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2.1 Control Signal Synthesis: brief history

Back to the 60’s, Lyapunov Control Signal Synthesis was exploited for
uncertain systems.

Sliding modes or Variable Structure Systems were not mentioned.
However, the need for discontinuous control already appeared
(Grayson, 1965).

Ambrosino, Celentano, and Garofalo (1984) introduced the term
Variable Structure MRAC using only input and output
measurements.
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2.2 A 1965 survey(L.P.Grayson, Automatica)

Liu Hsu COPPE-Federal University of Rio de Janeiro VSS2022 Plenary 6



MRAC background

3. MRAC background

Liu Hsu COPPE-Federal University of Rio de Janeiro VSS2022 Plenary 7



3.1 Lyapunov based MRAC design

A pioneering work in Lyapunov based design for adaptive control was
published in 1966 by Parks

362 

Liapunov  Redesign of Model  Reference 
Adaptive Control Systems 

PAATRICK C. PARKS 

Abstract-The model  reference  adaptive control system  has 
proved very popular on account of a  ready-made,  but  heuristically 
based,  rule for  synthesizing the adaptive loops-the  so-called 
“M.I.T. rule.” A theoretical  analysis of loops so designed is generally 
very difEcult, but  analyses of quite simple systems  do show that in- 
stability is possible for  certain  system inputs. 

An alternative synthesis  based on Liapunov’s second  method is 
suggested here,  and  is applied to the redesign of adaptive loops con- 
sidered by some other authors who have all used the M.I.T. rule. 
Derivatives of model-system error are sometimes  required, but may 
be avoided in gain adjustment  schemes if the system transfer func- 
tion is “positive real,” using a lemma  due  to K h a n .  

This paper amplifies and  extends  the work of Butchart and Shack- 
cloth reported at  the IFAC (Teddington) Symposium, September, 
1965. 

INTRODUCTION 

HE MODEL reference  system  has  proved  to  be 
one  of  the  most  popular  methods  in  the  growing 
field of adaptive  control,  particularly for practical 

application  to  devices  such  as  autopilots  where  rapid 
adaption  is  required.  This  popularity is undoubtedly 
due  to  a  ready-made,  but heuristically  based,  rule  for 
synthesizing  the  adaptive  loops  due  originally to  Whit- 
aker  et  al. [ l ]  of the  Massachusetts  Institute of Tech- 
nolog>-.  Holl-ever, as  will be  shown,  such  adaptive 
schemes  lead to  unstable  adaption for  certain  t>-pes of 
input signals  passing into  quite simple s>-sten~s.  This is 
not  a  satisfactor>-  feature of such  a  synthesis.  and casts 
doubts on the  stabilitJ-  properties of more  complex SJ-S- 

terns using the “1I.I .T.  rule.” 
rln alternative  synthesis  based  on  Liapunov’s second 

method [ 2 ]  is suggested,  and  is  here  applied  to a num- 
ber of problems  considered  previously by  other  authors. 
Besides  guaranteeing  stability  for  all  kinds of inputs, 
the  Liapunov  method allo1vs high  gains i n  the  adaptive 
loops to  be  used,  and,  often,  considerable  simplification 
of such  loops. The  Liapunov  method  has, of course, 
been used to  a  limited  extent for analysis of adaptive 
control  loops,  notably  by  Leondes  and  Donalson [3]. 

The  present  paper amplifies and  extends  the 11-ork a t  
Southampton  University of Butchart  and  Shackcloth 
[4] in  particular;  it is shon-n that  the use of derivatives 
of error in the  Liapunov  synthesis  may  be  avoided if the 

Manuscript received December 11, 1965; revised April 29, 1966. 
’The author is with the  Department of Aeronautics and -4stro- 

nautics, University of Southampton, England.  He was a Visiting 
Sational Science Foundation Fellow a t  Kansas State I‘niversity, 
Ylanhattan,  Kan., from September, 1965, to >lay, 1966. 

model  transfer  function  is  “positive  real.”  This  interest- 
ing  result  follows  from  a  lemma used by  Kalman in his 
treatment of the LurC problem [7].  

STABILITY ASSLYSES OF SIMPLE  EXAMPLES 
OF THE 3I.I.T. SCHEXE 

Consider the  simple  model  reference  adaptive  control 
system of Fig. 1, where  the  problem  is  to find a  suitable 
adaptive loop to  adjust K c  so that  K c K ,  eventually 
equals  the model  gain K. The  l I . I .T .  rule,  based  on 
minimizing SeVt,  is that  

Kc = - Be(:) ( B ,  constant > 0) 

where 

- K,r (2) = (1 + Ts)  

and is found  by  differentiating  partially  the  transfer 
function 

( K  - K,K,)Y 
e =  

(1 + T s )  

lvith  respect to Kc.  The signal (de/dKc) is usually  gen- 
erated  by  additional  circuitry,  but  here  the signal -0, 
is  all that  is  required effectively,  leading to  the  scheme 
shon-n in Fig. 2 ,  where K c =  B’eB,. 

The  equations of Fig. 2 are 

Ti + e = ( K  - KaKC)y(t))  
Te, + 6 ,  = Kr( t )  i 

K c  = B’e6, 1 I’ 
(1) 

The  analvsis of these  equations  even for simple  inputs 
is quite difficult.  For  example,  suppose that  a  step in- 
pu t  in r ( t )  of magnitude +R is  applied at time t = O ,  
when Om,  0s are zero and K,K, is a t  that  time  not  equal 
to K .  Subsequently, K ,  remains  constant,  but K c  is 
adjusted  according  to (1). 0, will be  given  by 0, 
=KR(l-eexp(-t/T),  and  the  equation for e( t )  is 

Tt? + d + KK,R2B1e(l - exp (-t,!T)) = 0. (2) 

Sow-, the  third coefficient tends  to KK,R2B’ as t--t C O ,  
and  the  equation Te+t+KK,R2B’e=0 is  asymptot- 
ically  stable,  and SO, by  an extension of the Dini- 
Hukuhara  theorem, is (2) ,  and  thus  as t+ xe-0 and 
K,--tK/K,, which is what  one would hope. 

Lyapunov design has set the stage for modern adaptive control theory (see
(Ioannou and J. Sun, 1996)).
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3.2 MRAC equations

Equations for plants of order n:

Plant: G(s) = Kp
N(s)
D(s) ; y = G(s)u

Reference Model (SPR): WM (s) = Km
Z(s)
R(s) ; yM =WM (s)r

Output error: e1 = y − yM

State variable filters (ω1, ω2 ∈ Rn−1)

ω̇1 = Λω1 + gu

ω̇2 = Λω2 + gy

Regressor vector: ωT = [ω1
T ω2

T y r]

Adaptive parameter vector: θT = [θT1 θ
T
2 θ3θ4]
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3.2.1 Error equations

The parameter error is θ̃ := θ − θ∗

Error state equations (including filters)

ė = Ae+ ρ∗bθ̃Tω, ρ∗ = Kp/Km, e ∈ IR3n−2, e1 = hT e

e1 = hT e for some h ∈ IR3n−2

{A, b, h} is a nonminimal realization of the SPR reference model WM (s)
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3.3 Lyapunov design, n∗ = 1

The (simplified) Kalman-Yakubovitch-Popov Lemma

G(s) = C(sI −A)−1B is strictly positive real iff ∃P = P T > 0, Q > 0
such that

PA+ATP = −2Q

PB = CT
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3.3.1 MRAC block diagram
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3.3.2 Adaptive laws, n∗ = 1

Now, choose candidate Lyapunov function V and adaptive law for V̇ ≤ 0

The Lyapunov function:

V =
1

2
eTPe+

1

2
θ̃T |ρ∗|Γ−1θ̃ > 0

V̇ = eTP ė+ |ρ∗|θ̃TΓ−1(θ̇)

Adaptation law (SISO, n∗ = 1)

Adaptation law: θ̇ = −sign(Kp)Γωe1; Γ = ΓT > 0

or V̇ = −eTQe+�������
eTPbρ∗[θ̃Tω] −�����

ρ∗θ̃Tωe1 ;
Thanks to the KYP Lemma:

V̇ = −eTQe ≤ 0 (semidefinite negative)
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3.3.3 Hidden difficulties of semi-definite V̇

With V (e, θ̃) > 0 but V̇ = −eTQe ≤ 0 (semi-definite) one can conclude:

e(t) ∈ L∞
⋂L2 and θ̃(t) ∈ L∞

ė(t) ∈ L∞
e(t) → 0

The parameteric error θ̃(t) := (θ − θ∗) may not converge to zero. It
requires Persistency of Excitation or r(t) sufficiently rich.

In fact,

The adaptation transient can be extremely slow or oscillatory.
Still a challenge in adaptive control!
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ė(t) ∈ L∞
e(t) → 0

The parameteric error θ̃(t) := (θ − θ∗) may not converge to zero. It
requires Persistency of Excitation or r(t) sufficiently rich.

In fact,

The adaptation transient can be extremely slow or oscillatory.
Still a challenge in adaptive control!

Liu Hsu COPPE-Federal University of Rio de Janeiro VSS2022 Plenary 14



3.3.3 Hidden difficulties of semi-definite V̇

With V (e, θ̃) > 0 but V̇ = −eTQe ≤ 0 (semi-definite) one can conclude:

e(t) ∈ L∞
⋂L2 and θ̃(t) ∈ L∞
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3.4 MRAC general case of n∗ > 1

Limitation

SPR implies relative degree 1.

The Reference Model cannot be SPR.

Solution for adaptive control:
Monopoli’s augmented error

Adaptive algorithm analysis and synthesis much more complicated!
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MRAC to VS-MRAC

4. From MRAC to VS-MRAC
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4.1 Brief history

Early papers

STATE FEEDBACK: (Devaud and Caron, 1975), (Zinober, El-Ghezawi,
and Billings, 1982)

OUTPUT FEEDBACK:

1 Ambrosino, Celentano, and Garofalo, 1984: ”Variable structure model
reference adaptive control systems” (the authors introduced the term
“VS-MRAC”).

2 Bartolini and Zolezzi, 1988: ”The V.S.S. Approach to the Model
Reference Control of Nonminimum Phase Linear Plants”.
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4.2 Lyapunov design of VS-MRAC

From MRAC to VS-MRAC with n∗ = 1

Initial idea (Hsu and R. R. Costa, 1989)

What if the adaptation gain tends to ∞ and the parameters are
defined memoryless?

Then use only V (e) = 1
2(e

TPe)

...back to Lyapunov synthesis approach!

...but now using only output feedback!.
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4.2 Lyapunov control synthesis

In summary:

Lyapunov function candidate: V (e) = 1
2e

TPe

SPR allows: e1 = (Pb)T e

Let u = ψTω; ψT = [ψ1, . . . , ψ2n]

Upper bounds θ̄i > θ∗i are known

Choose ψi = −θ̄isign(ωie1)

Conclude V̇ < −eTQe < 0 using KYP Lemma

SPR Lemma makes the ”magic” of allowing sign-indefinite terms to be
dominated!
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4.3 The (output feedback) VS-MRAC, n∗ = 1

Compact form control

(Araújo and Hsu, 1990)

u = −ρ(ω)sign(e1)

ρ =

[
2n∑

1

θ̄i|ωi| + δ

]

ρ is called “gain” or “modulation” function of the relay function sign(.),
with arbitrary design constant δ > 0.
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4.3.1 Main result, n∗ = 1

Main Result: Global tracking, n∗ = 1

∥e(t)∥ → 0 with at least an exponential rate, independent of the
excitation r(t);

The output error y(t)− yM = e1(t) = hT e becomes zero after finite
time t1 ≥ t0, in sliding mode.
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4.3.2 Simulation results

Uncertain nonlinear time-varying plant
(Hsu and R. R. Costa, 1989)

ẋ1 = [1 + a(t)]x2

ẋ2 = sin x1 − 2sin x2 + d(t) + u

ẏm = −2ym + r(t);

y = 6x1 + x2L. Hsu and R. R. Costa 

Figure 7. Simulation results for the non-linear plant (Case 3) with E = 0. x,(O) = 1 (other states 
are zero at t = 0); p = 002; 6 = 10; a = 1; d(t) is a coloured noise with )d(t)) < 5; a(t) = 
+ 0-5 with frequency 10; r( t )  = + 6 with frequency 05. - 

1 .O 2.0 3.0 4.0 
Time (sed 

Figure 8. Simulation results for the non-linear plant (Case 3) with an unmodelled dynamics 
( E  = 002). Other data as in Fig. 7. 

Case 3: Non-linear time-varying plant 

i1 = (1 + a(t))x, 

d ,  = - sin x1 - 2 sin x, + d(t) + u t (Plant) 
&i=6x1 + x 2 - z  

where a(t) = f 0.5 is a square wave with period 0.1, d(t) is a coloured noise with 
Id(t)l< 5 and E is a small non-negative constant. The third equation represents the 
effect of unmodelled dynamics when E > 0. 

= qlV1 + q2Y + q 3 v 2  

1 (Control law) 
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4.4 VS-MRAC, n∗ > 1, prediction error

An augmented error was also proposed (Hsu, 1990) for the VS-MRAC,
inspired by the MRAC works of

(Monopoli, 1974) and

(Goodwin and Mayne 1987)
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4.4.1a Block diagram, n∗ > 1, N := n∗ − 1

L ≈ L
L(s) = (s+ αi) . . . (s+ αN );

F−1 = 1/(τs+ 1) is an averaging filter;

ML ∈ SPR allows an ”Ideal Sliding Loop” (ISL)

L is a cascade of VS-lead filters.
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4.4.1b “Controller form” diagram, n∗ > 1

W(s)
+ −

−

+
−

𝑦𝑦𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟

The VS-MRAC

𝑈𝑈0𝑒𝑒0 +

Controller
𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛𝑀𝑀𝑀𝑀(𝑠𝑠)

ISL
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4.4.2 Stability Theorem

Global tracking for n∗ > 1

For sufficiently small (averaging filters) time-constant τ >0,

the full error system with state z is globally exponentially stable with
respect to a residual set of order τ ,

(Hsu, Araújo, and R. R. Costa, 1993; Hsu, Lizarralde, and Araújo, 1997)

Ideal Sliding Modes (ISM): no finite frequency chattering

All auxiliary errors ϵi tend to zero in finite time as ideal sliding modes.

Remark: For ϵN , special nonrestrictive conditions are needed (Hsu, 1997),
(Oliveira, Hsu, and Nunes, 2021)
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4.5 VS-MRAC, n∗ > 1, with HGO

Instead of a cascade of VS-lead filters, it is possible to use a High
Gain Observer for the VS-MRAC.
(J. P. V. S. Cunha, R. R. Costa, Lizarralde, and L. Hsu, 2009).

The HGO allows an Ideal Sliding Loop around the relay function, even
when the plant has unmodeled dynamics.

So, the controller is expected to be less prone to chattering.

The controller is also free of control peaking.
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4.5.1 VS-MRAC with HGO

Peaking-free control with Ideal Sliding Mode (ISM) via HGOSliding mode control of uncertain linear systems based on a high gain observer free of peaking 17

+

−

+

+

+

+
+

−d(t)unom e

ê

ẽ

ζ̂

S̄(ε)

r

ρ

u

U σ̄

y

yM

Plant

Model

Observer

“Ideal” sliding loop

−ρ sgn(σ̄)

IFAC 2005 – Praha July 03–08
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4.5.1 VS-MRAC with HGO (cont.)

Sliding mode control of uncertain linear systems based on a high gain observer free of peaking 19

Experiment

Rail

A/D

Power amplifier

D/A
system

Data

Motor
voltage

Cart

acquisition

conditioning
Signal

Potenciometer voltage  (10,7   )y

y0

u

IFAC 2005 – Praha July 03–08
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4.5.1 VS-MRAC with HGO (cont.)

HGO VS-MRAC cart position controlSliding mode control of uncertain linear systems based on a high gain observer free of peaking 20

y

yM

M
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Nominal linear control
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HGO + VSC + SVF

Augmented cart mass

IFAC 2005 – Praha July 03–08
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4.5.1 VS-MRAC with HGO (cont.)

Main conclusion:

A global peaking-free VS-MRAC was developed using high gain observer (HGO).
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4.6 UV-MRAC: multivariable and nonlinear plants

Output Feedback SMC of multivariable systems was considered by several authors, e.g.,

Edwards and Spurgeon (1998), Emelyanov, Korovin, Nersisian, and Nisenzon (1992), and Chien,

K.-C. Sun, and Wu (1996), Saaj, Bandyopadhyay, and Unbehauen (2002) (discrete-time

systems), Oh and Khalil, 1995; Oh and Khalil, 1997 (High-gain observers).

The VS-MRAC was generalized for multivariable and nonlinear plants
using Unit-Vector (UV) control.

The output-feedback controller was named Unit-Vector-Model
Reference Adaptive Control (UV-MRAC)

(Hsu, J. P. V. S. Cunha, R. R. Costa, and Lizarralde, 2002; J. P. V. S. Cunha, Hsu, R. R. Costa,

and Lizarralde, 2003), (Hsu, Peixoto, J. P. V. S. Cunha, R. R. Costa, and Lizarralde, 2006)
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4.6.1 UV-MRAC n∗ = 1

Problem statement

Plant
ẋp = Apxp + ϕ(xp, t) +Bpu , y = Cpxp

xp, ϕ ∈ IRn, y, u ∈ IRm

Linear subsystem transfer function matrix:

G(s) = Cp(sI −Ap)
−1Bp

High frequency gain matrix: Kp = CpBp
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4.6.1 UV-MRAC n∗ = 1 (cont.)

Special assumptions

(A1) Sp is known such that −KpSp is Hurwitz

(A2) ϕ(xp, t): piecewise continuous in t and locally Lipschitz in xp

(A3) ∥ϕ(xp, t)∥ ≤ kx∥xp∥+ φ(y, t) , kx, φ ≥ 0 are known

Unit Vector control law

u = unom − Sp ρ
e

∥e∥
Modulation (or variable gain) function:

ρ = δ + c1∥ω∥+ c2∥r∥+ c3∥e∥+ ϕ̂(t)

(output feedback law)
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4.6.1 UV-MRAC n∗ = 1 (cont.)

Main result (n∗ = 1)

The UV-MRAC system is globally exponentially stable.

Moreover, if δ > 0, the output error e(t) becomes zero after some
finite time.
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4.6.2 UV-MRAC n∗ > 1

Problem statement

Plant: y, u ∈ IRm

ẋp = Apxp + ϕ(xp, t) +Bpu

y = Cpxp

Linear subsystem transfer function matrix:

G(s) = Cp(sI −Ap)
−1Bp

High frequency gain matrix Kp = CpA
n∗−1
p Bp is nonsingular

(uniform relative degree n∗)
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4.6.3 UV-MRAC Block Diagram, n∗ > 1
IFAC 2005: Unit Vector Control of Uncertain Multivariable Nonlinear Systems 15

UV-MRAC for n∗ > 1
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• Key idea → prediction error:

ê = WM (s)L(s)Knom
(
U0 − L−1(s)UN

)

where Knom → nominal value of K = KpSp

• Averaging filters F−1
i (τis) → low-pass filters:

(Ui−1)eq ≈ F−1
i (τis) Ui−1
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4.6.4 FOAF for state norm-bound

Consider a square m×m system in normal form :

η̇ = A11η +A12y, (1)

ẏ = A21η +A22y +Kp[u+ d(x, t)],

only y ∈ Rm is measured and A11 is Hurwitz (minimum-phase).

Then, a norm-bound η̂(t) for η(t) can be obtained with a FOAF (First
Order Approximation Filter):

η̂(t) :=
cf

s+ γf
∥y(t)∥, cf , γf > 0 (2)

∥η(t)∥ ≤ η̂(t) + πη(t), (3)

where πη(t) is an exponentially decaying term.
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4.6.4 FOAF for state norm-bound (cont.)

Global output feedback SMC

FOAFs are instrumental in designing global FOSM or HOSM controllers.

(J. P. V. S. Cunha, R. R. Costa, and L. Hsu, 2008; J. P. V. S. Cunha, Hsu, R. R. Costa, and

Lizarralde, 2003)
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From Theory to Practice

5. From Theory to Practice
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Applications

The VS-MRAC was successfully applied to a number of practical problems.

Liu Hsu COPPE-Federal University of Rio de Janeiro VSS2022 Plenary 41



5.1 ROV Dynamic Positioning

Remotely Operated underwater Vehicles (ROV) are widely used in
underwater oil exploration and many other industrial, military and
scientific activities.

Dynamic positioning of an ROV is a perfect problem for SMC application
due to model uncertainties and environmental disturbances

The following papers report the application of the VS-MRAC to ROV
Dynamic Positioning Control:

(J. P. V. S. Cunha, R. R. Costa, and Hsu, 1995)
(Hsu, R. Costa, Lizarralde, and J. P. V. S. Cunha, 2000)
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5.1.1 Dynamic Positioning of an ROV

The Passive Arm gives the ROV pose by direct kinematics
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5.1.1 Dynamic Positioning of an ROV (cont.)

sponders on the work place. In [5], a sonar-based dynamic
positioning system was developed with the main advantage of
being completely installed on-board the ROV. This sonar
tracks passive targets (e.g., metal objects) that are used as land-
marks for positioning the ROV. The positioning error of this
system was of the order of 0.1 m, caused apparently by the
noisy position measurement obtained with the sonar.

Vision systems have potential applications in ROV dynamic
positioning; however, two significant problems have been
hampering their practical use in underwater vehicles [5]: (a)
light is largely attenuated by water and scattered by suspended
particles [6] and (b) vision systems need much signal processing,
thus requiring large computing resources installed on-board the
ROV (e.g., [7, 8]). On the other hand, the PA can be very ac-
curate in the millimeter range, even using mechanical parts and
transducers of moderate cost. This feature makes this system
very attractive for ROV dynamic positioning.

DPSROV has been structured such that complex control
algorithms with stringent resource requirements (e.g., high
sampling rate, large number of mathematical computations
per control cycle) can be implemented with reduced software
development cost. A possible control algorithm for dynamic
positioning is a conventional cascade linear control referred to
as the P-PI. However, this conventional controller may fail to
guarantee a satisfactory dynamic performance because of the
nonlinear and coupled dynamics of the ROV, disturbances,
and parameter variations caused by the addition of extra
equipment or manipulator loading. Variable structure control

(VSC) has been applied successfully to underwater vehicles
(e.g., [2, 9, 10]) in view of its inherent nonlinear design and
robustness to disturbances and parameter variations. Output
feedback is enough for controlling the ROV, but VSC strate-
gies also generally require the velocity measurement, which is
unavailable in most underwater measurement systems. A re-
cently proposed output feedback VS adaptive scheme, named

VS-MRAC, was implemented in the
DPSROV. The VS-MRAC retains the
good robustness characteristics of a conven-
tional VSC without extra velocity sensors
[11], and it has been successfully applied to
robotic manipulators [12] and ROVs [13].

The Dynamic Positioning System

Hardware Description
The DPSROV was designed aiming at easy installation in
most commercially available ROVs. Therefore, the
DPSROV components can be externally attached to the
ROV with minor modifications in both the ROV and the
DPSROV. The main hardware components are described in
the following.

PASSIVE ARM
Precise measurement of the ROV position is crucial for dy-
namic positioning in many underwater inspection and inter-
vention tasks. This can be achieved using a PA measurement
device that is based on a mechanical arm with at least six
unactuated degrees of freedom. The DPSROV operates with
one end of the arm fixed on-board the ROV (in Fig. 1 at PM )
and the other attached magnetically to the underwater struc-
ture at PE through a magnetic base consisting of three electro-
magnets, to comply with the structure surface curvature (more
details are given below). Transducers coupled to each of the
manipulator joints lead to the measurements of ROV position
and attitude through direct kinematics. The PA does not re-
quire actuators during dynamic positioning. However,
low-power actuation might be included in order to facilitate
the operation of attaching the magnets to the underwater
structure. In the present system, this maneuver is achieved
through manual navigation of the ROV, which conducts the
magnetic base to the desired attachment area on the underwa-
ter structure.

The prototype PA has six revolute joints with rigid links.
Joint angles are measured by conductive plastic potentiom-
eters. Each potentiometer is housed in a stainless-steel cylinder
filled with electrically insulating mineral oil. The oil pressure is
equalized to the water pressure by means of flexible mem-
branes. The potentiometer rotary axis passes through an
o-ring and is connected to the PA joint outside the potenti-
ometer housing.

The electromagnetic attachment system (EMAS) is com-
posed of three electromagnets connected through balljoints to
the vertices of a rigid triangular base (see Fig. 2). This arrange-
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The DPSROV components can be externally
attached to the ROV with minor modifications
in both the ROV and the DPSROV.
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Figure 1. Passive arm.
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5.1.1 Dynamic Positioning of an ROV (cont.)

The ROV-Passive Arm system in experimental test

ment allows stiff magnetic attraction to some usual surfaces of
underwater structures made of ferromagnetic steel (e.g., plane
boards and large-diameter pipes). To avoid overload and slip-
ping of the magnetic attachment system, buoys were added to
the PA. These buoys are also important to compensate the arm
weight and to preserve the ROV gravity center.

Four principal error sources were identified in the PA sys-
tem: (a) the angular measurement errors, (b) the link flexibil-
ity, (c) the clearance of the joints, and (d) the slipping
displacement of the EMAS. The effects of sources (b)-(d) can
be minimized by an adequate design of the arm. Analyzing the
positioning error caused by the angular measurement errors,
we have concluded that a joint angle measurement with ±0.1°
accuracy results in positioning error smaller than 6 mm for the
PA prototype built at COPPE/UFRJ (see Fig. 3). The two
largest links have 0.8 m in length yielding about 1.6 m
workspace radius.

DATA ACQUISITION AND TELEMETRY SYSTEM
In a former prototype [14], the data acquisition system and
the dynamic positioning computer were installed near the
ROV console in the control room. Each potentiometer sig-
nal of the PA was transmitted to the data acquisition system
through a shielded cable to a distance of about 40 m. Differ-
ential inputs were required for precise measurement since
noise immunity is improved and voltage drop along the
transmission line is compensated.

For larger distances between the ROV and the control sta-
tion, a more reliable solution is to install the data acquisition
system on-board the ROV. Then, digitalized data can be
transmitted to the master computer (on the surface) through a
serial link. This is accomplished by the data acquisition and te-
lemetry (DAT) system shown in Fig. 4.

Figure 5 shows the block diagram of the DAT system. It was
developed to digitalize up to eight joint potentiometer signals.
It is based on industrial-standard boards and modules, except for
the signal-conditioning circuit and the EMAS drive, which
were custom designed specifically for the DAT. The following
aspects were considered to select the DAT hardware:

◆ Compact electronics was selected to allow volume and
weight reduction of the DAT underwater housing (see
Fig. 6). The prototype dimensions are φ134 mm (inter-
nal), φ158 mm (external), and 690 mm (length).

◆ The DAT CPU should have high-computing capability
(speed, available memory, floating-point processing,
etc.) to simplify software development and to allow the
inclusion of new features, such as prefiltering of digita-
lized transducer signals and the computation of the posi-
tion control algorithm.

◆ Circuits must tolerate wide temperature operating range
caused by the difficulty of dissipating the heat generated
inside the DAT housing (0 °C to +50 °C). At large
depths, the ocean water temperature can be near 0 °C.

◆ The DAT should have low power consumption in order
to avoid excessive heating. This led to the selection of
CMOS logic circuits. Other outstanding CMOS fea-
tures are excellent noise immunity (e.g, generated by the
ROV power circuits), large power-supply voltage toler-
ance, and temperature operating range. If higher-power
circuits were used, operating temperatures much higher
than +50 °C could be expected.

◆ To allow real-time data acquisition of the six joint angles
and other data at high sampling rates (hundreds of hertz)
the required data transfer rate is up to 38 kBd. Reliable
communication is carried through a half-duplex RS-485
serial link. The serial line can be a spare twisted pair usu-
ally available in ROV tethers. The inherent noise im-
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Figure 2. Electromagnetic attachment mechanism. Figure 3. The passive arm installed on the MKII ROV.
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5.1.1 Linear vs SMC algorithms

P-PI (Proportional-Proportional Integral) linear Control

F FI HC D= =( ) ; ( )ν ν ν ν (2)

where C C T= − (energy conservation) and D( )ν > 0 (dissi-
pation).

Consequently, if one also neglects the disturbance FC

(tether forces), the resulting model becomes analogous to the
usual rigid manipulator equations M q q C q q q g q( )�� ( , �)� ( )+ + = τ
(with �M C− 2 skew-symmetric; q is the joint generalized po-
sition vector) and, in addition, includes a self-stabilizing
dissipative term Dν.

However, in order to extend the results of manipulator
and spacecraft control of [18] to the ROV control problem,
one needs to assume that the vector τ:= BF p is directly ac-
cessible as a control vector. Then, one can naturally extend
the approach of [18] to design globally stable controllers
through adequate linear parameterization
[10].

However, there are several limitations
for such an extension: (a) τ or even F p are
not directly accessible for control [13]. In
fact, they depend dynamically on the truly
accessible control variables u j and also on
the ROV motion relative to the water.
Hence, the validity of the assumption of direct accessibility
of τ or F p needs further assessment. (b) The stability result
may not hold forVW ≠ 0 or FC ≠ 0. (c) Most of the control
algorithms require velocity measurements that can be diffi-
cult to obtain in practice.

Our main objective is to design a controller taking into
account the practical aspects discussed above and assuming
normal ROV operation. The latter means that the pitch and
roll angles are assumed small (φ ≈ °0 and θ ≈ °0 ) and that the
ROV motion is relatively slow such that the forces F I and
FH are small and hence can be considered as unmodeled dis-
turbances.

Since it is desirable to specify performance for each degree of
freedom separately, the following procedure was appropriately
adopted [12, 13]: (1) using an adequate compensator for the
command unit, linearize and decouple, as well as possible, the
system into subsystems such that each control variable actuates
linearly on a single corresponding subsystem; (2) consider the
“uncertain” term due to imperfect compensation as an input
disturbance of each subsystem; (3) control each subsystem by a
single-loop controller as in the decentralized control.

Each subsystem is directly associated with
one degree of freedom of interest. Let the sca-
lars q, u, and d denote a generalized coordinate
of interest, the associated control and the dis-
turbance, respectively, then each subsystem
can be written as [13]:

�� [ ]q K u d= + (3)

where the disturbance d incorporates the “re-
sidual” decoupling error terms and external

forces such as those caused by the tether and the drag. The
meaning of the generalized coordinate q, control signal u, and
gain K depends on the particular degree of freedom and on the
selected decoupling strategy.

Position Control System
The strategy presented in the above section allows us to con-
trol the system [Eq. (3)] with any strategy designed for linear
systems (e.g., [13, 19, 20]). In particular we have selected the
following strategies outlined below [13]:

◆ Linear control.
◆ Adaptive control based on sliding modes (VS-MRAC).

Linear Control
The P-PI controller is composed of two feedback loops [13,

21]: a proportional plus integral velocity feedback (slave loop)
and a proportional position feedback (master loop) (see Fig. 8).

The P-PI was selected in view of the following advantages
with respect to more complex algorithms:

◆ good performance can be achieved according to pre-
vious simulations;

◆ simple design and implementation;
◆ most control engineers are familiar with this class of con-

trollers.
The P-PI controller requires ROV speed, which is not

measured directly by the PA. Velocity could be measured by
additional transducers (e.g., acoustic log). However, this
would increase cost. An alternative is to use velocity estima-
tion from position measurement. We have adopted a classical
and simple solution; that is, each velocity coordinate is esti-
mated by a first-order lead filter with transfer function
L s s sv c( ) / ( / )= +1 ω . The cut-off frequency ωc must be
chosen small enough to reduce high-frequency noise amplifi-
cation. On the other hand, some care must be taken because
closed-loop instability may arise if ωc is too small. The block
diagram in Fig. 8 is used only for control design purpose (for
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It is noteworthy to mention that some
experienced ROV pilots have stressed that

manual control cannot attain a similar
performance.
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Figure 8. Block diagram of the P-PI.

(IEEE RAM 2000)
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5.1.1 Linear vs SMC algorithms (cont.)

VS-MRAC (n∗ = 3) as applied for ROV DP (Note the noise filter)
DA CUNHA et al.: DESIGN OF A HIGH PERFORMANCE VARIABLE STRUCTURE POSITION CONTROL OF ROV'S 47 

U 

low-pass 
filter 

4-FOF K'ML 

Fig. 4. RELAY VS-MRAC for a generic coordinate q. 

As can be seen in Table I, the gain K is not constant in 
general. However, one can assume K = K,,, + AK as in 
[20] and include the term AKu in the disturbance d. 

The complete multivariable controller is obtained by ap- 
plying the RELAY VS-MRAC to each coordinate via the IT 
strategy. 

D. The Stability Problem 
In Section III.B, a decoupled form for designing and tuning 

the controllers for each d.0.f. was developed. 
Here some remarks about the stability of the closed loop 

system are given. In order to avoid singularity problems with 
the Euler angles, assume that perfect roll and pitch control has 
been achieved so that $ ( t )  B(t) 0'. The assumption is 
reasonable since in normal ROV operation $ and 0, as already 
mentioned, are kept small. 

Then the ROV coordinates can be reduced to xe, Ye3 z,, and 
+. This reduction is assumed in what follows (for instance: 

In the PET strategy the stability problem can be formulated 
in terms of ROV equations (simplified according to (5) and 
assuming Fc = 0): 

x T : =  [xe  Ye ze 41). 

Mrovi. + Crov(u)u + Diov(u)u + y r o v ( x )  = ~ T o v  (21) 

Ti,, = Brovz (22) 

For simplicity assume that all ROV d.0.f. can be controlled, 
i.e., B,,, is invertible. Then T i  can be defined as E = 
B;k[-KpT-lx-  K ~ u + g , , , ] ,  where K p  > 0 and K D  2 0 
represent the proportional and derivative gains and grov is the 
gravity compensation. 

Assuming Kp = k p I ,  with positive scalar IC,,  asymptotic 
global stability can be proved from the Lyapunov function V = 
+(vTMroVv + xTKpx) since V = -U~(D~,, + K ~ ) Y  5 0 
and La Salle's theorem can be invoked. 

Therefore a P-PI control system without the integral term 
can be designed with guaranteed Global Asymptotic Stability. 

Unfortunately, no similar result exist for the complete P-PI 
controller, i.e., with the integral term. 

The FT strategy is most commonly used [18], [7], [20]. For 
analysis, the adequate equations are given in the inertial frame 
[7] and have the form 

M*ji + C*x + D*x + g* = B*u (23) 

where x and U are referred to the inertial frame and M* - 2C* 
is skew-symmetric and D* > 0. Then, the PD control 

U = ( B * ) - l ( - K p ~  - KDX + g*] (24) 

yields global asymptotic stability [7], [18]. By the same token, 
VSC can be analyzed. VSC can take into account parameter 
uncertainty and external disturbances. 

Although the VS-MRAC was originally devised for (un- 
certain) linear systems, it was shown to be applicable to 
manipulator control using full nonlinear manipulator model 
[20]. Semi-global (i.e., the stability domain can be arbitrarily 
enlarged as a filter time-constant tends to zero) asymptotic 
exponential stability with respect to a small residual error was 
demonstrated. The technique of [20] can be straightforwardly 
applied to the ROV controlled by the VS-MRAC for each d.0.f. 

Remark: It should be remarked that with the simplified 
RELAY VS-MRAC adopted in the actual application and 
simulations, only local stability holds. 

(IEEE JOE 1995)
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5.1.2 Benchmark DP motion
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5.1.3 P-PI result with a 350Kg ROV (Tatúı-I) P-PI

simplicity, velocity estimation and coordinate conversion
were omitted; for details see [13]).

To improve measurement noise reduction, the DAT sam-
ples joint angles at ≈ 200 Hz in the experiments section, pro-
cesses the sampled signal by a low-pass filter (moving average)
and then sends the down-sampled signal to the master com-
puter at the controller sampling rate (≈ 10 Hz).

Adaptive Variable Structure Control
It is well known that conventional controllers with fixed pa-
rameters may fail to guarantee high dynamic performance of
the overall system when significant changes in the vehicle dy-
namic characteristics and/or unmodeled and unmeasurable
disturbances are present. Such situations may occur, for exam-
ple, by adding extra equipment and/or changing the manipu-
lator position and/or load. Moreover, classical controller

design requires an accurate knowledge of the
plant parameters, at least if an optimized re-
sponse is desired.

During experimental tank tests, we have ver-
ified that the in loco tuning of the P-PI was nec-
essary, partly due to the fact that the plant model
used to compute the controller gains was not
accurate enough in order to guarantee a high
performance. A suitable technique to cope with
such plants and specifications, characterized by a
great deal of uncertainty in both plant and dis-
turbance modeling, is the VSC based on sliding
modes [22]. The remarkable feature of the VSC
is that, once the sliding mode takes place, the
performance of the system becomes insensitive
to parameter variations and disturbances. How-
ever, the VSC design is usually based on mea-
suring the full state of the controlled object.
This means that at least the ROV position and

velocity should be measured.
In order to circumvent the need of velocity measurement,

and in view of the known fact that a usual lead filter to estimate
velocity would destroy the sliding mode, a recently developed
I/O-based VSC technique called VS-MRAC was utilized in
the ROV DP [13]. This controller can be implemented using
only the measurement of ROV position while preserving the
good performance and robustness to parameter uncertainty and
disturbance of the conventional VSC.

The VS-MRAC structure is given in Fig. 9, where
M s K N s D sm m m( ) ( ) / ( )= characterizes the reference model,
the polynomial L s( ) is chosen such that M s L s( ) ( ) has relative
degree n * = 1, and k K Km= / is the high frequency gain mis-
match. The operator L should be an approximation of the op-
erator L s( ).

The main idea in sliding-mode control is to close the error
loop with an appropriate modulated relay (u f t sgn e= ( ) ( )). If the
relative degree of the error loop is n * = 1, an ideal sliding loop
(ISL) [23] is formed and the error tends exponentially to zero.

The 1-d.o.f. ROV model [Eq. (3)] is a system with n * = 2
under the action of a disturbance d t( ). In this case the
VS-MRAC structure introduces a prediction error loop
around the relay in order to guarantee an ISL. The ISL pre-
vents chattering by sustaining high (ideally infinite) switching
frequency. According to [11], ε 0 is the prediction error. Note
that, if L could be made equal to L s( ), the scheme would sim-
ply reduce to the n * = 1 case (the prediction error would be
identically zero), where the operator L would perfectly reduce
the relative degree of the plant creating an ISL around the re-
lay shown in Fig. 9. This gives a rough explanation of how the
VS-MRAC attains its objective (for details refer to [11] and
[23]). One possible implementation of L, used in the
VS-MRAC, is based on cascade VS lead filters [11]. Thus,
each ROV coordinate is controlled by a simplified version of
the VS-MRAC, where the relay modulation signal f 0 has
constant amplitudes [11, 13].
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Figure 9. Block diagram of the VS-MRAC.
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5.1.4 VS-MRAC result with ROV Tatúı-I

To achieve satisfactory performance, the VS-MRAC re-
quires a comparatively high sampling rate (100 Hz in the ex-
periments section). This sampling rate would be impractical
using ordinary long-baseline systems because of quite large
acoustic delays. Similar restriction seems to hold for optical
measurement systems based on image processing. Applica-
tion of sliding-mode techniques in these cases seems there-
fore more difficult. On the other hand, the accuracy and the
high sampling rate that can be achieved with the PA are par-
ticularly adequate for VS-MRAC applications.

Experimental Results
Large ROV
Pool tests were performed with the ROV Tatuí (≈ 290 kg)
made by Consub/Rio de Janeiro [13][14]. Figure 10 and Fig.
11 show P-PI and VS-MRAC performances in a benchmark
trajectory tracking test at constant depth. From A to B the

ROV has to move along its longitudinal axis keeping constant
heading; from B to C it has to move laterally still keeping the
same constant heading; finally, from C to D the ROV has to
move diagonally with simultaneous heading rotation com-
mand (30°), this being a quite difficult task owing to the strong
residual coupling among the degrees of freedom. The total
ROV displacement is 1.7 m completed in 90 seconds.

Comparing the pool test results in Figs. 10-11, it is remark-
able that the VS-MRAC outperforms the P-PI. The superior-
ity of the VS-MRAC is more evident in the tests carried out in
the presence of external disturbances. Another relevant feature
of the VS-MRAC is that it was much simpler to tune than the
P-PI controller.

Small ROV
The complete DPSROV was installed on the MKII ROV.
The MKII is a small ROV (≈ 36 kg) made by Benthos, Inc.
(USA). The preliminary pool tests allowed the adjustment of
the PA buoys, the EMAS, and the controller gains.

Figure 12 shows a trajectory tracking test with the P-PI
controller carried out in a pool. The objective was to track the
ABCDA square trajectory in approximately 80 s. Tracking er-
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Figure 13. MKII and DPSROV being recovered after sea tests at the
Ilha Grande Bay.
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5.2 Robot manipulator applications

VS-MRAC tested for the tracking control of robot manipulators
without joint velocity measurements (Hsu and Lizarralde, 1995)

A decentralized VS-MRAC was implemented on a PUMA 560
manipulator

The results were better than those in the existing literature
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5.2.1 Manipulator equations

Equations of n-link rigid manipulator in joint space

H(q)q̈ + C(q, q̇)q̇ + g(q) = Γ (4)

q∈ℜn is the vector of joints;

Γ∈ℜn is the vector of torques;

H(q)∈ℜn×n is the inertia matrix;

C(q, q̇)q̇ represents the centrifugal and Coriolis torques/forces;

g(q)∈ℜn is the vector of gravitational torques/forces

A nonlinear system!!
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5.2.1 Manipulator equations (cont.)

Goal: design a suitable control to ensure small joint tracking error

q̃ = q − qd (5)

Only nominal robot parameters were available.
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5.2.2 Manipulator VS-MRAC design

The error system is reduced to n disturbed and coupled double
integrators:

¨̃qi = ui + di(q, q̇, qd, q̇d, u) (6)

Solution: generate the control signal ui for each subsystem (??),

As can be observed, the plant (??) has relative degree n∗ = 2.

Thus, the VS-MRAC for n∗ = 2 can be applied to each joint.

Stability analysis invokes Frobenius-Perron’s Theorem, to account for
the residual control couplings among the scalar subsystems.
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5.2.3 Manipulator VS-MRAC per joint
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5.2.4 VS-MRAC results on a PUMA 560
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5.2.4 VS-MRAC results on a PUMA 560 (cont.)
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5.2.4 VS-MRAC results on a PUMA 560 (cont.)
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5.3 Other Applications

R. Guenther developed the VS-MRAC for Flexible Link and Rigid Link
Electrically Driven manipulators using cascade control (Guenther and
Hsu, 1993).

A.D. de Araújo (UFRN, Natal) developed successful applications with
DC and Induction motor control (a CHESF project 2009).

Sahjendra N. Singh (UNLV, Las Vegas) and A. D. Araújo:
applications of the VS-MRAC to aerospace and aircraft problems
(Zeng, Araujo, and S. Singh, 1999).

One example (2012) is about satellite formation control (Lee and
S. N. Singh, 2012).
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Binary MRAC

6. Binary MRAC with Passivation
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6.1 Motivation

MRAC: continuous control signal but lacks robustness and can
present bad adaptation transient.

UV-MRAC: robustness and good convergence. Needs high switching
frequency and is chattering prone.

B-MRAC: a bridge between them, combining their desirable properties
and avoiding their drawbacks.

The B-MRAC consists of conventional MRAC modified by parameter
projection with high adaptation gain (Hsu and R. R. Costa, 1991; Hsu
and R. R. Costa, 1994).
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6.2 Passivity framework

Consider multivariable plants.

The Lyapunov based multivariable MRAC requires the SPR passivity
condition

This implies a stringent symmetry condition on the high frequency
gain matrix Kp.

A new generalized passivity requires the weaker WSPR condition.

WSPR only requires Kp to have Positive Diagonal Jordan form (PDJ).
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6.2 Passivity framework (cont.)

WSPR condition

The system satisfies the WSPR condition if besides P, Q, there exists W
SPD, such that

ATP + PA = −Q, (7)

PB = CTW. (8)

Note that W is not used for the control design. Only its existence is
required!

(Barkana, Teixeira, and Hsu, 2006)
(Yanque, Nunes, R. R. Costa, and H., 2012)
(Hsu, Teixeira, R. R. Costa, and Assunção, 2015)
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6.2 Passivity framework (cont.)

Passifying multiplier L

There exists a lower triangular passifying multiplier L such that the PDJ
condition holds for the modified output error

eL = Le.
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6.2 Passivity framework (cont.)

The B-MRAC adaptation law is given by

θ̇ = Proj[−γΩeL]

γ is the adaptation gain

Projection is onto a sphere ∥θ∥ =Mθ where

Mθ > ∥θ∗∥

and the control law is

u(t) = ΩT (t)θ(t).
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6.3 From B-MRAC to Unit Vector Control

When γ → ∞, the B-MRAC law tends to the UVC law

u = −Mθ∥ω∥
eL

∥eL∥
.
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6.4 Example: Adaptive visual tracking

Direct adaptive visual tracking of planar manipulators:

Fixed camera (plant) with optical axis orthogonal to the robot
workspace.

The camera orientation angle is uncertain with respect to the
coordinates of the robot workspace.

Figure: Representation of the camera-robot system
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MRAC control with passivation and γ = 5
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Figure: Behavior of the MRAC control with passivation and γ = 5:
(a) Tracking errors e; (b) Plant control signals u; (c) Adaptive parameters
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B-MRAC control without passivation and γ = 5
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Figure: Behavior of the B-MRAC control without passivation and γ = 5:
(a) Tracking errors e; (b) Plant control signals u; (c) Adaptive parameters
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B-MRAC control with passivation and γ = 20
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Figure: Behavior of the B-MRAC control with passivation and γ = 20:
(a) Tracking errors e; (b) Plant control signals u; (c) Adaptive parameters
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UVC without passivation
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Figure: UVC without passivation: (a) Tracking errors e; (b) Plant control signals u
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B-MRAC control without passivation and γ = 100
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Figure: Behavior of the B-MRAC control without passivation and γ = 100:
(a) Tracking errors e; (b) Plant control signals u
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B-MRAC control with passivation and γ = 100
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Figure: Behavior of the B-MRAC control with passivation and γ = 100:
(a) Tracking errors e; (b) Plant control signals u; (c) Adaptive parameters
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Global exact tracking with HOSM

7. Global Exact Tracking with
HOSM
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7.1 Main objective and idea

Consider an uncertain linear systems:

Main Objective:

Propose an SMC scheme for global stability and asymptotic exact
tracking

Output feedback is required

Main Idea:

Implement a VS-MRAC combining a standard lead filter and an
RED-based lead filter.
RED: Robust Exact Differentiator (Levant, 1998)
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7.1.2 An ideal VS-MRAC for plants with n∗ > 1

Consider an operator L(s) so that the case of n∗ > 1 is reduced to
the simple case of n∗ = 1 according to the block diagram

Then, ē0 = L(s)e0 → ē0 = k∗ML(s)[u+ Ū ] and the relative degree
from u to ē0 is one.

The problem is how to implement the non-causal operator L(s).
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7.3 Global output feedback exact tracking

Possible solutions:

Use causal linear lead filters compensation:

Approximate estimate of ē0 (estimation error of order τ)

Global stability

Residual tracking error (and chattering)

Use RED-based lead compensation

Exact estimate of ē0

Local stability

Asymptotic convergence of the tracking error to zero
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7.3.1 GRED/VS-MRAC Control Scheme

A global RED (GRED) compensation
(Nunes, Hsu, and Lizarralde, 2009)

The idea is to combine both compensators

Convex combination: êg = α(ẽrl)êl(t) + [1− α(ẽrl)] êr(t)

After finite-time, the RED takes over (α = 0)
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7.3.2 Plant n∗ = 3 + unmodeled dynamics

Tracking error e0(t)

(a) LF/VS-MRAC: residual tracking error (chattering)

(b) GRED/VS-MRAC: global asymptotic tracking
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7.3.2 Plant n∗ = 3 + unmodeled dynamics (cont.)

Weighted Switching Function

GRED for multivariable plants in (Nunes, Peixoto, Oliveira, and Hsu,
2014).
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7.7 Experimental Results

GRED/VS-MRAC applied to a servomechanism (SRV-02) for
single-link angular positioning (Quanser Consulting).

Objective: show that the arm can follow a reference signal without
significant chattering

Control Signal:

Modulation Function: f = 5 (Maximum input voltage)
Boundary Layer (∆)
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7.7.1 Experimental Results: Comparison

Tracking error e0(t)

(a) LF/VS-MRAC (t∈ [0, 10] → ∆ = 15, t∈(10, 20] → ∆ = 25)

(b) GRED/VS-MRAC (∆ = 15): smaller tracking error (1,4%)

Liu Hsu COPPE-Federal University of Rio de Janeiro VSS2022 Plenary 83



7.7.1 Experimental Results: Comparison (cont.)

Control signal u(t):

(a) LF/VS-MRAC (t∈ [0, 10] → ∆ = 15, t∈(10, 20] → ∆ = 25)

(b) GRED/VS-MRAC (∆ = 15): much reduced chattering
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Adaptive Unit Vector Control

8. Adaptive Unit-Vector Control
with

transient and steady-state
specifications
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8.1 Problem statement

Consider (MIMO) systems in regular form

η̇ = A11η +A12σ + d1(x, t) , (9)

σ̇ = A21η +A22σ + d2(x, t) +B2u , (10)

Input u ∈ Rm

Output σ ∈ Rm

Zero-dynamics state η ∈ Rn−m

Matched disturbance d2 : Rn × R+ → Rm

Unmatched disturbance d1 : Rn × R+ → Rn−m
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8.1 Problem statement (cont.)

Assumptions

(A1) Minimum phase from u to σ: A11 is Hurwitz.

(A2) Sp ∈ Rm×m is known so that −Kp is Hurwitz, where

Kp := B2Sp (11)

is the effective high-frequency gain (HFG).

(A3) d1(x, t) and d2(x, t) are locally Lipschitz in x, p.w.c. in t, and satisfy

∥d1(x, t)∥ ≤ d̄1 <∞ , ∥d2(x, t)∥ ≤ d̄2 <∞ , ∀x ∈ Rn , ∀t ∈ R+ ,
(12)

(A4) d̄1 ≥ 0 and d̄2 ≥ 0 are unknown.
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8.1 Control performance specifications

Definition (Performance Specifications)

(1) ∥σ(t)∥ ≤ ∥σ(0)∥+∆, ∀t ∈ [0 , T ), and

(2) ∥σ(t)∥ ≤ ε, ∀t ≥ T ,
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8.1 Control performance specifications (cont.)

6 Liu Hsu ET AL

The monitoring function 'm was defined by23

'm(t) ∶= 'k(t) , ∀t ∈ [tk, tk+1) (⊂ [0,+∞)) . (31)

The motivation behind the choice of 'm(t) was that the exponentially decaying term that played the role of the �(t) term (15),
now included in the disturbance term (7), was unavailable for measurement in the case of output-feedback UVC. In the case of
state-feedback UVC, the monotonically unbounded sequence would not be required in (30), ie, a(k) ≡ 0.
Reminding that the upper bound for ‖�(t)‖ given by (29), including the exponentially decaying term, holds if the modulation

signal satisfies inequality (9), it would seem natural to use it as a benchmark to detect if the sliding mode is being lost and the
error is increasing so that k in �(k, t) must be increased23. In that scheme t̄ = 0 since the adaptation had a single phase. Hence,
the switching time tk is well-defined (for k ≥ 0)

tk+1 =

{

min{t > tk ∶ ‖�(t)‖ = 'k(t)}, if it exists ,
+∞, otherwise .

(32)

According to Oliveira et al23, if a class∞ function �(k) was used in (26) instead of the class∞ function assumed before,
it would be possible to verify from assumption (A3) that after a finite number ki of switchings, the signal d̂(t) becomes ultimately
greater than d̄ in (25). Hence, the conditions d̄ ≤ d̂(t) and (9) are verified for t ≥ tki . In addition, for ki sufficiently large,
a(ki)e−�2t of (30) would allow 'k(t) to be an upper bound valid for ‖�(t)‖ once

‖�(t)‖ ≤ 'ki(t) , (33)

and consequently no switching will occur after t = tki . Thus, the output signal �(t) converges to zero at least exponentially since
the monitoring function (30)–(31) converges exponentially when the switching process stops. In addition, the sliding mode at
� = 0 is reached in finite time since the condition �̇T � < −�‖�‖ can be obtained, with � > 0 included in the modulation
function (27) or (28), according to state- or output-feedback control, respectively.
Although it was possible to state that the stabilization/tracking error becomes small, the ultimate residual set could not be

fully characterized by Oliveira et al23 with the ∞ version of �.

4.1.2 New monitoring switching scheme
As shown in our first results23, the previous monitoring switching scheme in Section 4.1.1 does not guarantee pre-specified
transient and steady-state performance. In order to take into account, a new monitoring switching strategy is now introduced.
The performance specifications are given according to the next definition34, illustrated by Fig. 1.

σ||   (0)||

||   (0)||+σ ∆

||   (  )||σ t

ε /r
2

0 t

Phase 1

ε

Forbidden zone

T

Phase 2

(s)t

FIGURE 1 Performance specifications on ‖�(t)‖.

Definition 3. The stabilization/tracking error � is said to satisfy the transient and steady-state performance specifications, if:
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8.2 Monitoring-based adaptive UVC

How?: Monitoring-based adaptive Unit Vector Control (UVC).

Adaptation in two phases: Phase 1 is the transient phase and Phase 2
is the steady state phase.

tk+1 denotes the new switching time

In Phase 1, the unknown d̄ is ”dominated” by a class K∞ function
β1(k).

In Phase 2 a class K∞L function β2(k, t− t̄) guarantees the specified
steady state.

Two constants, r1, r2 > 1 are design constants, which can adjust the
frequency of switchings.
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8.2.1 The algorithm

Table: Adaptive sliding mode controller for the system (??)–(??).

Unit vector control law u(t) = SpU(t) , U(t) = −ρ(t) σ(t)
∥σ(t)∥

ρ: modulation function ρ(t) = ρ0(t) + d̂(t)

Adaptive law d̂(t) = β(k, t− t̄) =

{
β1(k) , if t < t̄ ,

β2(k, t− t̄) , if t ≥ t̄ .
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8.2.1 The algorithm (cont.)

Table: Adaptive sliding mode controller for the system (??)–(??).

In Phase 1 tk+1 := min
y>tk





∥σ(t)∥ = ∥σ(0)∥+∆
(
1− 1/rk1

)

or

t = T
(
1− 1/rk1

)
and ∥σ(t)∥ > ε/r2

Phase 1 to 2 t̄ =

{
0 , if ∥σ(0̄)∥ ≤ ε/r2 ,

t < T : ∥σ(t)∥ = ε/r2 , otherwise .

In Phase 2 tk+1 := min
t>tk

{{
∥σ(t)∥ = ε

(
1− 1/rk−j+1

2

)}
, if it exists ,

+∞ , otherwise .
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8.4 Main result

Fixed-time stability with guaranteed performance

Fixed-time practical stabilization or tracking is achieved.

The specified transient and steady-state behaviors are guaranteed.

(Hsu, Oliveira, J. P. V. S. Cunha, and Yan, 2019)

Barrier function

A barrier function can be used instead of a monitoring function in Phase 2.
(Rodrigues, Hsu, Oliveira, and Fridman, 2022)
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8.5 Tracking Control of a Surface Vessel

Liu Hsu ET AL 11
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FIGURE 2 Top view of the vessel and coordinate systems.

where M is the inertia matrix, C(�) is the Coriolis-centripetal matrix, D(�) is the damping matrix, � ∈ ℝ3 is the vector of
generalized velocities represented in the body coordinate system, � ∈ ℝ3 is the vector of generalized forces generated by thrusters
represented in the body coordinate system, and w ∈ ℝ3 is the vector of environmental disturbances (wind, waves and currents).
The generalized position of the vessel is � ∶= [xe, ye,  ]T , where xe and ye are coordinates of the origin Ob represented in the
inertial system.
The Jacobian matrix that transforms the vectors represented in the body coordinate system to the inertial coordinate system

(see eq. (62)) is given by

J(�) =
⎡

⎢

⎢

⎣

cos( ) −sin( ) 0
sin( ) cos( ) 0
0 0 1

⎤

⎥

⎥

⎦

. (63)

Inspired by classical variable structure trajectory control approaches36,37, the following feedback linearization control law

� =MJ−1(�)
[

u − J̇(�)�
]

+ C(�)� + D(�)� , (64)

is adopted to simplify the dynamic model (61)–(62), such that it can be rewritten as

�̈ = d + u , (65)

where u ∈ ℝ3 is the control signal. The input disturbance d ∈ ℝ3 represents approximations, uncertainties and environmental
disturbances.
In order to develop the tracking controller, the tracking error is defined:

�̃(t) ∶= �(t) − �ref (t) = [x̃(t), ỹ(t),  ̃(t)]T , (66)

where �ref (t) ∶= [xref (t), yref (t),  ref (t)]T is the reference trajectory expressed in generalized position coordinates. It is assumed
that the signals �ref (t) and �̇ref (t) are continuous and bounded, �̈ref (t) is piecewise continuous and bounded.
The following UVC control law is proposed:

u = �̈ref (t) + A11 ̇̃�(t) + U , (67)

U = −�(k, t) �
‖�‖

, (68)

�(t) = ̇̃�(t) − A11�̃(t) , (69)

where A11 ∈ ℝ3 is a Hurwitz matrix that can be chosen to specify the desired error dynamics on the sliding surface � = 0, i.e.,
̇̃�(t) = A11�̃(t).
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8.5 Tracking Control of a Surface Vessel (cont.)
Liu Hsu ET AL 13

0 10020 40 60 80 120

0

100

20

40

60

80

120

10

30

50

70

90

110

FIGURE 3 Trajectory of the vessel on the water surface (solid line), and reference trajectory (doted line).
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FIGURE 4 Heading angle of the vessel (solid line), and reference heading angle (doted line).

to overcome disturbances. This adaptive modulation function allows the amplitudes of the control signals to be kept small as
seen in Fig. 7.
The maximum allowable residual modulation signal can be adjusted by the parameter ". The value " = 1 is set in Figs. 8

and 9, where it can be seen that the peak value of the residual �(t) is ten times larger than in Fig. 5, where " = 0.1. It can be
seen that the number of switchings in the modulation signal with " = 1 (Fig. 9) is smaller than in the case " = 0.1 (Fig. 6).
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8.5 Tracking Control of a Surface Vessel (cont.)
14 Liu Hsu ET AL
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FIGURE 5 Norm of the sliding variable with " = 0.1.

7 CONCLUSION

A novel adaptive sliding mode controller was developed to handle parameter uncertainties and non smooth disturbances with
unknown constant upper bounds. The proposed multivariable unit vector controller is based on a monitoring function as a tool
for switching the control gain (modulation function adaptation). We have shown that by using the proposed switching scheme,
the transient and steady-state behavior of the output signal (or tracking error) can be controlled. Disturbance domination as
well as global convergence and practical stabilization/tracking are guaranteed by using only output feedback. The ultimately
decreasing characteristic of the adaptive modulation function leads to less conservative and smaller switching control gains,
thus reducing undesirable chattering effects of the sliding mode controller, as illustrated by numerical simulations with a fully
actuated surface vessel.
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8.5 Tracking Control of a Surface Vessel (cont.)
Liu Hsu ET AL 15

0 10020 40 60 80 120 140 160
0

2

1

3

0.5

1.5

2.5

3.5

time (s)

FIGURE 6Modulation signal (�— solid line), and the norm of the disturbance (‖d‖— doted line) with " = 0.1.
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APPENDIX

A UNIT VECTOR CONTROL LEMMA

To allow the development of proposed FTC, the following lemma on unit vector control is introduced.

Lemma 1. Consider the multi-input-multi-output system

�̇(t) = A22�(t) +KpU + d(t) , (A1)

U = −�(�, t) �
‖�‖

, (A2)

�(�, t) ≥ � + c�‖�(t)‖ + cd‖d(t)‖ , (A3)

where A22, Kp∈ℝm×m, and �≥0 is an arbitrary constant. The signals d(t)∈ℝm and �∈ℝ are piecewise-continuous with respect
to t. If ∃P =P T >0 such that

KT
p P + PKp = I , (A4)

and c� , cd≥0 in (A3) satisfy

c� ≥ max
{

�max(AT22P +PA22) + �̄ , 0
}

, (A5)
cd ≥ 2�max(P ) , (A6)

where the constant �̄ >0 provides some desired stability margin, then the following inequality is satisfied

‖�(t)‖ ≤ k1 e−�1t‖�(0)‖ , ∀t ≥ 0 , (A7)
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8.6 Future research topics

Analysis of monitoring function approach with unmodeled dynamics

Analysis of monitoring function approach with sensor noise

Numerical implementation issues
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Prediction Error for Chattering Avoidance

9. Prediction Error
for

Chattering Avoidance
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9.1 SSC Background

The SSC (Smooth Sliding Control) was first proposed in 1997 in
order to alleviate chattering of VS-MRAC in the presence of
unmodeled dynamics (Hsu, 1997).

Much in common with observer based SMC (Bondarev, Bondareva,
Kostyleva, and Utkin, 1985).

Both approaches utilize a prediction error.

Important difference: SSC admits non-exact plant model and
unmeasured disturbances.

New results on SSC with explicit chattering alleviation conditions
(Oliveira, Hsu, and Nunes, 2022).
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9.2 From VS-MRAC to SSC

W(s)
+ −

−

+
−

𝑦𝑦𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟

The VS-MRAC

𝑈𝑈0𝑒𝑒0 +

Controller
𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛𝑀𝑀𝑀𝑀(𝑠𝑠)

ISL
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9.2 From VS-MRAC to SSC (cont.)

The Smooth Sliding Control: Introduce an averaging filter F−1
av .

𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛𝑀𝑀𝑀𝑀(𝑠𝑠)

W(s)
+ −

−

+

−

𝑦𝑦𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟

The SSC

𝑈𝑈0𝑒𝑒0 +

Controller

ISL

ϵ is the prediction error.
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9.2 From VS-MRAC to SSC (cont.)

𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛𝑀𝑀(𝑠𝑠)

W(s)
+ −

−

+

−

𝑦𝑦𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟

The SSC: n*=1;

𝑈𝑈0𝑒𝑒0 +

Controller

=L = 1;

ISL
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9.4.1 SSC chattering alleviation example

Consider the plant

G(s) =
Kp

(s+ 1)

w2
n

(s2 + 2ζwns+ w2
n)

where the second rational function is a resonant underdamped parasitics
(µ := w−1

n << 1).

In the simulations: w ≈ 240 rd/s ≈ 40 Hz, ζ = 0.025
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.9.4.1 SSC example simulations
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9.5 The super-SSC (s-SSC)

𝑺𝑺𝑺𝑺𝑺𝑺

𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛𝑀𝑀(𝑠𝑠)

W(s)
+ −

−

+

−

𝑦𝑦𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟

The s-SSC: n*=1;

𝑈𝑈0𝑒𝑒0 +

Controller

=L = 1;

HOSL

SSC works well with the Super Twisting Algorithm (STA)
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9.5.1 super-SSC example

Unstable plant

G(s) =
Kp

(s− 1)

w2
n

(s2 + 2ζwn + w2
n)

and ramp disturbance.

Remark: First Order Sliding Mode with constant gain looses stability.

Liu Hsu COPPE-Federal University of Rio de Janeiro VSS2022 Plenary 110



9.5.1 super-SSC example (cont.)
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9.5.1 super-SSC example (cont.)
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9.5.1 super-SSC example (cont.)
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