an initial solution can be found effectively us- 
ing the following procedure: 
Step I: Set 7' = 1, 6;) = e r )  = 0. Determine the parameters of 
F(' . ) (z)  to minimize 

Here, the first band is the passband, where T17(w) and D(w') are 
equal to unity. The second band is the stopband, where T.l'(w') is 
equal to 6,/6, and D ( d )  is equal to zero. In the sequel, the same 
desired and weighting functions are used. 
Step 2: Set I' = I' + 1. Determine the parameters of Gt)(:) for 
k = 1,2 to minimize 

where 

Hg)(w ' )  = F ( ' - ' ) ( L ~ ) G ! ' ) ( U J )  + [l - F('-"(Lw)]G$)(ii t) ,  

Opl = 2/7r/L and Rs2 = (21 + ~ ) T / L  for Case A designs. and 
$,I = (21 - l ) r / L  and R2,2 = 217r/L for Case B designs (see 
Figs. 3 and 4). 

Step 3: Determine the parameters of F(' ) (:) to minimize 

where 

H k ) ( w ' )  = F ( " ( L d ) G { ' ) ( d )  + [I - F " ' ( L b , ) ] G $ ) ( d ) ,  

Q1,2 = ( 2 1 ~  + 0 ) / L  and Osl = ( 2 1 ~  + o ) / L  for Case A designs. 
and Op2 = (21n-o)/L and OS1 = (21r-e) /L for Case B designs 
(see Figs. 3 and 4). 
Step 4: If le,$) - E g - * J l  5 -1 and I&!) - E!-') I 5 A. where 1 
is a prescribed tolerance, then stop. Otherwise. go to Step 2. 

Steps 1 and 3 can be accomplished very fast by using the Re- 
mez algorithm [6], whereas Step 2 can be implemented using linear 
programming. The basic idea in the above algorithm is to share the 
frequency-response-shaping responsibilities in such a manner that 
GI ( z )  and G2(:) concentrate mainly on generating the desired re- 
sponse on 10, RPl] and [ Q S 2 ,  271, whereas F ( z L )  concentrates on 
the regions [Rpl, Q p 2 ]  and [Os, , RS2]  (see Figs. 3 and 4). 

3.2. Further  Optimization 
The solution obtained using the above algorithm can be further im- 
proved by using it as a start-up solution for the second algorithm of 
Dutta and Vidyasagar [5]. For details on how to apply this algorithm 
see, e.g., 171. 

4. PRACTICAL FILTER SYNTHESIS 

In practice, w, and ws are given and I, L, e ,  and 4 must be de- 
termined to give a solution with a significantly reduced arithmetic 
complexity. For a given value of L ,  either Case A or Case B can be 
used provided that L is not too large [ 1-31. Case A is applicable if 
1,0, and 4 are determined as 

I = L L ~ , / ( ~ ~ ) J ,  e = LW, - 21T, 4 = L ~ ,  - 2iT (5a)  

and the resulting 0 and 4 satisfy 0 5 0 < 4 5 T .  Similarly, Case 
B can be used if 1,0, and 4 are determined as 

i = [ ~ ~ ~ / ( 2 ~ ) 1 ,  e = 2iT - L ~ ~ ,  4 = 2iT - L ~ ,  (5b)  

and the resulting 8 and 4 satisfy 0 5 0 < d 5 T .  If 0 = 0 or 
o = T ,  then the resulting specifications for F ( w )  are meaningless 
and the corresponding value of L cannot be used. 

The remaining problem is to determine L to minimize the num- 
ber of multipliers, that is, N ~ / 2 + l +  [(NI +2)/21+ [(Nz +2)/2]  
if the coefficient symmetries are exploited. For both the earlier and 
the present designs, a good estimate for NF is the minimum order 
for the zero-phase frequency response of F(3)  to stay within 1 f S, 
( f6 , )  on [0, 01 ([b, T I ) .  For earlier designs, good estimates for 
N I  and A-2 are the minimum orders for the zero-phase frequency 
responses of G k  (2) for I; = 1,2 to stay within the same limits in 
their passbands and stopbands. 

For the filters designed using the new technique, good estimates 
for NI and A-2 are 60 percent of those for the earlier designs. Based 
on this observation, it can be shown that the values of L giving the 
lowest complexities can be found in the near vicinity of 

Lopt = l / d l . G ( w s  - w,) /T . ( 6 )  

The best results are usually obtained for those values of L where 
K1 and N2 are nearly equal. 

5. NUMERICAL EXAMPLES 

This section illustrates, by means of an example, the efficiency of 
the filters obtained by applying the proposed technique compared to 
those obtained using the earlier design schemes. 

Consider the specifications [3]. [4]: wp = O A T ,  dS = 0 . 4 0 2 ~ .  
6, = 0.01, and 6, = 0.001. For the optimum conventional direct- 
form FIR filter design, the minimum order to meet the given criteria 
is 2541, requiring 2541 adders and 1271 multipliers when the coef- 
ficient symmetry is exploited. 

For the earlier designs, L = 16 minimizes the number of multi- 
pliers required in the implementation [3], [4]. For L = 16, the over- 
all filter is a Case A design with I = 3,0  = OAT, and o = 0 . 4 3 2 ~ .  
The minimum orders for GI(:), G2(:), and F(:) to meet the given 
specifications are N I  = 70, N2 = 98, and NF = 162, respectively. 
The overall number of multipliers and adders for this design are 168 
and 330. respectively, that are 13% of those required by an equiva- 
lent conventional direct-form design (1271 and 2541 ). The overall 
filter order is 2690 that is only 6% higher than that of the direct-form 
design (2541 ). 

For L = 16, the best4 solution resulting when using the pro- 
posed synthesis scheme is obtained by NI = 47, fi, = 57, and 

Lz] stands for the largest integer that is smaller than or equal to I. 
r.1 stands for the smallest integer that is larger than or equal to I. 

"The measure of goodness is the overall number of multipliers. If 
there exist several solutions requiring the same minimum number of mul- 
tipliers. then. first, the solution with the minimum value of Iv> is se- 
lected and. second. the one having a lower value for the maximum of 
,\-I and ~ V Z  is selected. In this case. the overall filter order. as given by 
L 2 V ~  + max{i\'l, N2). is mininuzed. 
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NF = 160. For this filter, the number of multipliers and adders are 
134 and 264, respectively, that are approximately 80% of those of 
the earlier design. The overall filter order reduces to 2617. 

For the proposed filters, the overall number of multipliers is 
minimized by L = 21 [the value obtained using Eq. (6 ) ] .  This filters 
is a Case A design with I = 4 0  = O . ~ T ,  and o = 0.412~. The best 
solution is obtained by NI = 55, Nz = 7.  and NF = 122. This 
filter requires 129 multipliers and 254 adders that are approximately 
77% of those of the earlier best design for L = 16. 

For the best design with L = 21, Figs. 5 'and 6 show the re- 
sponses F ( L w )  and 1 - F ( L w )  and Gl(ij) and Gg(ui), respec- 
tively: The responses H I ( & )  = F ( L i j ) G ~ ( i j )  and Hz(ui) = [l - 
F(Lul)]Gz(u) are shown in Fig. 7, whereas the overall response 
H ( J )  = Hl(u) + H ~ ( u ) )  is depicted in Fig. 8. Two interest- 
ing observations can be made from these figures. First, F ( L u )  
and F ( L u J ) G ~ ( w )  in the passband region [I - F ( L i j )  and [I - 
F ( L L J ) ] G ~ ( ~ )  in the passband region] varies approximately be- 
tween -2 and 4 [ - 3  and 3].5 Second, the responses G1(ij) and 
G? (hi) are very similar. 

6. CONCLUSION 

The arithmetic complexity of FIR filters using the frequency-response 
masking approach has been reduced by simultaneously optimizing 
the subfilters. Future work is devoted to characterizing in more 
details the behavior of the resulting filters as well as to applying 
a similar technique for the multistage frequency-response masking 
approach . 
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51f the peak scaling and two's complenient cuitnietic are desired to be 
used and G1 ( z )  and Gg(s) share the delays by using the transposed direct- 
form structure exploiting the coefficient symmetry in Fig. I.  then there exist 
two alternatives for the scaling. In the first alternative. the overall input 
is divided by a constant 13 being the maximuni value of F(L-9) and the 
coefficients of G1 (2) and G z ( z )  are multiplied by 3. In  the second alter- 
native. the coefficients f (n )  in Fig. 1 as well as the output of the delay line 
- are divided by 3. ~ - L .YF / 3  
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Fig. 8 Response for the best proposed oiwall filter for L = 21 
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