Relatório Final de Pesquisa de Iniciação Científica

Título do Projeto:

Construção de um Sistema de Controle de Velocidade Angular em Um Eixo Utilizando Roda de Reação

Identificação

UERJ

Faculdade de Engenharia — FEN
Departamento de Eletrônica e Telecomunicações — DETEL

Período deste Relatório: março de 2021 a setembro de 2021.

Equipe:

Bolsista PIBIC/UERJ: Samuel Pereira Deccache Alves — Matrícula: 201710056011

Professor Orientador: José Paulo Vilela Soares da Cunha — Matrícula: 32.640-5

Local de desenvolvimento do projeto: Laboratório de Controle e Automação do Laboratório de Engenharia Elétrica

Local e data: Rio de Janeiro, 19 de junho de 2022

1 Introdução

Esse projeto de iniciação científica busca modelar, simular e testar um sistema de controle de roda de reação em um eixo, utilizado, por exemplo em nano satélites, tal como um CubeSat. Um CubeSat é um nanosatélite que tem como medições físicas, aproximadamente, $10\,\mathrm{cm} \times 10\,\mathrm{cm} \times 10\,\mathrm{cm}$ e a sua massa não pode exceder 1,33 kg. O conceito do CubeSat foi desenvolvido por dois professores na década de 1990: Jordi Puig-Suari da California Polytechnic State University e Bob Twiggs da Stanford University. Visando baixar o custo de lançamentos de satélites, os CubeSats são lançados frequentemente para diversas missões espaciais, tais como avaliar o sistema de comunicação e sensoriamento remoto (MCTIC 2018).

O sistema de controle de atitude em um satélite é responsável pela orientação e posição do satélite referente a um local, como por exemplo a Terra. Através de sensores, o satélite é capaz de realizar a determinação de atitude e, portanto, o seu controle através de atuadores, como rodas de reação. (Molina 2016).

O projeto de iniciação científica consiste em modelar o conceito teórico do sistema de controle proporcional aplicado à roda de reação, fazer uma simulação para tal e por fim aplicar um experimento no qual se valida o conceito do tema proposto.

2 Modelo Dinâmico do Sistema

O objetivo principal deste trabalho é realizar a estabilização, em um eixo, de um corpo que está sob efeito da roda de reação, conforme a Figura 1. O modelo dinâmico do sistema se baseia na Segunda Lei de Newton, em que a mesma mostra que num sistema rotacional abrange o princípio da conservação do momento angular, ou seja, este é conservado se não houver nenhum torque externo sobre o mesmo (Halliday, Resnick & Walker 2016).

O torque resultante num sistema mecânico é dado por:

$$T_{res} = \frac{dL}{dt} \tag{1}$$

na qual L é o momento angular do sistema.

A fórmula do momento angular é dado por:

$$L = I\omega \tag{2}$$

As variáveis I e ω são o momento de inércia a velocidade angular, respectivamente.

O sistema possui dois corpos em movimento rotacional que é o satélite e a roda de reação. Logo, tem-se no sistema a equação 3:

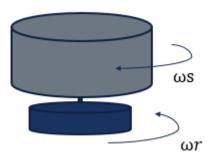


Figura 1: Diagrama da roda de reação acoplada ao satélite.

$$T_{res} = \frac{d(L_s + L_r)}{dt}, (3)$$

na qual L_s é o momento de inércia do satélite e L_r o momento de inércia da roda de reação.

$$T_{res} = \frac{d(I_s.\omega_s + I_r.\omega_r)}{dt}$$
$$\int_{t_0}^t T_{res}dt = \int_{t_0}^t \frac{d(I_s.\omega_s(t) + I_r.\omega_r(t))}{dt}dt$$

Como o sistema é conservado, T_{res} é nulo. Logo,

$$0 = (I_s \cdot \omega_s(t - t_0) + I_r \cdot \omega_r(t - t_0))$$
$$I_s \Delta \omega_s = -I_r \Delta \omega_r$$

Portanto, a variação da velocidade da roda de reação está relacionada da seguinte forma:

$$\Delta\omega_r = -\frac{I_s \Delta\omega_s}{I_r} \tag{4}$$

Assumindo-se as condições inciais nulas de velocidade, então, passar para a fase de simulação, é preciso partir da equação 5, em que a mesma demonstra que o torque T é igual ao momento de inércia do corpo em que está sendo atuado atuado, multiplicado pela aceleração angular do mesmo α .

O Torque que age no corpo é dado pela equação 5, demonstrada a seguir:

$$T = I \frac{d\omega}{dt} \tag{5}$$

Logo, a velocidade angular em função do torque aplicado no corpo é dado por:

$$\omega = \frac{1}{I} \int_{t_0}^t T dt \tag{6}$$

Para achar a aceleração angular α , basta aplicar uma integral sobre a velocidade angular ω . Com isto, se tem a equação (8).

$$\alpha = \int_{t_0}^{t} \omega dt \tag{7}$$

3 Controle da Velocidade Angular

Um controle proporcional é utilizado no sistema pois a ação de controle é proporcional ao erro medido, no qual reduz levemente o tempo de elevação em comparação com os controladores integrativos e derivativos. Não é necessário usar o controle integrativo e derivativo, pois o sistema não apresenta oscilações. (Medina, Santiago & Castañeda 2021).

O erro e(t) é dado pela subtração da velocidade do corpo medido ω_s e da velocidade desejada ω_{ref} (setpoint).

$$e(t) = \omega_s - \omega_{ref} \,, \tag{8}$$

Lei de controle proporcional:

$$T = K_p e(t) \,, \tag{9}$$

no qual K_p é o ganho proporcional.

Portanto, é aplicado um torque de comando T e o erro medido aplicado ao sistema dinâmico.

4 Simulações

Feita a modelagem do sistema dinâmico teórico e visto o conceito do controle da velocidade angular por meio do controle proporcional, são utilizadas enfaticamente as três equações achadas.

Inicialmente, é aplicado um torque, no qual é representado na simulação por um sinal step. Esse torque é aplicado tanto no satélite como na roda de reação, pois os mesmos estão incluídos no mesmo sistema de rotação. Na Figura 1 é demonstrado o diagrama de

blocos do sistema feito na plataforma Scilab.

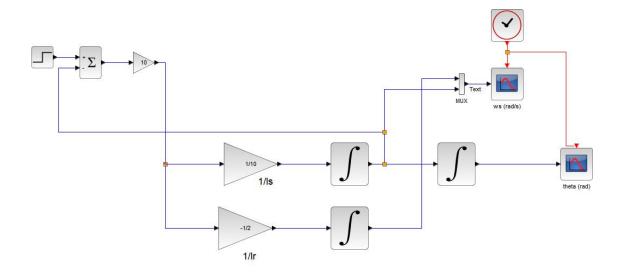


Figura 2: Diagrama para simulação do sistema de controle da velocidade angular do satélite com roda de reação.

Dado o torque aplicado inicialmente, o sistema volta com uma velocidade angular medida, e então um novo torque é aplicado devido a essa velocidade medida. Multiplica-se o erro pela constante de proporcionalidade, que representa a característica física de construção do motor. Outras características, como as velocidades angulares dos corpos descritos no sistema, são apresentados na Tabela 1.

Tabela 1. Valores dos parametros utilizados ha simulação.			
Parâmetro	Símbolo	Valor	Unidade
Velocidade Angular Inicial do Satélite	ω_{s0}	15	$\mathrm{rad/s}$
Velocidade Angular Inicial da Roda de Reação	ω_{r0}	0	$\mathrm{rad/s}$
Constante de Proporcionalidade	k	10	
Momento de Inércia do Satélite	I_s	10	${\rm kg}~{\rm m}^2$
Momento de Incércia da Roda de Reação	I_r	2	${\rm kg}~{\rm m}^2$

Tabela 1: Valores dos parâmetros utilizados na simulação.

Dada as variáveis da tabela 1, então são aplicados no sistema a representação das equações achadas anteriormente e um medidor de erro, aonde este é fundamental para o controle proporcional aplicado.

Nesse caso, é aplicado um setpoint igual a zero, cujo objetivo é a estabilização do satélite.

Dado os procedimentos anteriores, tem-se os resultados de estabilização da velocidade angular e de ângulo de saída do satélite mostrados nos gráficos da Figura 2 e da Figura 3.

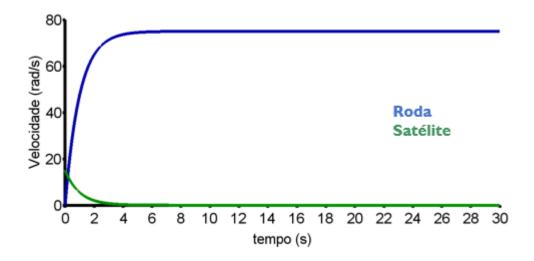


Figura 3: Velocidades angulares dos corpos.

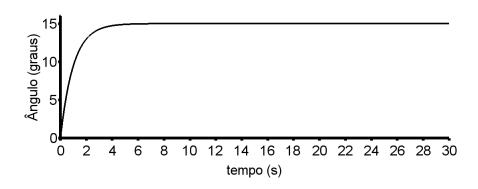


Figura 4: Ângulo de saída do satélite.

5 Experimento

O objetivo do experimento desse sistema é validar o conceito do tema proposto utilizando roda de reação. Dado esse objetivo, foi então planejado fazer o experimento da melhor forma possível visto o problema de pandemia que assombra o mundo, ou seja, com equipamentos baratos e de fácil manipulação. Destaca-se, então dois aparatos, o mecânico e o eletrônico. Observa-se que o experimento foi realizado remotamente devido ao momento pandêmico ocasionado pela COVID-19.

O sistema mecânico, cujo desenho é destacado na Figura 4, foi contruído com os seguintes equipamentos:

- tampa de caixa de isopor;
- CD;
- Fio de Nylon;
- Durepox;
- Distorcedor.

Figura 5: Desenho da construção mecânica.

A tampa da caixa de isopor serviu para comportar o sistema eletrônico, o CD como roda de reação, o fio de Nylon para segurar a tampa de isopor, o durepox para colocar peso nos extremos do CD para maior momento de inércia e o distorcedor para que o fio de Nylon não torcesse no giro. Na Figura 5 é demonstrado o sistema construído.

Figura 6: Construção mecânica.

No aparato eletrônico, tem-se os seguintes equipamentos:

- Arduino Nano;
- Motor DC 5V;
- IMU GY-87;
- Bateria 9V;

- Ponte H;
- módulo de rádio HC-12.

Segue na Figura 7 o esquemático do sistema eletrônico.

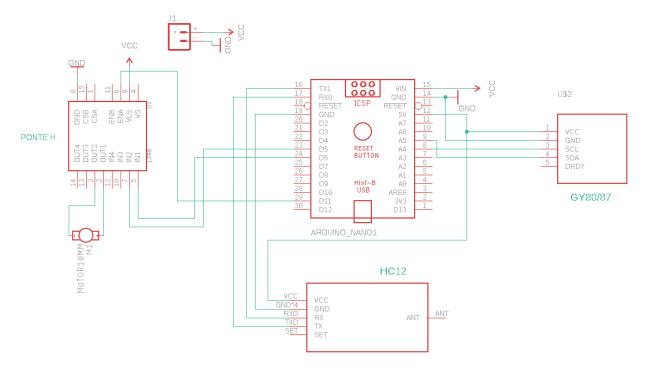


Figura 7: Esquemático eletrônico.

Destaca-se entre os módulos eletrônicos o IMU-GY-87 e o módulo de rádio HC12. O primeiro é um módulo aonde contém sensores de velocidade angular, aceleração, pressão e entre outros. Dentro deste módulo foi utilizado o MPU6050, cuja informação tirada foi a velocidade angular.

O segundo é um módulo de rádio que teve como objetivo nesse trabalho enviar dados via telemetria da velocidade angular do corpo. A visualização desses dados foi implementada em um script realizado na linguagem de programação Python.

Dadas as informações anteriores, foram feitos diversos ajustes e experimentos, um destes mostrado no gráfico da Figura 7.

Percebe-se pelo gráfico da Figura 7 que a velocidade do satélite tendeu a estabilização depois de aproximadamente cinco amostras de dados, partindo da terceira amostra. Essa estabilização é mostrada com o ângulo de saída constante do satélite, de aproximadamente cinco graus e velocidade angular nula após esse período de amostragem.

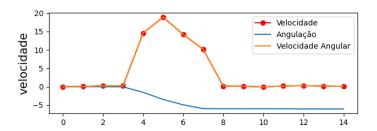


Figura 8: Dados de atitude do corpo via telemetria.

6 Conclusões

O trabalho teve como objetivo analisar de forma teórica e prática o funcionamento de um sistema de controle de velocidade angular utilizando roda de reação. De forma teórica, o conceito principal para o funcionamento do sistema é o de conservação angular, demonstrado pela Segunda Lei de Newton.

Para o controle da velocidade angular, demonstrou-se o sistema de controle proporcional num ambiente de simulação, suficiente para o objetivo especificado.

Dadas as demonstrações teóricas, o próximo passo foi o experimento prático, aonde foram utilizados equipamentos de forma prática e objetivo, nesse caso de testar o conceito do controle de velocidade angular por meio da roda de reação e captação de dados por meio de um sistema de telemetria.

Com todos os procedimentos executados, algumas melhorias e evoluções precisam ser realizadas, das quais se destacam: melhoria do aparato mecânico para resultados mais precisos e evolução de procedimento se tratando em controle de posição do satélite.

Referências

Halliday, D., Resnick, R. & Walker, J. (2016), Fundamentos de física, Vol. 1.

MCTIC (2018), 'Cubesats', Resumo Executivo — Centro de Gestão e Estudos Estratégicos (CGEE), Brasília - DF. Disponível em https://www.cgee.org.br.

Medina, I., Santiago, L. & Castañeda, C. C. (2021), Speed PID controller simulation of a reaction wheel for CubeSat orientation applications, 1^a edn, Journal of Physics Conference Series.

Molina, J. C. (2016), 'Attitude model control for cubesats', Conference: Latin American Cubesat Workshop, Florianópolis. Disponível em https://www.researchgate.net.