





# Relatório das Atividades de Pesquisa da Aluna XXXIII SEMANA DE INICIAÇÃO CIENTÍFICA "SEMIC UERJ 2024"

# ATIVIDADES EXECUTADAS PELA BOLSISTA NO PERÍODO DE AGOSTO DE 2023 A JUNHO DE 2024 - COTA 2022 -

# DADOS DE IDENTIFICAÇÃO I - DA ALUNA: 1 - Nome da Aluna: Diana Fontão Teixeira 2 - Matrícula UERJ: 202010091411 3 - Nome do Curso de Graduação: Engenharia Elétrica 4 - Se for externo, informar Curso e Instituição: Não se aplica. 5 - Tempo de permanência do aluno NO PROJETO (formato da data a ser preenchida: 14/04/2023 dd/mm/aaaa): Número de meses: 14 6 - Tempo de permanência do aluno NA BOLSA (formato da data a ser preenchida: dd/mm/aaaa) : 14/04/2023 Número de meses : 14

DCARH/PR2







| <br>7 - Ti | po de bolsa ou vínculo (marque com um X):                                                            |
|------------|------------------------------------------------------------------------------------------------------|
| X          | Programa Institucional de Bolsas de Iniciação Científica - Fomento UERJ (via Bradesco)               |
|            | Programa Institucional de Bolsas de Iniciação Científica - Fomento CNPq (via Banco do Brasil)        |
|            | Programa Institucional de Bolsas de Iniciação em Desenvolvimento Tecnológico e Inovação (PIBITI)     |
|            | Programa Institucional de Bolsas de Iniciação Científica - Ações Afirmativas CNPq                    |
|            | Programa Institucional de Bolsas de Iniciação Científica - Voluntário                                |
|            | Programa Institucional de Bolsas de Iniciação em Desen. Tec. e Inovação (PIBITI) - Voluntário        |
|            | Programa Institucional de Bolsas de Iniciação Científica Júnior - Fomento UERJ (via Bradesco)        |
|            | Programa Institucional de Bolsas de Iniciação Científica Júnior - Fomento CNPq (via Banco do Brasil) |
|            | Programa Institucional de Bolsas de Iniciação Científica Júnior - Voluntário                         |
|            | Bolsa de Iniciação Científica CNPq de Edital Universal (bolsa balcão)                                |
|            | Bolsa de Iniciação em Desen. Tecnológico e Inovação do CNPq de Edital Universal (bolsa balcão)       |
|            | Bolsa de Iniciação Científica de Editais FAPERJ (bolsa balcão)                                       |

DCARH/PR2 2







| Bolsa de Iniciação Tecno                      | ológica de Editais FAPERJ (bolsa balcão) |                          |
|-----------------------------------------------|------------------------------------------|--------------------------|
| Outros (especifique):                         |                                          |                          |
| II - DO ORIENTADOR:                           |                                          |                          |
| 1 - Nome do orientador:                       | José Paulo Vilela Soares da Cunha        |                          |
| 2 - Matrícula UERJ:                           | 32.640-5                                 |                          |
| 3 - Unidade Acadêmica:                        | Faculdade de Engenharia (FEN)            |                          |
| 4 - Se for de outra IES, informe              | Não se aplica.                           |                          |
| V - DO PROJETO API<br>SUBMETEU NA SELIC 20    | • •                                      | (PROJETO QUE O PROFESSOR |
| 1 – Título do Projeto:                        | Controle e Estimação em Sistemas         | Dinâmicos Incertos       |
| Obs: Informar apoio financeir PETROBRAS, MCT: | PERJ, CAPES, FINEP, FAPERJ               |                          |
|                                               |                                          |                          |
|                                               |                                          |                          |

DCARH/PR2







# Relatório das Atividades de Pesquisa da Aluna XXXIII SEMANA DE INICIAÇÃO CIENTÍFICA "SEMIC UERJ 2024"

### RELATÓRIO (PLANO DE TRABALHO DA ALUNA - SELIC 2022):

1 – TÍTULO DO TRABALHO DA BOLSISTA:

Girassol: Explorando a Energia Fotovoltaica em Bases Móveis

**2 – Principais objetivos do plano de trabalho original (plano de trabalho do bolsista**) (até 2800 caracteres com espaço):

O presente projeto visa estudar uma forma de aplicação da energia fotovoltaica em embarcações marítimas, investigando a viabilidade de ganho de energia caso o painel fotovoltaico esteja sofrendo tanto com a oscilação da embarcação (de forma mais rápida), quanto com o movimento solar que ocorre lentamente. Tradicionalmente, os painéis fotovoltaicos são instalados em bases fixas, e em alguns casos, são empregadas bases móveis com mobilidade limitada para compensar a mudança da inclinação dos raios solares e, assim, melhor aproveitar a luz solar ao longo do dia.

O foco principal desta pesquisa é entender de forma aprofundada o comportamento de um painel fotovoltaico em situações adversas, de forma a relacionar suas propriedades físicas com os resultados obtidos. Dessa forma, é possível aumentar o rendimento energético desta aplicação específica e contribuir de forma positiva a novos avanços tecnológicos nesta área. Para atingir este objetivo, é essencial compreender o funcionamento das painéis fotovoltaicos instalados em bases fixas para estudar os efeitos do movimento.







# Relatório das Atividades de Pesquisa da Aluna XXXIII SEMANA DE INICIAÇÃO CIENTÍFICA "SEMIC UERJ 2024"

3 – Principais etapas executadas no período da bolsa, visando ao alcance dos objetivos (até 2800 caracteres com espaço):

As principais etapas executadas durante a pesquisa foram:

- Estudo sobre o efeito fotovoltaico:
- Estudo sobre a produção de painéis solares;
- Estudo sobre os movimentos da Terra e sua influência no ganho de energia;
- Estudo sobre a aplicação de painéis fotovoltaicas em bases fixas;
- Estudo do software Scilab;
- Esquematização do funcionamento do painel sobre da base móvel;
- Formulação matemática do fluxo de potência luminosa a partir da correção do ângulo de desalinhamento:
- Estudo sobre o atrito e seus coeficientes;
- Formulação matemática da potência perdida para a correção do ângulo de desalinhamento;
- Geração de gráfico para a visualização do máximo ganho de potência;
- Formulação matemática para obter o máximo ganho de potência.
- 4 Apresentação e discussão sucinta dos principais resultados obtidos (até 2800 caracteres com espaço):

A Figura 1 apresenta a disposição de ângulos referentes ao estudo do movimento do painel fotovoltaico montado sobre uma base móvel para a compensação dos movimentos de uma embarcação.







# Relatório das Atividades de Pesquisa da Aluna XXXIII SEMANA DE INICIAÇÃO CIENTÍFICA "SEMIC UERJ 2024"

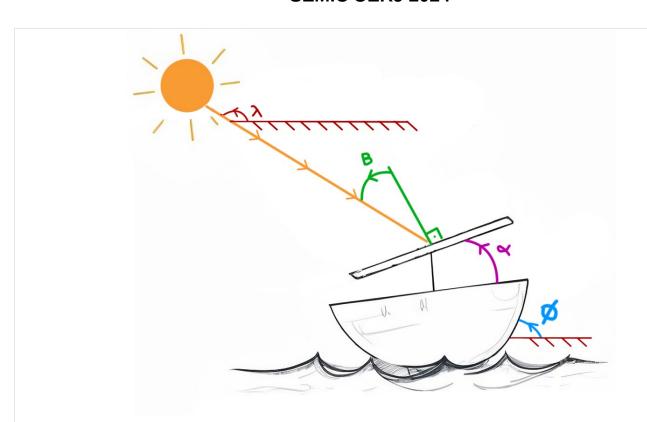



Figura 1 – Esquematização dos ângulos atuantes na painel solar.

A princípio, foi considerada apenas a influência da angulação entre os raios solares e a normal da painel fotovoltaica ( $\beta$ ), a fim de analisar os resultados obtidos.

# Ganho de potência:

$$W = \int_0^t Imax \cdot \cos(B) dt$$
$$B = \lambda - \phi - \alpha$$







# Relatório das Atividades de Pesquisa da Aluna XXXIII SEMANA DE INICIAÇÃO CIENTÍFICA "SEMIC UERJ 2024"

Como o foco de estudo é a oscilação da embarcação, que é um movimento rápido, e não o movimento da Terra em relação ao Sol (dado por lambda), considera-se nulos esse movimento lento.

Ângulo de oscilação entre o barco e o solo:

$$\phi = A\sin(\omega t)$$

Ângulo de correção para manter a placa em seu estado de maior produção de energia:

$$\alpha = \bar{A}\sin(\omega t)$$

No decorrer do desenvolvimento, encontrou-se uma integral não solucionável por meios usuais, de forma que seria mais simples e efetivo utilizar a série de Taylor para aproximar o cosseno a fim de contornar esta dificuldade:

Série de Taylor para cosseno:

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots$$

Podemos substituir cosseno pela sua aproximação:

$$1 - \frac{((A - \bar{A})\sin(\omega t))^2}{2} + \frac{((A - \bar{A})\sin(\omega t))^4}{24}$$







### Relatório das Atividades de Pesquisa da Aluna XXXIII SEMANA DE INICIAÇÃO CIENTÍFICA "SEMIC UERJ 2024"

Como resultado final, encontra-se:

$$P_{ganho} = \left(1 - \frac{(A - \bar{A})^2}{4} + \frac{(A - \bar{A})^4}{64}\right) \cdot Imax$$

#### Perda de potência:

O fator de atrito pode se dividir em duas equações, que serão ambas incluídas para abranger diferentes tipos de atrito:

$$W_{AT} = \int_{0}^{t} P_{atrito\ dt} \tag{1}$$

$$P_{atrito} = \frac{\partial \alpha}{\partial t} \cdot \tau_{atrito} \tag{2}$$

 $\tau_{atrito} = \text{Fator de atrito}$ 

$$\tau_{atrito} = B \cdot \frac{\partial \alpha}{\partial t} = F_{atrito} \cdot sign(\frac{\partial \alpha}{\partial t})$$

Onde o coeficiente de atrito viscoso B e a força de atrito seco  $F_{at}$  são dados. É possível realizar as duas integrais separadamente, a fim de se obter a soma dos efeitos de ambos os tipos de atrito, que resultam:

$$P_{at} = \frac{2F_{at}\bar{A}w}{\pi} + \frac{B\bar{A}^2w^2}{2}$$







# Relatório das Atividades de Pesquisa da Aluna XXXIII SEMANA DE INICIAÇÃO CIENTÍFICA "SEMIC UERJ 2024"

A partir desse resultado, pode-se obter a expressão da potência resultante:

$$P = (1 - \frac{(A - \bar{A})^2}{4} + \frac{(A - \bar{A})^4}{64}) \cdot Imax - \frac{2F_{at}\bar{A}w}{\pi} + \frac{B\bar{A}^2w^2}{2}$$

Pode-se observar isso graficamente ao variar ambos os coeficientes de atrito de 0 a 500, com intervalos de 50, conforme Figura 2. A primeira curva do gráfico (superior) é correspondente a potência resultante sem nenhum atrito, e a última curva do gráfico (inferior) é relativa aos dois coeficientes de atrito valerem B=500 Ns/rad e  $F_{al}$ =500 N. Nestes gráficos foram usados os seguintes valores dos demais parâmetros: amplitude das oscilações do barco A=0,5 rad, frequência das oscilações  $\omega$ =0,5 rad/s e a máxima potência luminosa incidente no painel  $I_{max}$ =1100 W.







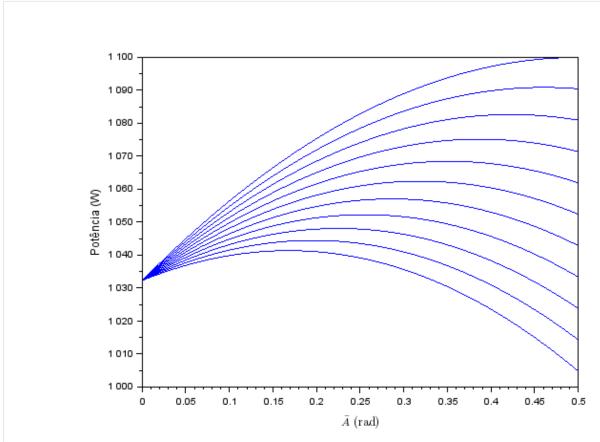



Figura 2 – Gráfico de potência resultante em relação à amplitude do ângulo de correção.

Para obter o máximo de uma função, podemos igualar a sua derivada a zero, encontrando o valor da variável. Ao aplicar estes passos na função resultante, tem-se:







# Relatório das Atividades de Pesquisa da Aluna XXXIII SEMANA DE INICIAÇÃO CIENTÍFICA "SEMIC UERJ 2024"

$$\frac{dP}{d\bar{A}} = \left(\frac{1}{2}(A - \bar{A}) - \frac{(A - \bar{A})^3}{16}\right) - \frac{2F_{at}w}{\pi} + w^2B\bar{A}$$

Isolando-se as variáveis do lado esquerdo:

$$-(A - \bar{A})^3 + 8(A - \bar{A}) + 16w^2B\bar{A} = \frac{32F_{at}w}{\pi}$$

A partir desse passo, concluiu-se que seria melhor eliminar a aproximação de quarta ordem da série de Taylor, de forma que a amplitude do sinal de correção para obter a máxima potência se consolidasse em uma fórmula fechada:

$$\bar{A} = \frac{(4 F_{at} \omega - A I_{max} \pi)}{(\pi (2 B \omega^2 - I_{max}))}$$

- 5 Relacione os principais fatores negativos e positivos que interferiram na execução do projeto.
  - A. FATORES POSITIVOS (até 2800 caracteres com espaço):
- Comunicação rápida com o orientador, que respondeu prontamente todas as minhas solicitações.

DCARH/PR2







# PIBIC / PIBITI / ICJr Relatório das Atividades de Pesquisa da Aluna

# XXXIII SEMANA DE INICIAÇÃO CIENTÍFICA **"SEMIC UERJ 2024"**

- A disponibilidade e ajuda de outros professores para a execução do projeto, respondendo minhas dúvidas e aprofundando meu conhecimento.
- A disponibilidade de tempo para reuniões também foi muito importante.
  - B. FATORES NEGATIVOS (até 2800 caracteres com espaço):
- A dificuldade de acessar o laboratório no período da manhã.
- A dificuldade de tempo para desenvolver o projeto, devido a disciplinas da Graduação.
- A grande dificuldade em encontrar artigos relevantes sobre o tema, o que prejudicou o embasamento do projeto. Futuramente, pretende-se melhorar a busca bibliográfica.

Não se aplica.

| VI – Informe se houve produção científica no período:                                                 |
|-------------------------------------------------------------------------------------------------------|
| X Não houve produção científica da aluna no período.                                                  |
| - Três (03) mais importantes trabalhos publicados e/ou aceitos para publicação (do aluno):            |
| Não se aplica.                                                                                        |
| - Três (03) mais importantes apresentações em Congressos (do aluno):                                  |
| Não se aplica.                                                                                        |
| - Três (03) mais importantes trabalhos publicados e/ou aceitos para publicação (do projeto em geral): |
| Não se aplica.                                                                                        |
| - Três (3) mais importantes apresentações em Congressos (do projeto em geral):                        |

DCARH/PR2 12







VII - Houve atividades desenvolvidas em outras IES (Instituição de Ensino Superior):

| X                                                    | Não.                    |                 |    |  |  |  |  |  |
|------------------------------------------------------|-------------------------|-----------------|----|--|--|--|--|--|
|                                                      | SIM. Qual?              | Não se aplica.  |    |  |  |  |  |  |
| VIII - Autoavaliação da bolsista (escala de 1 a 10): |                         |                 |    |  |  |  |  |  |
| a)                                                   | Dedicação:              |                 | 10 |  |  |  |  |  |
| b)                                                   | Capacidade de trabal    | lho em equipe:  | 8  |  |  |  |  |  |
| c)                                                   | Iniciativa:             |                 | 10 |  |  |  |  |  |
| d)                                                   | Autonomia               |                 | 8  |  |  |  |  |  |
| e)                                                   | Amadurecimento acade    | êmico           | 9  |  |  |  |  |  |
| f)                                                   | Competência técnica     |                 | 8  |  |  |  |  |  |
| g)                                                   | Desenvolvimento de es   | spírito crítico | 10 |  |  |  |  |  |
| h)                                                   | Domínio do tema de pe   | esquisa         | 10 |  |  |  |  |  |
| i)                                                   | Domínio da metodologi   | ia de pesquisa  | 10 |  |  |  |  |  |
| J)                                                   | Capacidade criativa e i | novadora        | 10 |  |  |  |  |  |
| K)                                                   | Domínio da escrita      |                 | 9  |  |  |  |  |  |

DCARH/PR2







# Relatório das Atividades de Pesquisa da Aluna XXXIII SEMANA DE INICIAÇÃO CIENTÍFICA "SEMIC UERJ 2024"

| L) Desempenho nas disciplinas                                  | 8   |  |  |  |  |
|----------------------------------------------------------------|-----|--|--|--|--|
| Observações adicionais (até 2000 caracteres com espaço         | 0): |  |  |  |  |
| Não há.                                                        |     |  |  |  |  |
| IX - Avaliação da bolsista pelo orientador (escala de 1 a 10): |     |  |  |  |  |
| a) Dedicação:                                                  | 8   |  |  |  |  |
| b) Capacidade de trabalho em equipe:                           | 9   |  |  |  |  |
| c) Iniciativa:                                                 | 10  |  |  |  |  |
| d) Autonomia:                                                  | 9   |  |  |  |  |
|                                                                |     |  |  |  |  |
| e) Amadurecimento acadêmico:                                   | 9   |  |  |  |  |
| f) Competência técnica:                                        | 10  |  |  |  |  |
| g) Desenvolvimento de espírito crítico:                        | 9   |  |  |  |  |
| h) Domínio do tema de pesquisa:                                | 10  |  |  |  |  |
| i) Domínio da metodologia de pesquisa:                         | 9   |  |  |  |  |
| J) Capacidade criativa e inovadora:                            | 10  |  |  |  |  |
| K) Domínio da escrita                                          | 10  |  |  |  |  |

DCARH/PR2







|                               |   | 1 |
|-------------------------------|---|---|
| L) Desempenho nas disciplinas | 9 |   |

Observações adicionais (até 2000 caracteres com espaço):

O tema deste trabalho foi desenvolvido a partir de conversas com a bolsista. Foi muito motivador e desafiador, pois até o momento não encontramos referências sobre o tema, que me parece negligenciado.

Todos os painéis fotovoltaicos instalados em embarcações são fixos, até onde é do meu conhecimento. Geralmente são instalados horizontalmente, o que garante boa captação da luz solar quando o Sol está acima da embarcação, pois os raios solares estão alinhados com a vertical. Entretanto, quando o balanço do barco excitado pelas ondas e ventos for grande e quando o Sol estiver mais baixo no horizonte, a captação de luz poderá ser significativamente atenuada. É nessas situações extremas que este trabalho encontraria aplicação. Naturalmente, a compensação do movimento do painel seria vantajosa se não houvesse perdas nos mecanismos da base causadas pela sua movimentação. Seria vantajoso mover o painel para acompanhar esses movimentos? O gasto de energia para para compensar esses movimentos superaria a energia adicional convertida pelo painel? Como controlar a compensação do movimento do painel para aumentar a captação de energia? São questões que parecem estar em aberto, cuja abordagem foi iniciada neste trabalho.

Rio de Janeiro, 08 de julho de 2024. Bolsista: Diana Fontão Teixeira Orientador: José Paulo Vilela Soares da Cunha

#### ORIENTAÇÕES SOBRE ESTE RELATÓRIO:

- O Relatório deve ser elaborado pelo bolsista em conformidade com o formato acima e, principalmente, de acordo com o
  plano de trabalho do bolsista proposto na SELIC 2022, apresentando redação científica. Devem ser enfatizados os
  resultados alcançados;
- O Relatório deve ser analisado pelo orientador antes de chancelada a inscrição;
- O bolsista deve informar no relatório de atividades (item VI) sua participação em eventos científicos e/ou na produção de resumos ou artigos científicos (estas informações devem constar no Currículo Lattes);

DCARH/PR2 15







- Informações complementares que considerar relevantes para julgamento do seu desempenho no período de agosto de 2023 a junho de 2024, como, por exemplo, o desempenho acadêmico, dificuldades encontradas na execução do projeto, alterações nas metas e objetivos devem ser incluídas nas observações do item VIII;
- O Relatório deve estar em formato PDF.

DCARH/PR2 16