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Frequency-Response Masking Approach for
the Synthesis of Sharp Two-Dimensional

Diamond-Shaped Filters
Yong Ching Lim and Seo How Low

Abstract—The frequency-response masking (FRM) technique
is an efficient method for realizing sharp one-dimensional (1-D)
filters. Sharp 1-D filters realized using the FRM technique have
considerably lower complexity than those realized in the direct
form. In this paper, we present an extension of the FRM tech-
nique to the synthesis of sharp two-dimensional (2-D) diamond-
shaped (DS) filters. The new technique, based upon dividing the
frequency spectrum into four complementary components and
the utilization of four masking filters, achieves large reductions
in filter implementation complexity when the transition width of
the desired DS filter is very narrow. An expression for the impulse
response up-sampling ratio that produces the design with the
least complexity is derived. Extensions of the technique for the
synthesis of 2-D filters other than the DS filters are also discussed.

I. INTRODUCTION

L INEAR phase finite impulse response (FIR) digital filters
are frequently used in signal processing applications for

their guaranteed stability and freedom from phase distortion.
One disadvantage of FIR filters is their high implementation
complexities. This is especially so for sharp filters since the
filter transition width is inversely proportional to the filter
length [1]. Thus, the implementation of a sharp filter would
entail an extremely long filter length and considerable arith-
metic complexity. One technique that alleviates this problem is
to implement the filter using the frequency-response masking
(FRM) approach [2].

The FRM technique uses the fact that up-sampling the
impulse response of a filter by inserting zeros reduces its
transition width by the up-sampling ratio. For example, if
each delay element of a prototype low-pass FIR filter
(subsequently called the band-edge shaping filter) is replaced
by delay elements, another FIR filter , which has a
transition width that is times that of the filter ,
is formed. The complement of the filter , denoted by

, can be easily obtained by subtracting the output of the
filter from a suitably delayed version of the input. By
properly masking the frequency responses of the filters
and and then recombining them, narrow transition-band
filters can be obtained [2].

Further developments of the FRM technique have been
reported in the literature. For example, [3] and [4] extend
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the method to the design of bandpass filters. Several authors,
notably [5] and [6], sought to reduce the implementation com-
plexity further by combining the frequency-response masking
approach with the interpolated impulse response technique [7]
or using half-band filters to serve as one of the masking filters.
Applications of the FRM method in the implementation of
linear phase filter banks are demonstrated in [8] and [9] while
the optimum design of filters using the FRM technique is con-
sidered in [10]. Subsequent developments are also reported in
[11]–[14]. Despite all these developments, the FRM technique
has not been applied very successfully to the synthesis of
two-dimensional (2-D) filters.

The high complexity problem of implementing sharp FIR
filters is even more acute for 2-D filters. For the 2-D diamond-
shaped (DS) filter, empirical results indicate that the filter
support size is inversely proportional to the square of the
transition width [15]–[17]. Thus, the complexity of a sharp
DS filter would be prohibitively high. To implement sharp
2-D filters, new efficient techniques are needed. In [10], a
method for the design of sharp 2-D filters using the FRM
technique was described; however, the technique presented can
only design filters with narrow passbands. In this paper, we
present a design methodology that overcomes this limitation.
We extend the FRM technique to the synthesis of sharp
2-D DS filters. The synthesis procedure is very similar to the
one-dimensional (1-D) FRM counterpart; the difference is in
the way the complementary components are selected. In our
technique, instead of utilizing two complementary components
and two masking filters, four complementary components
and four masking filters are used. By combining the outputs
obtained from passing the complementary components through
carefully selected masking filters, sharp DS filters can be
synthesized. This approach gives efficient realizations of sharp
DS filters with arbitrary bandwidths and is not limited to
narrow passband cases.

This paper is organized as follows. In Section II, we give
a formal definition of the 2-D filters used in this paper,
while in Section III, we demonstrate the design of DS filters
with narrow passbands. This design methodology has limited
practical usage. The FRM approach for the synthesis of DS
filters is presented in Section IV. This section presents the
design procedure as well as the definitions of the band edges
of the band-edge shaping and masking filters. In Section V,
we conduct an investigation of the relationship between the
ripple performance of the synthesized filter and that of the
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(a) (b) (c)

Fig. 1. Band-edge specifications of the DS, RS1, and RS2 filters.

band-edge shaping and masking filters. This provides valuable
insight for the filter designer on how to optimize the ripple
performance of the synthesized filter. Details on how to select
the impulse response up-sampling ratio that produces the
design with the minimum complexity is presented in Section
VI. Finally, a design example and a brief discussion of the
possible extensions of the 2-D FRM technique are presented
in Section VII.

II. DEFINITIONS AND NOTATIONS

The parameters that define the 2-D filters used in the FRM
technique are as follows. The passband- and stopband-edges of
the DS low-pass filter are denoted by and , respectively;

and are the frequency values where the respective band
edges (extrapolated if necessary) meet the frequency axes [see
Fig. 1(a)]. The transition width of the DS filter is given by

(1)

We define two rectangular-shaped (RS) 2-D low-pass filters
which are used as masking filters. The first RS filter, denoted
by RS1, has the longer side of the rectangular passband at an
angle of 135 to the horizontal frequency axis as illustrated
in Fig. 1(b). The second RS filter, denoted by RS2, is shown
in Fig. 1(c). It has the longer side of the rectangular passband
at an angle of 45 to the horizontal frequency axis. For both
the RS1 and RS2 filters, the passband and stopband edges
are defined by and respectively. and

define the band edges which are at an angle of 135
to the horizontal frequency axis; these are, respectively, the
frequency values where the passband- and stopband-edges
meet the horizontal frequency axis. The band-edges which
are at an angle of 45to the horizontal frequency axis are
defined by and . These are the frequency values where
the passband and stopband edges meet the vertical frequency
axis. The transition width of the RS filter is given by

(2)

where

(3a)

(3b)

(a) (b)

(c) (d)

Fig. 2. Design of a DS filter with narrow passband.

III. N ARROW PASSBAND FILTER DESIGN

In this section, we consider how DS filters with narrow
passbands may be designed. The procedure is similar to the
narrow-band 2-D filter design technique presented in [10].
Consider the DS filter where , shown
in Fig. 2(a). If the impulse response of the filter is up-sampled
by a factor of ( in the example) in the vertical and
horizontal dimensions by inserting zeros, the frequency re-
sponse of the filter shown in Fig. 2(b) is obtained. The
up-sampling process introduces “images” of the DS passband
into the 2-D region . A low complexity square-shaped
filter [shown in Fig. 2(c)], easily derived by cascading two
1-D filters, can be used as a masking filter to remove these
“images” to give the filter with the frequency response shown
in Fig. 2(d).

It is evident that this technique produces a DS filter with
a transition width that is times the original transition
width. However, the bandwidth of the filter is also reduced by
the same factor. Indeed, to obtain a filter with a very narrow
transition width, the bandwidth of the filter would be very nar-
row. Such a design technique is therefore useful only for some
specific applications and is not suitable for synthesizing wide-
band filters. Our proposed design methodology overcomes this
limitation.

IV. A RBITRARY BANDWIDTH DESIGN

The FRM filter design technique hinges on how the fre-
quency spectrum is divided into suitable complementary com-
ponents. For the case of 1-D filters, this can be done by split-
ting the frequency spectrum into two components [2]. There
is no known simple rule that extends this two-complementary-
component procedure to synthesize arbitrary-shaped 2-D filter.
However, in this paper, we show that by dividing the fre-
quency spectrum into four suitably chosen complementary
components and using appropriate masking filters, the FRM
technique can be applied to the design of DS filters.
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Fig. 3. The four frequency regions for the complementary components.

A. Complementary Components

The complementary components are defined by four 2-
D frequency regions, and . In the 2-D
region , where is the impulse response
up-sampling ratio, these are shown in Fig. 3 and defined as
follows:

(4a)

(4b)

(4c)

(4d)

In (4), is the frequency value at the intersection of the
four regions (see Fig. 3) and

Note that while the definitions above are explicitly for the
2-D region , it should be interpreted in such
a way that these regions are also defined for the periodic
repetitions of the 2-D region . For example,

would imply that , where is
the set of all two-component integers.

From Fig. 3, it can be observed that each component forms
an “island” and is surrounded by the other complementary
components. For example, component is surrounded by
components and . Four complementary components
are used because, geometrically, it is not possible to synthesize
a DS filter by using three or fewer components. The separation

between two “islands” of the same type is the allowance for
the transition band of the masking filter for that component.

Let the prototype band-edge shaping filter , where
, have the ideal frequency response such

that if in Fig. 3, the gain is unity in region and zero
elsewhere. Component is then obtained by passing the input
through the filter . In general, and component

is obtained by applying to the input instead, where
is the filter obtained by up-sampling by times the

impulse response of with zeros in both the horizontal
and vertical dimensions.

B. Implementation

In the FRM technique for the design of 1-D filters, it is
a trivial matter to obtain the two complementary components
since the complement of one component can be easily obtained
by subtracting the filtered output from a suitably delayed
version of the input. However, this is not the case when
four complementary components are required. One way to
overcome this problem is to design the four band-edge shaping
filters and introduce an “error” filter associated with
an “error” component to enforce the complementary
criterion.

The block diagram of the technique is illustrated in Fig. 4.
In Fig. 4, is the input and and

are the 2-D band-edge shaping filters with the desired
frequency responses as described previously. The components

and are given by

(5)

and the “error” component is given by

(6)

where

(7)

We shall use the notation to denote the transfer
function from to component , i.e.,

(8a)

where is given by

(8b)

If then and
form a set of complementary filters. For practical band-edge
shaping filters, is nonzero and
and do not form a complementary set. However,
with the introduction of and

do form a complementary set, i.e.,

(9)
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Fig. 4. Block diagram illustrating the frequency-response masking tech-
nique.

Note the distinction between and ; the relation-
ship between them is defined in (8b).

In the subsequent step, each of the components
and is passed through the

respective masking filter
or to obtain and

. The final output is obtained by
summing and . Obviously,
appropriate delay elements, which are not shown in Fig. 4,
must be added in an actual implementation.

The band-edge shaping and masking filters may be de-
signed using the linear programming filter design technique.
This technique is well reported in the literature [18]–[20]. It
involves the optimization of the frequency response of the
filter to satisfy a given set of specifications on a dense grid
of frequency points. The masking filters may be designed
by the direct application of this technique. However, for
the band-edge shaping filters, the design procedure should
be modified. The reason is as follows. If the four band-
edge shaping filters are designed independently, there is no
guarantee that will be small in the transition area between
any two regions. This poses a potential problem since if
is large, the ripple magnitude of the overall synthesized filter
can be severely degraded. Thus, instead of designing the four
band-edge shaping filters independently, they should be jointly
optimized. The set of design constraints should be as follows:

(10a)

(10b)

(10c)

for and where is the ripple variable,
and are, respectively, in the stopband and passband

of and is in the transition band of any of the
filters . The quantity in
(10c) controls the “tightness” of the bounds on the summation
of . As will be evident later in
Sections V and VI, should be selected such that

We shall illustrate the FRM technique for the case where
is three. The frequency responses of
and are shown in Fig. 5(a)–(d). Four masking fil-

(a) (b) (c)

(d) (e)

Fig. 5. Frequency response masks for CASE A.

(a) (b) (c)

(d) (e)

Fig. 6. Frequency response masks for CASE B.

ters, and , with the
frequency responses as shown superimposed onto the com-
plementary filters in Fig. 5(a)–(d), are cascaded to the filters

and , respectively. By sum-
ming the outputs from the masking filters, the frequency
response of the resulting filter, shown in Fig. 5(e),
is obtained. Notice that the corners of the filter are
contributed from the passband of the filter . We shall
refer to this as CASE A.

On the other hand, if the masking filters have the frequency
responses as shown in Fig. 6(a)–(d), then the resulting filter
response is that shown in Fig. 6(e). In such a case, the corners
of the passband of are contributed by the passband of

and shall be designated as CASE B.

C. Band-Edge Shaping and Masking Filters Specifications

We shall now derive the specifications of the band-edge
shaping and masking filters given the specifications of the final
desired DS filter. Suppose the band edges of the desired filter
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are and , i.e., , and the transition
width is . Also, let the transition width
of the band-edge shaping filters in the horizontal (or vertical)
frequency dimension be (all the transition widths of the
band-edge shaping filters being equal) and define

(11)

It can be shown that and are related to and by

(12a)

(12b)

where for CASE A, and

(13a)

(13b)

where for CASE B, being an integer.
In a synthesis problem, and are known and

, and the band edges of the masking
filters must be determined. We shall express , and in
terms of and . Since

(14)

to ensure that (12) yields a solution for CASE A, we have

(15a)

(15b)

(15c)

where denotes the largest integer less than. For CASE
B, we have

(16a)

(16b)

(16c)

where denotes the smallest integer larger than. For any
given set of and at most one of CASE A [(12) and
(15)] or CASE B [(13) and (16)] will yield a set of and
that satisfies (14). Irrespective of CASE A or CASE B,
is given by

(17)

The transition width of the band-edge shaping filters is there-
fore times the transition width of the synthesized filter. The
value of may be obtained from (11) by substituting for the
values of , and .

Note that it is also possible that for a given value of,
neither CASE A nor CASE B is valid. Such a situation occurs
when the transition band of the filter to be synthesized does not
lie completely between two adjacent folding frequency axes.
The folding frequency axes are the diagonal lines (at both 45
and 135 to the horizontal axis) passing through

(18)

TABLE I
SPECIFICATIONS OF THEMASKING FILTERS FOR CASE A

TABLE II
SPECIFICATIONS OF THEMASKING FILTERS FOR CASE B

where is an integer. In such a case, another value of
must be selected. The value of selected must satisfy the
conditions and , i.e.,

(19)

where . This condition ensures that the transi-
tion band of the synthesized filter lies completely between two
adjacent folding frequencies. For example, it is not possible
to synthesize a filter with for
since and in (19).

The specifications of the masking filters
and depend on whether

belongs to CASE A or CASE B. For CASE A,
and are diamond-shaped filters and
and are RS1 and RS2 filters, respectively. The
band-edge specifications are given in Table I. For CASE B,
the specifications are given in Table II. As in the 1-D case,
“don’t care” bands may be introduced when designing the
masking filters to reduce complexity.

Up to this point, nothing has been said about how the value
of should be selected [other than the conditions listed in
(19)]. One selection criterion is to choose the value ofthat
results in a design with the minimum number of multipliers.
This shall be discussed in Section VI. Before we proceed to
that, we must first examine the effects of the ripple magnitudes
of the band-edge shaping filters and masking filters on the
overall ripple magnitude of .

V. RIPPLES OF

In the discussion that follows, let denote the desired
gain of the filter , i.e., has a value of unity in
the passband and zero in the stopband. The ripple or deviation
of from is defined as

(20)
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For convenience, we shall assume that for the filters
and

(21)

in their respective transition bands, i.e., the ripple magnitudes
are zero in the transition bands. To simplify the analysis, we
will only consider the first-order terms and neglect the higher
order terms.

A. Ripples and

We shall first obtain expressions for the ripples of the
complementary filters and
Note that we do not consider the transition bands since the
ripple magnitudes are defined to be zero, i.e., for the filter

, we neglect the region that falls into the transition
band of

From (8b), is given by

(22)
Using (20), we can write (22) as

(23)

For the band-edge shaping filters, we have

(24)

Therefore, (23) becomes

(25)

For regions not in the transition band of
So we have

(26a)

For the ripples and it can be easily
shown using a similar procedure that the following results
hold:

(26b)

(26c)

(26d)

B. Ripples of the Synthesized Filter

Using the notations defined earlier, we can write

(27)

Fig. 7. Definition of the frequency regions for ripple magnitude analysis for
CASE A.

Fig. 8. Definition of the frequency regions for ripple magnitude analysis for
CASE B.

where and are, respectively, the desired value and
the deviation of the synthesized filter . To analyze the
ripple magnitude of the synthesized filter, we shall divide the
2-D region into several regions.

The first region is the region where the desired val-
ues of the four masking filters are unity, i.e.,

This region
is illustrated in Fig. 7 for CASE A and Fig. 8 for CASE
B. Substituting these values and into (27) and
using the fact that and are
complementary filters, we have

(28)

Using (24), we obtain

(29)

The second region, , is defined to be the region where
the desired gains of the four masking filters are zero, i.e.,

(as illustrated in Fig. 7 for CASE A and Fig. 8 for CASE
B). Substituting these values together with into
(27), we obtain (28). As in region , it can be shown that

is also given by (29).
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TABLE III
DESIRED FILTER GAINS IN EACH FREQUENCY REGION FOR CASE A

The above two regions cover the ripple magnitudes at
frequencies not near to the transition band of the synthesized
filter. To obtain the ripple magnitudes near the transition band
of the synthesized filter, CASE A and CASE B must be
analyzed separately. For CASE A, the regions through

are defined as shown in Fig. 7 and the desired values
of

and in each of the region are tabulated
in Table III. The values for the regions not explicitly defined
in Fig. 7 may be obtained by symmetry.

From Table III, in region , we have
and ; the frequency response
of the masking filter has unity gain while the other
three masking filters, and , are
in their transition bands. Substituting these values into (27),
we obtain

which can be written as

(30)

after substituting for and using

(26a)–(26d). From (10), we have

(31)

in the passbands and stopbands. So we can write

(32)

where is given by

(33)

Given that
it can be shown that Thus, the expression
for the ripple in is

(34)

Region is in the transition band of and .
Thus, . Also,
and . Substituting these values into
(27) and using (26), we have

(35)

From (10c), (24), and (31), we obtain the following expres-
sion for the ripple in :

(36)

Notice that for the term, there is an additional factor of
in (36) when compared to (34). This additional factor can be
made negligible by choosing .

The ripples in the regions through and that
for CASE B may be obtained using a similar analysis.
The appropriate values of

and may
be obtained from Table III for CASE A and Table IV for CASE
B. The regions for CASE B are defined in Fig. 8. A summary
of the results is as follows. Denoting the maximum ripple
magnitudes in the passband and stopband of the synthesized
filter by and , respectively, we have, for CASE A

(37a)

(37b)
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TABLE IV
DESIRED FILTER GAINS IN EACH FREQUENCY REGION FOR CASE B

and for CASE B

(38a)

(38b)

If the passband and stopband ripple magnitudes of the masking
filters are equal, the results for CASE A and CASE B are
identical.

VI. M INIMUM -COMPLEXITY DESIGN

In this section, we shall derive an expression for the value
of that minimizes the FRM implementation complexity.
The number of multipliers required in an implementation
will be used as a yardstick to measure the complexity of
the technique. To facilitate the derivations for the minimum
complexity design, the characteristics of the band-edge shaping
and masking filters must be known. We shall use the results
in [16], which state that for a rectangular-shaped filter with
a support size of by , passband and stopband ripple
magnitudes of and , respectively, and transition width

, the relationship between the variables can
be approximated by

(39a)

where

(39b)

and

(39c)

Fig. 9. (�u=f�uj�!1g) versus � plot for filters with N = 17 and
!� = 0:55�.

For small, the term is dominant. We
shall neglect the constant term and write

(40)

Consider a diamond-shaped filter with passband and
stopband ripple magnitudes of not more than, transition
width , and a support size of by . Using (40), the
number of multipliers required to implement this filter is
given by

(41)

Suppose that the FRM technique is used to synthesize this
filter. Let the filter support sizes of the prototype band-edge
shaping and masking filters be denoted using , where

is the notation for the respective filter. To simplify the
analysis, we shall assume that

(42)
in both the passbands and stopbands of the masking filters.

We now consider the number of multipliers required to
implement the band-edge shaping filters. The formula for
estimating the filter order was developed based upon the
statistics of low-pass filters without imposing any transition
band constraints. In the design of the band-edge shaping
filters, the additional constraints in (10c) have been added.
From our experience, the addition of the constraints does
not significantly alter the value of the objective function
(when compared to the case where the filters are designed
independently). This is illustrated in Fig. 9 which shows the
amount of alteration for different values ofand for the
set of filters with and . The amount of
alteration is computed by normalizing against ,
where is the value of when the filters are
designed independently (corresponding to ). It can
be observed from the graph that the deviation is larger for
larger . Nevertheless, for , the amount of alteration
is not more than 0.3 dB . Since the majority
of the band-edge shaping filters have and since
the filter order is relatively insensitive to ripple magnitude,
we can therefore use (39) to estimate the filter orders of the
band-edge shaping filters.
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The transition width of each band-edge shaping filter is
times the transition width of , so we have

(43)

The impulse responses of the band-edge shaping filters have
the characteristic that alternate coefficients are zero (see the
Appendix). Thus, the number of multipliers required to imple-
ment the four band-edge shaping filters is given by

(44)

Notice that the complexity required to implement the band-
edge shaping filters is inversely proportional to .

Let and be the transition widths of the filters
and , respectively. Then from Tables I and

II, the transition widths of the filters and
are given by and (the order may need to
be interchanged depending on whether it is CASE A or CASE
B; in any case, it does not affect our subsequent analysis) and
that

(45)

From (40), the number of multipliers required to implement
the filters and are given by

and

respectively. The filters and are similar
since one filter can be obtained from a 90-rotation of the
other. Without loss of generality, assume that ; in
that case, (or ) is given by

(46)

The number of multipliers required to implement the four
masking filters can therefore be approximated by

(47)

By substituting for in (47) using (45), it can be shown that
attains its minimum value when

(48)

Substituting for and in (47) using (48) leads to

(49)

It is clear from the above expression that the complexity re-
quired to implement the masking filters is directly proportional
to .

The total number of multipliers required in the FRM tech-
nique is thus given by

(50)

When the value of is increased, the complexity of the band-
edge shaping filters decreases while that of the masking filters
increases and vice versa. There is therefore an optimum value
of that minimizes the total complexity . By differentiating

with respect to and equating the derivative to zero, it
can be shown that is minimized when . The value
of at minimum complexity, , is given by

(51)

The above expression provides valuable information on how
the value of can be selected.

If we further assume that , then is simply
given by

(52)

and the number of multipliers at minimum complexity is

(53)

The total complexity is proportional to , which is a
significant improvement from proportional to for
the case of a direct-form implementation.

From (37) and (38) and choosing , we can write the
ripple magnitude of the synthesized filter as

(54)

Writing

(55)

we have

(56)

The FRM technique will produce a savings in the number
of multipliers when compared to direct-form implementation
provided that the transition width is smaller than a given limit.
Thus, an important quantity is the transition width at the break-
even point. This transition width occurs when
Equating (41) and (53), we have

(57)

where

(58)

The value of depends on the ripple magnitudeFrom (58),
it is clear that and approaches unity whenis small,
i.e., an absolute bound for is The behavior
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Fig. 10. �b versus� plot.

of with respect to is illustrated in Fig. 10. For ranging
from 80 dB to 20 dB, ranges from 0.069–0.034.

In the derivations above, the minimum complexity is ob-
tained when In practice, this condition may not be
true as the band edges of the masking filters are determined
by and the band-edges of However, it is always
possible to vary in the vicinity of so that the condition
holds. We shall therefore examine the sensitivity ofwith
respect to in the vicinity of

Let the value of in the vicinity of at which the
condition holds be given by , where
is small compared to Neglecting the higher powers of

, it can be shown using (50) that

(59)

is thus not very sensitive to the value of in the vicinity
of For example, a 20% variation in the value of
about causes a variation of only 6% in the value of

VII. D ESIGN EXAMPLE AND EXTENSIONS

We shall illustrate the FRM technique by synthesizing a DS
filter with and passband and stopband
ripple magnitudes of not more than 0.12 (or18.4 dB). From
(52), we obtain Checking with (12)–(16),
we find that neither CASE A nor CASE B is valid. So we
choose instead, in which case the desired filter belongs
to CASE A with ,
and Using these values, the band edges of the
masking filters are obtained from Table I.

To ensure that the ripple magnitude of the synthesized
filter satisfies the design requirements, from (54) and (55),
we require the band-edge shaping and masking filters to each
have passband and stopband ripple magnitudes of not more
than 28.0 dB. The band-edge shaping filters that meet the
above requirements have filter support sizes of 33 by 33 each
and the masking filters have filter support sizes ranging from
17 by 17 to 21 by 21. In the design of the band-edge shaping
filters, we have used

Applying the FRM technique, the perspective and contour
plots of the frequency magnitude response of the synthesized
filter are shown in Fig. 11(a) and (b), respectively. Using

(a)

(b)

Fig. 11. The frequency response magnitude of the synthesized DS filter: (a)
perspective plot and (b) contour plot.

a very dense grid1 to check the frequency response of the
synthesized filter, the maximum ripple magnitude was found
to be 20.0 dB in the passband and19.6 dB in the stopband.
It therefore satisfies the design requirements.

To appreciate the amount of computational savings, we shall
compare this design with a direct-form implementation. From
the relationships presented in [15] and [16], a direct-form
minimax DS filter with the same specifications would require
a filter support size of at least 101 by 101. A rough estimate
of the complexity reduction can be obtained by counting only
the number of multipliers involved. In our implementation,
there are approximately 2500 multiplications. This compares
favorably with the 10 000 multiplications required in a direct-
form implementation. There is therefore a savings in terms of
the number of multipliers by a factor of four. For filters with
sharper transition bands, higher orders of complexity reduction
is possible. Note that the implementation complexity can be
further reduced by applying the singular value decomposition
technique [21]–[23] on the band-edge shaping and masking
filters.

In this paper, we have introduced a new technique to
synthesize sharp 2-D DS filters with an eight-fold symmetry.
In fact, the FRM technique is general and can also be applied to
implement 2-D filters with other frequency response regions
of support as well as -D filters. We illustrate in Fig. 12
some of the other 2-D filters that can be synthesized using the
FRM technique. Fig. 12(a)–(b) illustrates how DS filters with
four-fold symmetry may be implemented. The synthesis of

14096 by 4096 points in the frequency region[��; �]2:
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(a) (c) (e)

(b) (d) (f)

Fig. 12. Illustration of the synthesis of DS filters with (a), (b) four-fold
symmetry, (c), (d) fan-shaped filters and (e), (f) hexagonal-shaped filters.

fan-shaped filters and hexagonal-shaped filters are illustrated
in Fig. 12(c)–(d) and (e)–(f), respectively.

VIII. C ONCLUSION

We have presented a new technique to implement sharp
DS filters. This technique, which is an extension of the FRM
approach for the synthesis of 1-D filters, produces filters with
a considerably lower complexity when compared to direct-
form implementations. The design procedure as well as the
definitions of the band edges of the band-edge shaping and
masking filters are presented in this paper. We have analyzed
the relationship between the ripple magnitudes of the overall
synthesized filter and that of the band-edge shaping and mask-
ing filters. An expression for the impulse response up-sampling
ratio that produces the design with the minimum complexity
is also derived. We have demonstrated the effectiveness of our
design technique using a design example. Other 2-D filters
that can be implemented using the FRM technique are also
discussed.

APPENDIX

The frequency response of an FIR filter, with filter support
size by ( odd) and impulse response , can
be written as

(A-1)
where From the symmetry of the frequency
response of the band-edge shaping filters, we have

(A-2)

We can write and as

(A-3)

and

(A-4)

respectively. Since (A-3) and (A-4) must be equal for all values
of , it is clear that when is odd,
i.e., alternate coefficient values are zero.
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