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SUMMARY

An important requirement in the design of data transmission filters is the minimization of intersymbol
interference, which is zero if the overall impulse response (transmit filter, channel and receive filter)
satisfies the first Nyquist criterion. In this context, an important class of transfer functions, satisfying the
Nyquist criterion, is the raised-cosine filter family. In order to guarantee low interference between adjacent
channels, the transmit and receive filters must have a high value of stopband attenuation, so as to reduce the
interchannel interference as much as possible. In this paper, a design method for finding the coefficients of a
pair of linear-phase transmit/receive FIR filters, that when cascaded have raised-cosine frequency response,
is presented. The design is based on Frequency Sampling techniques, and the filter parameters are chosen in
order to obtain maximum stopband attenuation and low intersymbol interference. The filter coefficients can
be easily evaluated and the optimal filter parameters can be obtained with tables or equations. The design
method is very simple, completely automatic and suited for non-filter-oriented users. Look-up table
techniques can be used for automatic re-design of the transmit and receive filters, making the proposed
solution well suited to programmable computing platforms (FPGA—Field Programmable Gate Arrays-
and PLD—Programmable Logic Devices-based platforms), or for applications where the design must be
performed without any user intervention. The proposed filter design technique is quite simple and the
results obtained often match the performance of filter designed using computationally more complex and
conceptually more difficult methods. Copyright # 2003 AEI.

1. INTRODUCTION

Different requirements are imposed on the transmit and

receive filters in the design of a data transmission system:

the transmit filter is used to band-limit the signal spec-

trum to the Nyquist bandwidth, whereas the receive filter

must reject both the out-of-band noise and the side-

channels, and it needs therefore to have high stopband

attenuation.

The stopband attenuation is in fact a very important con-

straint and it must be minimized in order to reduce the

Interchannel Interference (ICI). Besides, the cascade of

the transmit and receive filters must satisfy the first

Nyquist criterion, in order to avoid Intersymbol Interfer-

ence (ISI).

Various techniques have been proposed for the design of

digital filters satisfying the first Nyquist criterion. A very

common solution is the use of Finite Impulse Response

(FIR) filters, which have been successfully designed using

linear programming techniques [1–5]. In References [3–

5], in particular, an equiripple stopband behavior can be

obtained, while in Reference [3, 5] the transmit/receive
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filter pair can be jointly designed. Although linear pro-

gramming is a very flexible and powerful technique for

designing digital filters, it does suffer from some numeri-

cal ill-conditioning problems for high-order filter design.

In Reference [5], a simple modification of the standard

linear programming approach for FIR filters design has

been proposed, which avoids the necessity of a dense grid

of frequency points, achieving maximum possible stop-

band attenuation for a given filter order and stopband edge

frequency. However, the design method cannot guarantee

the convergence of the proposed algorithm.

A valid alternative to the use of linear programming

methods has been proposed in Reference [7], in which

an iterative technique for designing equiripple FIR

Nyquist filters using a multistage structure is described.

The multistage implementation shown in Reference [7]

is very efficient, but the resulting filter cannot be easily

split into a transmit/receive filter pair, because the design

method does not guarantee the ICI specifications on the

two separate filters. This problem has been dealt with in

Reference [8], where the authors proposed a method to

extend the design procedure presented in Reference [7]

to the transmit-receive filter pair.

Design methods for FIR structures are very common

because FIR filters can be easily constrained to have linear

phase, which turns out to be a good property from the sys-

tem performance point of view. On the other side, FIR

structures generally require a large number of multipliers

to meet the design specifications. Some alternative solu-

tions, able to avoid this problem, can be found in the litera-

ture. In this paper however, only linear phase FIR

structures have been considered, taking into account both

the sidelobe amplitude in the stopband (which charac-

terizes the amount of ICI) and the ISI.

A design procedure based on Frequency Sampling (FS)

techniques is described in the following. The potential of

this design procedure derives from the behavior of the out-

of-band power of FS-designed raised-cosine filters. In fact,

as it will be demonstrated later, both numerically and ana-

lytically, the out-of-band power does not depend on the

oversampling factor and it presents local minima for cer-

tain particular values of the filter parameters. The proposed

design method controls the amount of ISI and ICI of the

global transfer function, and it constraints the stopband

attenuation of both the transmit and the receive filters as

well. This is a very important requirement, especially

when the transmission channel is characterized by a low

signal-to-noise ratio. In some sense, the proposed method

can be considered as an FS technique especially tailored for

Transmission/Reception (TX/RX) Nyquist filters. For this

reason, it will be referred in the following as FS for

Nyquist filters (FS-N).

The FS-N method has been introduced with the aim of

providing a simple, automatic and efficient way of design-

ing reconfigurable TX/RX Nyquist filters. The method is

not optimal, but leads to a very interesting ISI/ICI trade-

off, and exhibits a number of advantages and features with

respect to other techniques. First, it always generates

stable and causal filters and, it does not have convergence

problems, and it does not require any intervention from the

user. Furthermore, both transmit and receive filters have

symmetric impulse response; this latter characteristic

allows a reduction of 50% in the number of multipliers

and guarantees linear phase, thus avoiding the need for

group delay equalizers. The proposed method also allows

to specify the required splitting of the Nyquist characteris-

tic between the transmit and receive filters. This feature

may be very useful in non-linear channels where asymme-

trical splitting of the Nyquist characteristic is often

required [9]. Finally, the design parameters of the pro-

posed method can be obtained from design charts and sim-

ple formulas whose coefficients may be stored in a Read

Only Memory (ROM). In this way, it is possible to effi-

ciently retrieve the optimum combination of design para-

meters and modify the filter characteristics at run-time,

just looking for the optimum combinations located into

look-up tables, without executing complex design proce-

dures. This makes the FS-N method a user-friendly design

tool, especially for users more expert (or interested) in the

telecommunication system aspects, than in the digital filter

design. Being completely automatic, the FS-N method is

also particularly suited for all those applications where

the filter design must be performed without user interven-

tion, like for instance simulation or software radio (SR).

The proposed FS-N filter design method could be used

both for ‘a priori design’ to design a limited set of

pulse-shaping filters to be stored into a transceiver system,

or for ‘run-time design’, where no alternative techniques

with equivalent simplicity are available.

Since the main scope of this work is to design a pair of

digital Nyquist filters, throughout this paper it has been

assumed that imaging and aliasing are perfectly avoided

by ideal analog filters, inserted before the analog to digital

converter at the receiver side, which do not introduce

phase and amplitude distortions on the received signal.

It has also been assumed that digital to analog conversion

is ideally accomplished at the transmitter side. These

hypotheses are practically adopted throughout the

literature like, for instance, in the recent papers [5, 10,

13–15].
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The structure of the paper is as follows. Sections 2 sum-

marizes some basic concepts of the FS design applied to

the raised-cosine function. Section 3 discusses the design

methodology with respect to the ICI performances. At the

end of this section, some design charts and formulas suita-

ble for an automatic implementation of the proposed

method are given. Section 4 deals with the ISI perfor-

mances. Section 5 shows some design examples, compar-

ing them with other filter design methods, while Section 6

contains the final conclusions.

2. BACKGROUND THEORYAND PROBLEM

SETUP

Denoting by h½n� the overall system impulse response,

the first Nyquist criterion in the digital domain states

that

h½n� ¼ A if n ¼ n0

0 if n ¼ n0 � kNs; k ¼ 1; 2; . . .

�
ð1Þ

where A is a non-zero constant, n0 is the discrete sampling

instant and Ns is the number of samples per symbol. Ns

represents the oversampling factor, where T is the sam-

pling interval, F the sampling frequency and Rs the baud

rate (in symbols per second), we have F ¼ 1=T ,

Rs ¼ 1=NsT and Ns ¼ F=Rs. The first Nyquist criterion

can be expressed in the frequency domain as well: being

Hðej2pf TÞ the z-transform of h½n� evaluated for

z ¼ ej2pf T , and HTðej2pf TÞ a function equal to Hðej2pf TÞ
for �1=2T < f < 1=2T and zero elsewhere, the following

condition must hold

Xþ1

k¼�1
HT ej2pðf�k=NsTÞT

� �
¼ ANs ð2Þ

(the frequency range ð�1=2T; 1=2TÞ will be called in the

following the ‘Nyquist bandwidth’). Note that the transfer

function has an odd symmetry around the point

1=2NsT ;ANs=2ð Þ.
From Equations (1) and (2), it is possible to see that the

Nyquist criterion in the digital domain is practically the

same as in the analog domain, therefore the digital filter

design can be performed starting from analog results, i.e.

digitizing some well-known analog Nyquist filters.

It is well known from the analog filter theory that the so

called raised-cosine transfer function [11], denoted as

Rðfa; �; TsÞ, where fa is the analog frequency, � the roll-

off and Ts the symbol period of transmission (i.e.

Ts ¼ NsT), satisfies the first Nyquist criterion. The expres-

sion of a raised-cosine function is

Rðfa; �; TSÞ

¼
1 for j faj � f1

cos2 p
4� ð2j fajTs � 1 þ �Þ
h i

for f1 < jfaj � f2

0 elsewhere

8><
>:

ð3Þ

where f1 ¼ ð1 � �Þ=2Ts and f2 ¼ ð1 þ �Þ=2Ts. The func-

tion is commonly split between transmit and receive filters,

as Rað fa; �; TsÞ and R1�að fa; �; TsÞ, where a is chosen in

order to optimize the overall performances (0 � a � 1).

Since the expressions of the first Nyquist criterion in the

analog and digital domain are equivalent, we will try to

approximate a transmit and a receive filter with transfer

functions Rað f=T ; �; TsÞ and R1�að f=T ; �; TsÞ in the

Nyquist bandwidth (where f is the digital frequency), that

will satisfy Equation (2) when cascaded.

The problem considered in this paper is, therefore, the

design of a digital FIR filter with linear phase and transfer

function magnitude equal to Rað f=T; �; TsÞ with

0 � a � 1. Since we are looking for a causal FIR filter,

we introduce a linear phase �ð f Þ ¼ �pf TðN � 1Þ, where

N is the filter length. Therefore we will start our design

from the ideal digital transfer function

HIð f Þ ¼ Rað f=T; �; TsÞe j�ð f Þ ð4Þ

2.1. Filter design

Various FIR design methods have been proposed in the lit-

erature [12]. We chose the FS method which allows the

evaluation of the filter coefficients h½n� with a simple direct

formula [12]

h½n� ¼ 1

N

XN�1

k¼0

Hke
j2p
N
nk ð5Þ

where Hk are the samples of the ideal transfer function

HIð f Þ at the equally spaced points fk ¼ k
N

, k ¼ 0; . . . ;N � 1.

The FS method produces a digital transfer function

HDð f Þ, which is forced to assume the ideal values Hk at

the frequencies fk, but it is not directly controlled in all

the other frequencies.

In our design method, the filter length N is set equal to

2NsEp, where Ep is the number of periods on the right (left)

side of the impulse response. The parameter Ep has a real

value compatible with the constraint that 2NsEp must be an

integer number. We will examine both integer and non-

integer values of Ep. The samples Hk to be plugged in

Equation (5) can be evaluated from Equations (3) and (4):
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where we have set NA ¼ dEpð1 � �Þe and

NB ¼ dEpð1 þ �Þe (d:e is the ceiling operation).

3. ICI PERFORMANCES

In order to evaluate the effects of ICI, we first define the fil-

ter bandwidth Bs as twice the ‘gross bandwidth’ of the use-

ful channel (see Figure 1), i.e. the frequency range from the

origin to the first null of the designed filter transfer function,

that will obviously be located in Bs=2. In usual applications,

the ICI is due to an adjacent channel with the same fre-

quency characteristics of the useful channel, starting at

the frequency Bs=2 and of bandwidth Bs (see Figure 1).

In order to evaluate the amount of ICI introduced by the

filter stopband characteristics, we introduce the parameter

Ps, defined as the amplitude of the ‘equivalent’ (or aver-

age) lobe in the adjacent channel with bandwidth Bs

Ps ¼
1

Bs

ð3
2
Bs

Bs
2

jHDð f Þj df ð7Þ

It has been numerically verified that the value of Ps does

not depend on the number of samples per symbol Ns (the

so called oversampling factor), but only on the roll-off

parameter � and the number of periods Ep. For example,

Figures 2 and 3 show the behavior under examination

for three possible values of Ns, in the case of a square-root

raised-cosine filter (a ¼ 0:5). This behavior can be

explained as follows: considering the digital transfer func-

tion HDð f Þ, the first null is generally placed in k ¼ NB (see

Hk ¼

e�jkpN�1
N for 0 � k < NA

cos2a p
4�

k
Ep
� 1 þ �

� �h i
e�jkpN�1

N forNA � k < NB

0 forNB � k � N � NB

cos2a p
4�

N�k
Ep

� 1 þ �
� �h i

e
�jpðk�NÞðN�1Þ

N forN � NB < k � N � NA

e�jðk�NÞpN�1
N forN � NA < k � N � 1

8>>>>>><
>>>>>>:

Figure 1. Spectral position of useful and adjacent channels.

Figure 2. Value of Ps as a function of Ep for � ¼ 0:5, a ¼ 0:5 and
Ns ¼10, 20 and 30 (the three curves are superimposed).

Figure 3. Value of Ps as a function of � for a ¼ 0:5, Ep ¼ 4 and
Ns ¼ 10, 20 and 30 (the three curves are superimposed).
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Figure 4), that is at the frequency f ¼ NB=N. Within the

frequency interval ½Bs=2; 3Bs=2�, the maxima of the mag-

nitude sidelobes are placed very near to the middle point

between two null samples, that is at the frequencies

fL ¼ ðLþ 0:5Þ=N, NB � L < N � ðNB � 1Þ. The para-

meter Ps defined in Equation (7) can be approximated as:

Ps �
1

2NB

X3NB�1

L¼NB

HD

Lþ 0:5

N

� �����
���� ¼ 1

2NB

X3NB�1

L¼NB

jHDð fLÞj

ð8Þ

The transfer function of the digital filter HDð f Þ designed

according to the FS method can be expressed as:

HDð f Þ ¼
e�jpf ðN�1Þ

N

XN�1

k¼0

Hke
�jpk=N sinðpf NÞ

sinðpð f � k=NÞÞ ð9Þ

which is a linear combination of the samples Hk with

frequency interpolating functions Að f ; kÞ ¼ e�jpk=N
� �

sinðpfNÞ=sinðpð f � k=NÞÞ [12]. The quantity jHDð fLÞj
can therefore be expressed as:

jHDð fLÞj ¼
1

N
sin

pL
N

� ��1

þ
XNA�1

k¼1

ð�1Þ�k

�����
� sin

pðL� kÞ
N

� ��1

þ sin
pðLþ kÞ

N

� ��1
" #

þ
XNB�1

k¼NA

ð�1Þ�k
Rk sin

pðL� kÞ
N

� ��1
"

þ sin
pðLþ kÞ

N

� ��1
#�����

where

Rk ¼ cos2a p
4�

k

Ep

� 1 þ �

� �	 

e�jkpN�1

N ð11Þ

When N � 1, as it is generally verified in practical filters,

the quantities sinð�Þ in Equation (10) can be approximated

with their arguments, obtaining the expression:

jHDð fLÞj �
1

p
1

L
þ

XNA�1

k¼1

ð�1Þ�k 1

L� k
þ 1

Lþ k

	 
�����
þ

XNB�1

k¼NA

ð�1Þ�k
Rk

1

L� k
þ 1

Lþ k

	 
���� ð12Þ

Substituting Equation (12) in Equation (8), we obtain an

approximated expression of Ps that does not depend on

the number of samples per symbol Ns and that justifies

the behavior of Figures 2 and 3:

Ps �
1

2NB

X3NB�1

L¼NB

1

p
1

L
þ

XNA�1

k¼1

ð�1Þ�k 1

L� k
þ 1

Lþ k

	 
�����
þ

XNB�1

k¼NA

ð�1Þ�k
Rk

1

L� k
þ 1

Lþ k

	 
�����
ð13Þ

As it can be seen in Figure 2, Ps shows some minimum

values for certain optimal values of Ep. This situation

repeats itself for every value of �, i.e given a value of �,

Ps shows a certain number of minima for some ‘optimal’

values of Ep. This behavior can be verified in Figure 5,

where the values of Ps as a function of Ep are shown for

different values of �. In this latter figure, it can be observed

that the optimal (minimum) values of Ps decrease when �
increases. We would like to point out that the maxima of

jHDð f Þj in the filter stopband typically show a decreasing

amplitude as f increases, and therefore optimizing the filter

Figure 4. Magnitude of the digital filter HDð f Þ.

Figure 5. Value of Ps as a function of Ep for � ¼ 0:4 (�), � ¼ 0:5
(��), � ¼ 0:6 (� �) and a ¼ 0:5.
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attenuation in the frequency range ½Bs=2; 3Bs=2� leads to

an excellent filter behavior in all the stopband.

For a given value of a, a proper choice of the design

parameters Ep and � can therefore result in a filter with

very high stopband attenuation. This behavior has also

been verified by simulation. In Figure 6, the signal-to-noise

ratio ðEb=NoÞy required to obtain a target bit-error-rate

(BER) of 10�4 for a satellite Quadrature Phase Shift Key-

ing (QPSK) transmission scheme employing Frequency

Division Multiplexing (FDM) techniques is shown. The

graph refers to a useful channel transmitting with bit-rate

Rb ¼ 2:498 Mbit/s, with center frequency fo ¼ 29:51847

GHz and two FDM adjacent channels located at fr ¼
fo þ ðð1 þ �Þ=2ÞRb and fl ¼ fo � ðð1 þ �Þ=2ÞRb, where

� ¼ 0:5. Useful and interfering adjacent channels use a

square-root (a ¼ 0:5) of raised-cosine FIR shaping filter

with roll-off � and N ¼ 2NsEp taps, where Ns ¼ 18 and

Ep is variable. The useful channel is attenuated of 30 dB

with respect to the interfering adjacent channels, to

account for worst-case propagation conditions. As it can

be observed from Figure 6, the value of Eb=No required

to achieve the target BER varies with Ep, i.e. with the stop-

band attenuation of the transmit and receive filters, and

some optimal values of Ep can be identified.

In most applications, it is important to minimize the

number of filter taps, while maximizing (or locally maxi-

mizing) the stopband attenuation. It is often important to

have simple filter design methods, possibly completely

automatic, that allow to select good filters without the need

for interactive optimization, with low computational com-

plexity and low memory storage requirements. These

objectives can be achieved by means of graphs, which

can be stored as look-up tables, easily accessed by an auto-

matic filter design method. In the following, a method for

constructing these graphs is described.

Graphs showing the values ð�;EpÞ in which the maxima

stopband attenuations (i.e. the minimum values of Ps) are

located can be easily obtained for different values of a. An

example is shown in Figure 7 for three different values of a
(i.e. a ¼ 0.4; 0.5 and 0.6). In particular, the upper curve

refers to a ¼ 0:6, the lower to a ¼ 0:4 and the middle

curve to a ¼ 0:5. Since for a given value of � different

optimal choices of Ep are possible, the minimum ‘optimal’

value of Ep has been reported in Figure 7, i.e. the value that

minimizes the number of taps N (we will denote this value

as Ep�min). The values of the minima of Ps considered in

Figure 7 are all smaller than �40 dB, and their value

decreases as Ep�min increases. Figure 7 can therefore be

used as a design chart: given the required values of a
and Ns, the optimal choice of the parameters ð�;Ep�minÞ
corresponding to a minimum of Ps (that is a minimum of

the ICI) can be directly read from the chart (paying atten-

tion to the constraint that 2NsEp�min must be an integer

number). The designed filter will have the minimum pos-

sible value of N for the given Ns. Once the filter has been

designed, the value of its actual normalized excess band-

width �e can be evaluated, as we shall explain in the

Figure 6. Signal to noise ratio required to achieve a bit error rate
equal to 10�4 as a function of Ep for Ns ¼ 18, � ¼ 0:5 and
a ¼ 0:5.

Figure 7. ð�;Ep�minÞ design table for ‘optimal’ FS-N raised-
cosine filters. The upper curve refers to a ¼ 0:6, the middle curve
to a ¼ 0:5 and the lower to a ¼ 0:4.

yEb is the energy-per-bit, and No is the gaussian noise one-sided power
spectral density.
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following (notice that the nominal roll-off parameter � of

the ideal transfer function (4) and the actual normalized

excess bandwidth �e of the digital filter HDð f Þ measured

with respect to the first-null bandwidth can be different).

Note that the couple of values ð�;Ep�minÞ shown in Fig-

ure 7 are ‘optimal’ in the sense that they locally minimize

the parameter Ps for the selected value of a. Since Ns does

not affect the value of Ps, it may be chosen as a small inte-

ger value.

In order to make the design method completely auto-

matic, a linear approximation of the curves of Figure 7

can be obtained. In particular, the values of a; � and

Ep�min in Figure 7 are related to each other by the follow-

ing approximation:

Ep�min ¼ 1:945�a� 1:611�þ 1:97 for 0 < � � 0:5
�0:9�þ 0:5aþ 1:83 for 0:5 < � � 1

�
ð14Þ

Equation (14) allows to automatically determine the opti-

mal value of � when a and Ep�min are given (this choice

will be optimal for every value of Ns), or to select a possi-

ble value for Ep�min if � and a are given. In this second

case, the final value for Ep�min, denoted ÊEp�min, can be

chosen as

ÊEp�min ¼ roundð2Ep�minNsÞ
2Ns

ð15Þ

where round(�) is the function rounding its argument to the

closest integer. Equation (15) selects ÊEp�min as the value

closest to Ep�min among those satisfying the constraint of

having N ¼ 2ÊEp�minNs an integer number.

With the aim of expanding the obtained results to a more

general scenario, the design chart shown in Figure 8 has

been obtained. In this latter figure, the abscissa �e is the

actual filter normalized excess bandwidth measured with

respect to the first-null bandwidth, i.e. satisfying the for-

mula HDð1 þ �e=2NsÞ ¼ 0. We denote the parameter �e

as ‘equivalent roll-off’. From Equation (6), we have that:

�e ¼
dEpð1 þ �Þe

Ep

� 1 ð16Þ

where � is the nominal roll-off parameter of Equation (3)

and �e is the equivalent roll-off.

In Figure 9 the pair of values ð�;EpÞ that locally mini-

mize Ps are also shown. When the value of Ep is given, Fig-

ure 9 can be used to determine the value of � that minimizes

ICI. When a certain excess bandwidth �e is required, Figure

8 can be used to select Ep and, then, the required value of �

can be determined from Figure 9. It is important to say that

the whole procedure can be implemented by an automatic

program, able to properly read the design charts.

4. ISI PERFORMANCES

As described in the previous section, the choice of a point

ð�;EpÞ with maximum stopband attenuation will very

often result in a non-integer value of Ep. The release of

the integer constraint on Ep, while allowing very low

ICI, negatively affects the ISI performances, especially

Figure 8. ð�e;EpÞ design table for ‘optimal’ FS-N square-root
(a ¼ 0:5) raised-cosine filters.

Figure 9. ð�;EpÞ design table for ‘optimal’ FS-N square-root
(a ¼ 0:5) raised-cosine filters.
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for low values of � and Ep. This is due to a lack of symme-

try in the digital filter transition bandwidth.

The width of the digital filter transition bandwidth is

2Ep�=N; for Ep� < 0:5 in Equation (6) only one value of

Hk in the transition bandwidth is fixed by the FS method. If

Ep is an integer value, this point is the ‘symmetry point’

ð1=2Ns;ANs=2Þ, and the symmetry of the filter shape is

somehow preserved. If Ep is not an integer and it assumes

a small value, the symmetry in the transition bandwidth is

lost, with a degradation in the ISI performances. In order to

verify this behavior, the peak distortion, which is the key

parameter characterizing the time domain response of the

designed pulses and their sensitivity to timing errors (i.e.,

the extent of the eye opening under the worst case binary

input combination), has been evaluated for two possible

values of Ep (Ep ¼ 8 and 8.5) (see Figures 10 and 11).

The peak distortion has been evaluated as [11]

Dp ¼
Pþ1

k¼�1;Nsk 6¼n0
jh½no � k � Ns�j

jh½no�j

where no is the discrete time instant in which the h½n� takes

on its maximum value.

Comparing Figures 10 and 11, it can be observed that,

for a given value of �, a much smaller value of Dp is

obtained if Ep is an integer number. This behavior is gen-

eral and it has been observed for every other value of Ep.

5. DESIGN EXAMPLES

The design examples presented in the following have been

obtained considering square-root of raised-cosine filters

(a ¼ 0:5), in order to obtain filters with the same character-

istic of those that are commonly found in the literature.

However, we want to point out that the FS-N filter design

method is general, and it is valid also for values of a dif-

ferent from 0:5.

In the proposed examples, both symmetric filters with,

say, 2M taps and asymmetric ones with M taps have been

considered, using therefore M degrees of freedom and M

multiplications for both structures. This implies that both

filters have the same complexity and the same degrees of

freedom, so that they can be properly compared, observing

in particular their ISI and ICI performance. The comparison

of filter design techniques based on the number of multipli-

cations required to implement the designed Nyquist filter is,

in fact, a performance indicator extensively used throughout

the literature [6], and valid for many practical applications.

As an example, symmetrical design methods [13, 14] are

compared with asymmetrical ones [5] by observing the

number of filter taps for the reasons just produced. Notice

that since the FS-N method is based on ISI/ICI mitigation,

other classical filter parameters, as for example the in-band

ripple, are not considered. In fact, Nyquist filters are nar-

row-band pulse shaping waveform generators, whose per-

formances do not directly depend on the in-band ripple,

provided that the Nyquist criterion and the narrow-band

requirements are satisfied. Also the peak-to-average power

ratio of the output waveform has not been considered as a

design parameter, since the FS-N method does not suggest a

new shaping waveform, but only allows to efficiently imple-

ment in the discrete time domain a classic raised-cosine

shaping pulse. It has however been verified that, given the
Figure 10. Dp as a function of the roll-off �, for a ¼ 0:5, Ns ¼ 2,
Ep ¼ 8.

Figure 11. Dp as a function of the roll-off �, for a ¼ 0:5, Ns ¼ 2,
Ep ¼ 8:5.
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same actual normalized excess bandwidth �e, the shaping

pulses obtained with the FS-N method for a = 0.5 have a

peak-to-average power ratio (evaluated in the discrete time)

which is always smaller than the peak-to-average power

ratio of a continuous time classic root-raised-cosine shaping

pulse. Notice that for a classic continuous time root-raised-

cosine filter, � and �e coincide.

With the aim of correctly assessing all the possible pro-

blems that could arise in a finite length implementation,

the effect on Ps of the filter coefficients quantization has

been evaluated. We assume that quantization consists in

the rounding of every coefficient and every computation

result on Nb bits (including the sign bit). Extensive analy-

sis have shown that the choice Nb 	 13 practically avoids

numerical errors, and the operations are completely

equivalent to those obtained with infinite precision.

Example 1. In order to illustrate the design method pro-

posed in this paper, we consider the specifications drawn

from the first example of Reference [5] in which, in order

to guarantee an actual normalized excess bandwidth

�e ¼ 0:23, a FIR solution with asymmetric impulse

response and 24 taps has been proposed, obtaining an

equiripple non-linear phase filter with stopband attenua-

tion of 23:4 dB and Dp ¼ 0.

In order to satisfy the same specifications, we propose a

transmit/receive filter with the following parameters:

a ¼ 0:5;N ¼ 40;Ns ¼ 4;Ep ¼ 5; �e ¼ 0:2 and � ¼ 0:05

derived from the design charts shown in Figures 8 and 9. The

specified parameter values correspond to a local maximum

of the stopband attenuation. To perform the design, we

added the constraint of having a low value of peak distortion:

this has been obtained assuming an integer value for Ep.

The transfer function magnitude of the designed filter is

shown in Figure 12. The peak distortion is equal to

Dp ¼ 1:1 � 10�2.

The FS-N filter has the first sidelobe at �22 dB, hence

1:4 dB higher than the first sidelobe of the filter designed

in Reference [5]. However, the successive sidelobes are all

lower than those in Reference [5] with a large margin.

Furthermore, being the filter impulse response sym-

metric, the FS-N filter only requires N=2 multiplications,

and has, therefore, the same complexity of a 20 taps asym-

metric filter, which is four taps smaller than the complexity

required by the solution in Reference [5]. Finally, the FS-N

filter has linear-phase, which is very helpful for synchroni-

zation and in presence of non-linear distortion [16].

Example 2. As second example, we consider the design

presented in Reference [15], where a linear-phase sym-

metric filter with 48 coefficients, excess bandwidth factor

0.5, stopband attenuation of about 55 dB and Dp ¼ 0 has

been proposed. The FS-N solution yields to a filter with

the followings parameters:

a ¼ 0:5;Ns ¼ 4; �e ¼ 0:5;Ep ¼ 6 and � ¼ 0:39

The designed FS-N filter has 48 coefficients, and its trans-

fer function is shown in Figure 13.

As it can be observed from Figure 13, the FS-N filter has

stopband attenuation larger than 55 dB, it therefore com-

pares slightly favorably to the solution proposed in [15].

Figure 12. Transfer function magnitude of the square-root
raised-cosine filter described in Example 1.

Figure 13. Transfer function magnitude of the square-root raised-
cosine filter described in Example 2.
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Furthermore, the peak distortion is equal to Dp ¼
1:3 � 10�3.

6. CONCLUSIONS

A simple and completely automatic design method for low

ICI raised-cosine FIR filter pairs based on FS techniques

has been described. The proposed design method sepa-

rately controls the stopband attenuation of both the trans-

mit and the receive filters.

Simple design tables for raised-cosine digital filters

have been presented. Filters with very high out-of-band

attenuation can be obtained for every value of the raised-

cosine splitting factor a, which can be an important design

parameter in presence of non-linear transmission channels.

Look-up table techniques can be used to obtain very short

FIR filters able to meet fixed specifications, having Ns, �,

Ep and a as parameters. Examples have illustrated that the

proposed method can be used as an alternative to more

complicated and time consuming FIR design techniques.
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