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Substitution of (23) in (21) or (22) gives the corresponding maximum 
allowed relative deviation: 

Expression (23) represents a further design constraint. It can be 
interpreted geometrically, in the parameter space, as the line crossing 
both the axes at the value ,/- (Fig. 4). 

NOW we want to investigate if there exist parameter values satis- 
fying constraint (23) and such that: 

5-1 (b). L i?. 

If such values exist then i, represents the maximum relative deviation 
compatible with all the design constraints. Substitution of (16) in (25) 
gives: 

On the other hand, (26) gives: 

6 ’ k  
( k  - 1); 5 - 5 T Iff1 P 

There is only one point, in the parameter space, that satisfies 
simultaneously (23), (27), and (28), that is: 

as can be easily verified taking into account the identity: e k  = 
d m .  Point (29) represents the optimal parameter choice 
(Fig. 4). In the particular case k = 1, the optimal choice is 6’ = 
0 and 6 = f i lal .  The corresponding required accuracy is ~ 0 . 1 7 .  
Fig. 5 shows the behavior of the maximum relative deviation i, vs. 
k .  Note that, assuming a precision of 1%, it must be k 5 ~ 2 0 .  
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The Synthesis of Half-Band Filter Using 
Frequency-Response Masking Technique 

T. Saram*, Y. C. Lim, and R. Yang 

Absfraet-An important property of a half-hand filter is that half of its 
coefficient values are trivial. This yields significant advantage in terms of 
its computational complexity. Nevertheless, the complexity of a half-hand 
filter is still very high if its transition-width is very narrow. In this letter, 
we introduce a novel method for the synthesis of very sharp half-band 
filter using the frequency response masking technique. 

I. INTRODUCTION 

The structure of a filter synthesized using the frequency response 
masking technique [ 11-[4] is shown in Fig. 1. In this figure, H M ,  (2) 
and Hn/rc(z) are the masking filters and H,(z )  is obtained by 
replacing each delay element of a prototype low-pass filter H,(z)  
by M delay elements. The transfer function of the filter system of 
Fig. 1 is given by 

In order to simplify notation, in this letter, we shall assume that 
all the filters are zero phase. As a consequence, the resulting filters 
are noncausal. Nevertheless, causality can be easily achieved by 
delaying the impulse response of the filter by an appropriate number 
of samples. 

11. SYNTHESIS OF HALF-BAND FILTER USING THE 
FREQUENCY RESFQNSE MASKING TECHNIQUE 

Consider a half-band filter of length 4L - 1 and transfer function 
H , ( z )  given by 

(2) 
1 

H,(Z) = 5 + A ( z )  

where 
L 

A ( z )  = a(2k  - 1) [ Z ~ ~ - ~ + Z - ( ’ ~ - ’ ) ]  (3) 
k = l  

In (3), a ( n )  is the impulse response of the filter at time n and time 
--n. The transfer function of the filter system is then given by 

If M is odd, then either $ + A ( z M )  or $ - A ( z M )  has a transition 
band centered at f n  as desired; the sampling frequency is assumed to 
be 2 ~ .  Fig. 2 shows the frequency responses of H R ( z M ) ,  H M ~ ( z ) ,  
and H M = ( z )  for M = 4 * i n t e g e r  + 1 .  The frequency response 
plots for M = 4 * i n t e g e r  + 3 is similar to that of Fig. 2 with the 
exception that those for H ,  ( z M ) ,  HM= ( z ) ,  and HhlC ( z )  are replaced 
by l-HQ(zM), HM.(z) ,  and H M = ( z ) ,  respectively. 
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Fig. 1. The structure of a filter synthesized using the frequency-response 
masking technique. 

: \  

Fig. 2. Frequency responses of H a ( r M ) ,  H,wa(z). and H M ~ ( ~ ) .  

Fig. 3. Synthesis filter structure for halfband filter design. 

If the passband and stopband frequency response ripple magnitudes 
of H M ~ ( z )  and H m c ( z )  are equal, then it can be shown that 

where H M a ( e J W )  and H M c ( e J w )  are the frequency responses of 
Hn;r,(z) and H M = ( z ) ,  respectively. Let the transfer function of 
H M ~ ( Z )  be given by 

The length of H M ~ ( z )  is 25 - 1. Let 

B ( z )  = h M a ( l ) ( Z  + 2-l)  + hua(3 ) (z3  + zP3)  + .  . . (7) 

Let 

C ( Z )  = h.wa(0) + hh-ra(2)(zZ + Z-~)+~M,(~)(Z~+Z-~) + . . . 
(8) 

(9) 

Hence, H M ~ ( z )  can be written as 

H M a ( 2 )  = B ( z )  + C ( z )  

TABLE I 
THE ESTIMATED LENGTHS OF Ha ( 2 )  AND H M ~  ( z ) ,  FOR VARIOUS 
M .  N ,  AND Nhla ARE THE LENGTHS OF H,( z )  AND H M ~ ( z ) ,  

RESPECTIVELY. Req.mltpls Is THE REQUIRED NUMBER 
OF MULTIPLIERS FOR THE SYNTHESIS FILTER OF OUR METHOD. 

M Na N M a  Req.mltpls 

3 1117 19 289 
5 67 1 33 184 
7 479 47 143 
9 373 61 123 
11 305 75 114 
13 259 87 108 
15 225 101 107 
17 197 113 106 
19 177 129 109 
21 161 141 111 
23 147 155 114 
25 135 169 118 
27 125 181 122 
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0.00 0.05 0.10 0.15 0.20 

Normalized Frequency 

(a) 

-80.0 .:: 1 
-120.0 
-140.0' ' ' . ' ' ' ' ' ' ' 

0.00 0.10 0.20 0.30 0.40 0.50 
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Fig. 4. 
Overall response. 

Frequency response of synthesis filter. (a) Passband response. (b) 

H M c ( z )  is then given by 

Substituting (9) and (10) into (4), we have 

( 1 1 )  
1 

H ( z )  = 5 + B ( z )  + A(z")(ZC(z)  - 1) 

The synthesis structure for ( 1  1 )  is shown in Fig. 3. Note that C( z )  
consists of even power terms of z .  Apart from the constant term, 
A ( z M )  is a power series consisting of odd power terms of z .  As 
a consequence, the A ( z M ) ( 2 C ( z )  - 1) term of (11) consists of a 
constant term and terms with odd powers of z .  Since B ( z )  is also 
a power series consisting of odd power terms of z ,  H ( z )  consists 
of a constant term and terms with odd powers of z .  Henze, H ( z )  
is a half-band filter. 
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111. AN EXAMPLE 
We shall choose the design of a half-band filter with a transition 

width of 0.001 sampling frequency and 0.001 peak frequency re- 
sponse ripple magnitude as an example to illustrate our method. It is 
estimated [5] that this set of specifications can be. met by a minimax 
optimum filter of length 3255; 815 multipliers are required. To meet 
this set of specifications using our method, the estimated length of 
Ha (2) and that of H M ~  ( z )  for M ranging from 3 to 27 are tabulated 
in Table I. As can be seen from Table I, the design with the minimum 
number of multipliers is the one with M = 17; 106 multipliers are 
required. Its frequency response is shown in Fig. 4. 

IV. CONCLUSION 
A method for the synthesis of very sharp half-band filters using 

the frequency response masking technique is introduced. Our method 

produces significant savings in the number of multipliers required for 
implementation. 
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