Generalized Homogeneous Stabilization via Sliding Modes

Andrey Polyakov

16th International Workshop on Variable Structure Systems and Sliding Mode Control 11 - 14 September 2022, Rio de Janeiro, Brazil

1. Introduction

Homogeneity is a dilation symmetry

Notation:
$$\lambda = e^{s}$$
, where $s \in \mathbb{R}$ and $e = 2.71828...$ is the Euler number.
Generalized Homogeneous SMC VSS 2022

022 3/34

Standard and Generalized Homogeneity

• Linearity = Homogeneity + Additivity + Central Symmetry

f is linear \Leftrightarrow $f(e^s x) = e^s f(x)$ & f(x+y) = f(x) + f(y) & f(-x) = -f(x)

Example: $f(x) = x_1 + x_2$, where $x = (x_1, x_2)^{\top}$

Standard and Generalized Homogeneity

• Linearity = Homogeneity + Additivity + Central Symmetry f is linear $\Leftrightarrow f(e^s x) = e^s f(x)$ & f(x+y) = f(x) + f(y) & f(-x) = -f(x)

Example: $f(x) = x_1 + x_2$, where $x = (x_1, x_2)^\top$

• Standard Homogeneity [Leonhard Euler, 18th century]:

 $x \mapsto e^s x$ (standard dilation) $f(e^s x) = e^{\nu s} f(x)$, (symmetry) $s \in \mathbb{R}$ - a scalar parameter $\nu \in \mathbb{R}$ - homogeneity degree

Example: $f(x) = x_1x_2 + x_2^2$ is standard homogeneous of degree 2: $f(e^s x) = e^{2s}f(x)$

Standard and Generalized Homogeneity

• Linearity = Homogeneity + Additivity + Central Symmetry f is linear $\Leftrightarrow f(e^s x) = e^s f(x)$ & f(x+y) = f(x) + f(y) & f(-x) = -f(x)

Example: $f(x) = x_1 + x_2$, where $x = (x_1, x_2)^{\top}$ (standard homogeneous of degree 1)

• Standard Homogeneity [Leonhard Euler, 18th century]: $x \mapsto e^{s}x$ (standard dilation) $f(e^{s}x) = e^{\nu s}f(x)$, (symmetry) $s \in \mathbb{R}$ - a scalar parameter $\nu \in \mathbb{R}$ - homogeneity degree

Example: $f(x) = x_1x_2 + x_2^2$ is standard homogeneous of degree 2: $f(e^s x) = e^{2s} f(x)$

• Generalized Homogeneity [Zubov 1958; Hermes 1986; Kawski 1991; Rosier 1992;...] $x \mapsto \mathbf{d}(s)x$ (a dilation) $f(\mathbf{d}(s)x) = e^{vs}f(x)$ (symmetry) $\mathbf{d}(s)$ must satisfy certain properties to be a dilation

Example:
$$\mathbf{d}(s) = \begin{pmatrix} e^{2s} & 0\\ 0 & e^s \end{pmatrix}$$
, $f(x) = x_1 + x_2^2$ is **d**-homogeneous: $f(\mathbf{d}(s)x) = e^{2s}f(x)$

Phase portrait of the homogeneous system $\dot{x} = f(x)$

Linear oscillator

$$\begin{cases} \dot{x}_1 = x_2, & \\ \dot{x}_2 = -x_1, & \\ f(e^s x) = e^s f(x) \end{cases}$$

Relay oscillator

 ∞

Definition

A one-parameter family of operators $\mathbf{d}(s) : \mathbb{R}^n \mapsto \mathbb{R}^n$, $s \in \mathbb{R}$ is said to be a one-parameter group of dilations (or, simply, **dilation**) in \mathbb{R}^n if

- (Group property) $\mathbf{d}(0)x = x$ and $\mathbf{d}(s) \circ \mathbf{d}(t)x = \mathbf{d}(t+s)x$;
- (Limit property) $\lim_{s \to +\infty} \|\mathbf{d}(s)x\| = +\infty$ and $\lim_{s \to -\infty} \|\mathbf{d}(s)x\| = 0$, $x \neq 0$.

$$d(+\infty)x =$$

$$d(s)x$$

$$x$$

$$d(s)x$$

Definition

A one-parameter family of operators $\mathbf{d}(s) : \mathbb{R}^n \mapsto \mathbb{R}^n$, $s \in \mathbb{R}$ is said to be a one-parameter group of dilations (or, simply, **dilation**) in \mathbb{R}^n if

- (Group property) $\mathbf{d}(0)x = x$ and $\mathbf{d}(s) \circ \mathbf{d}(t)x = \mathbf{d}(t+s)x$;
- (*Limit property*) $\lim_{s \to +\infty} \|\mathbf{d}(s)x\| = +\infty$ and $\lim_{s \to -\infty} \|\mathbf{d}(s)x\| = 0, x \neq 0.$

Geometric dilation $d(s)x := \varphi_x(s)$ is a solution of an unstable ODE $\dot{\varphi}(s) = g(\phi(s)), \quad \varphi(0) = x,$ where $g \in C^1(\mathbb{R}^n, \mathbb{R}^n)$

Linear (Geometric) Dilation if $\dot{\varphi}(s) = G_{d}\varphi(s)$

The linear (geometric) **dilation** in \mathbb{R}^n is a matrix-valued function given by

$$\mathbf{d}(s) = e^{sG_{\mathbf{d}}} = \sum_{i=0}^{+\infty} \frac{s^i G_{\mathbf{d}}^i}{i!}, \qquad s \in \mathbb{R}$$

where $G_{\mathbf{d}} \in \mathbb{R}^{n \times n}$ is an anti-Hurwitz matrix called a **generator** of **d**.

Linear (Geometric) Dilation if $\dot{\varphi}(s) = G_{d}\varphi(s)$

The linear (geometric) **dilation** in \mathbb{R}^n is a matrix-valued function given by

$$\mathbf{d}(s) = e^{sG_{\mathbf{d}}} = \sum_{i=0}^{+\infty} \frac{s^i G_{\mathbf{d}}^i}{i!}, \qquad s \in \mathbb{R}$$

where $G_{\mathbf{d}} \in \mathbb{R}^{n \times n}$ is an anti-Hurwitz matrix called a **generator** of **d**.

The definitions are inspired by Khomenuk 1961 and Kawski 1991.

Definition (d-homogenous function)

A function $h: \mathbb{R}^n \mapsto \mathbb{R}$ is said to **d**-homogeneous of degree $\nu \in \mathbb{R}$ if

$$h(\mathbf{d}(s)x) = e^{\nu s}h(x), \quad \forall x \in \mathbb{R}^n, \quad s \in \mathbb{R}.$$

Definition (d-homogenous vector field)

A vector field $f: \mathbb{R}^n \mapsto \mathbb{R}^n$ is said to **d**-homogeneous of degree $\mu \in \mathbb{R}$ if

$$f(\mathbf{d}(s)x) = e^{\mu s} \mathbf{d}(s) f(x), \quad \forall x \in \mathbb{R}^n, \quad s \in \mathbb{R}.$$

Example (Minimum time control system)

• The minimum time control problem (Feldbaum 1949, La Salle 1953, Fuller 1960)

$$\begin{array}{l} \mathcal{T} \to \min_{u} \\ \text{subject to} \\ \left\{ \begin{array}{ll} \dot{x}_{1} = x_{2}, \\ \dot{x}_{2} = u, \end{array} \right. & u \in L^{\infty}((0, \mathcal{T}), \mathbb{R}), |u(t)| \leq 1 \\ \dot{x}_{2} = u, \\ x_{1}(\mathcal{T}) = x_{2}(\mathcal{T}) = 0, \end{array}$$

has the following feedback solution:

$$u(x) = -\operatorname{sign}(|x_2|x_2 + 2x_1)$$

- The weighted dilation: $\mathbf{d}(s) = \left(\begin{smallmatrix} e^{2s} & 0 \\ 0 & e^{s} \end{smallmatrix}
 ight)$
- The dilation symmetry (homogeneity) of the control:

$$u(\mathbf{d}(s)x) = -\operatorname{sign}(|e^{s}x_{2}|e^{s}x_{2} + 2e^{2s}x_{1}) = -e^{0s}\operatorname{sign}(|x_{2}|x_{2} + 2x_{1})$$

• The dilation symmetry of the closed-loop system $\dot{x} = f(x) = (x_2 \ u(x))^{\top}$:

$$f(\mathbf{d}(s)x) = \begin{pmatrix} e^{s}x_{2} \\ u(\mathbf{d}(s)x) \end{pmatrix} = \begin{pmatrix} e^{s}x_{2} \\ u(x) \end{pmatrix} = e^{-s} \begin{pmatrix} e^{2s}x_{2} \\ e^{s}u(x) \end{pmatrix} = e^{-s}\mathbf{d}(s)f(x)$$

Historical Remarks

• The types of homogeneity in \mathbb{R}^n :

StandardCWeightedCLinearCGeometric[Euler 18th cent][Zubov 1958][Khomenuk 1961][Kawski 1991]

• Homogeneity in Control Systems:

Stability	Controllability	Control Design	ISS Analysis
Zubov 1957	Hermes 1982	Adreini et al 1988	Ryan 1995
Rosier 1992	Kawski 1991	Coron & Praly 1991	Hong 2001
Bhat & Bernstien 1998	Sepulchre & Aeyels 1996	Praly 1997	Andrieu et al 2008

Sliding Mode Control and Estimation	
 Levant 2003, Orlov 2005,	
 Perrruquetti, Floquet & Moulay 2008,	
 Dinuzzo & Ferrara 2009, Moreno 2010	

2. Homogeneity vs Linearity in Systems and Control

Linear System $\dot{x} = Ax$, $x(0) = x_0$ $A \in \mathbb{R}^{n \times n}$ is a matrix	Homogeneous System $\dot{x} = f(x), \ x(0) = x_0$ $f(\mathbf{d}(s)x) = e^{\mu s} \mathbf{d}(s) f(x)$

	Linear System	Homogeneous System
	$\dot{x} = Ax, \ x(0) = x_0$	$\dot{x} = f(x), \ x(0) = x_0$
	$A \in \mathbb{R}^{n imes n}$ is a matrix	$f(\mathbf{d}(s)x) = e^{\mu s} \mathbf{d}(s) f(x)$
Trajectory Scaling	$x(t, e^s x_0) = e^s x(t, x_0)$	$x(t, \mathbf{d}(s)x_0) = \mathbf{d}(s)x(e^{\mu s}t, x_0)$

	Linear System	Homogeneous System
	$\dot{x} = Ax$, $x(0) = x_0$	$\dot{x} = f(x), \ x(0) = x_0$
	$A \in \mathbb{R}^{n imes n}$ is a matrix	$f(\mathbf{d}(s)x) = e^{\mu s} \mathbf{d}(s) f(x)$
Trajectory Scaling	$x(t, e^s x_0) = e^s x(t, x_0)$	$x(t, \mathbf{d}(s)x_0) = \mathbf{d}(s)x(e^{\mu s}t, x_0)$
Local ⇔ Global	\checkmark	\checkmark

	Linear System	Homogeneous System
	$\dot{x} = Ax$, $x(0) = x_0$	$\dot{x} = f(x), \ x(0) = x_0$
	$A \in \mathbb{R}^{n imes n}$ is a matrix	$f(\mathbf{d}(s)x) = e^{\mu s} \mathbf{d}(s) f(x)$
Trajectory Scaling	$x(t, e^s x_0) = e^s x(t, x_0)$	$x(t, \mathbf{d}(s)x_0) = \mathbf{d}(s)x(e^{\mu s}t, x_0)$
Local ⇔ Global	\checkmark	\checkmark
Invariance \Leftrightarrow Stability	\checkmark	\checkmark

	Linear System	Homogeneous System
	$\dot{x} = Ax$, $x(0) = x_0$	$\dot{x} = f(x), \ x(0) = x_0$
	$A \in \mathbb{R}^{n imes n}$ is a matrix	$f(\mathbf{d}(s)x) = e^{\mu s} \mathbf{d}(s) f(x)$
Trajectory Scaling	$x(t, e^s x_0) = e^s x(t, x_0)$	$x(t, \mathbf{d}(s)x_0) = \mathbf{d}(s)x(e^{\mu s}t, x_0)$
Local ⇔ Global	\checkmark	\checkmark
Invariance \Leftrightarrow Stability	\checkmark	\checkmark
$Stability \Rightarrow Robustness$	$\dot{x} = Ax + w$	$\dot{x} = f(x, w)$
(Input-to-State Stability)	$w\in L^\infty$	$w\in L^\infty$

	Linear System	Homogeneous System
	$\dot{x} = Ax$, $x(0) = x_0$	$\dot{x} = f(x), \ x(0) = x_0$
	$A \in \mathbb{R}^{n imes n}$ is a matrix	$f(\mathbf{d}(s)x) = e^{\mu s} \mathbf{d}(s) f(x)$
Trajectory Scaling	$x(t, e^s x_0) = e^s x(t, x_0)$	$x(t, \mathbf{d}(s)x_0) = \mathbf{d}(s)x(e^{\mu s}t, x_0)$
Local ⇔ Global	\checkmark	\checkmark
Invariance \Leftrightarrow Stability	\checkmark	\checkmark
$Stability \Rightarrow Robustness$	$\dot{x} = Ax + w$	$\dot{x} = f(x, w)$
(Input-to-State Stability)	$w\in L^\infty$	$w\in L^\infty$
Convergence Rate	Exponential	+Finite/Fixed-time ($\mu \neq 0$)
	-	

	Linear System	Homogeneous System
	$\dot{x} = Ax$, $x(0) = x_0$	$\dot{x} = f(x), \ x(0) = x_0$
	$A \in \mathbb{R}^{n imes n}$ is a matrix	$f(\mathbf{d}(s)x) = e^{\mu s} \mathbf{d}(s) f(x)$
Trajectory Scaling	$x(t, e^s x_0) = e^s x(t, x_0)$	$x(t, \mathbf{d}(s)x_0) = \mathbf{d}(s)x(e^{\mu s}t, x_0)$
Local ⇔ Global	\checkmark	\checkmark
Invariance \Leftrightarrow Stability	\checkmark	\checkmark
Stability \Rightarrow Robustness	$\dot{x} = Ax + w$	$\dot{x} = f(x, w)$
(Input-to-State Stability)	$w\in L^\infty$	$w\in L^\infty$
Convergence Rate	Exponential	+Finite/Fixed-time ($\mu \neq 0$)
Lyapunov Function	A weighted Euclidean norm	A homogeneous norm
	$V(x) = \sqrt{x^\top P x}, P \succ 0$	$V(\mathbf{d}(s)x) = e^{s}V(x)$

	Linear System	Homogeneous System
	$\dot{x} = Ax$, $x(0) = x_0$	$\dot{x} = f(x), \ x(0) = x_0$
	$A \in \mathbb{R}^{n imes n}$ is a matrix	$f(\mathbf{d}(s)x) = e^{\mu s} \mathbf{d}(s) f(x)$
Trajectory Scaling	$x(t, e^s x_0) = e^s x(t, x_0)$	$x(t, \mathbf{d}(s)x_0) = \mathbf{d}(s)x(e^{\mu s}t, x_0)$
Local ⇔ Global	\checkmark	\checkmark
Invariance \Leftrightarrow Stability	\checkmark	\checkmark
Stability \Rightarrow Robustness	$\dot{x} = Ax + w$	$\dot{x} = f(x, w)$
(Input-to-State Stability)	$w\in L^\infty$	$w\in L^\infty$
Convergence Rate	Exponential	+Finite/Fixed-time ($\mu \neq 0$)
Lyapunov Function	A weighted Euclidean norm	A homogeneous norm
	$V(x) = \sqrt{x^\top P x}, P \succ 0$	$V(\mathbf{d}(s)x) = e^{s}V(x)$
Consistent discretization	\checkmark	\checkmark
(preserves convergence rate)	Exponential	+Finite/Fixed-time ($\mu \neq 0$)

Question: Is there any potential advantage of a homogeneous controller vs linear one?

Homogeneity vs Linearity: Faster convergence

$$m\dot{v} = -(k_d + k_v v^2) \operatorname{sign}(v), \quad t > 0$$

m - mass, $v = \dot{x}$ - velocity, k_d , k_v - coefficients of dry and viscous friction **Fixed-time stability**:

$$v(t)=0$$
 for all $t\geq T_{\max}=rac{m\pi}{2\sqrt{k_dk_v}}$ and for any $v(0)\in \mathbb{R}^2$

Homogeneity vs Linearity: Improved robustness

The control aim is to stabilize the scalar system

 $\dot{x} = g + u$

where g is an uncertainty and u is a control

Model of uncertainty	$ g \leq c + \lambda x $	a structure of g is unknown
	where λ , $oldsymbol{c} \in \mathbb{R}$ are unknown	but $g(x) ightarrow 0$ as $x ightarrow 0$
Linear control	u=-kx, $k>0$	u=-kx, k>0
	unstable if $k < \lambda$	unstable if $k < \frac{g(x)}{x}$
Homogeneous control	u=-k x x, k>0	$u = -k \frac{x}{ x }, k > 0$
	globally practically stable	locally finite-time stable
	$\limsup_{t \to +\infty} x(t) \le rac{\lambda + \sqrt{\lambda^2 + 4ck}}{2k}$	$\frac{d x }{dt} \le -k + g(x) $

Linearity vs Homogeneity: No "peaking" effect (1)

$$\begin{cases} \dot{x} = Ax + bu(x), \\ \|x(0)\| \le 1, \end{cases} \quad t > 0, \quad A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

where $x = (x_1, x_2, ..., x_n)^\top$, $u : \mathbb{R}^n \to \mathbb{R}$.

The control aim: $||x(t)|| \le \varepsilon$, $\forall t \ge T$, where $\varepsilon > 0$, T > 0 are given

¹Izmailov 1987, Polyak & Smirnov 2016

Linearity vs Homogeneity: No "peaking" effect (1)

$$\begin{cases} \dot{x} = Ax + bu(x), \\ \|x(0)\| \le 1, \end{cases} \quad t > 0, \quad A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \\ 1 \end{pmatrix}$$

where $x = (x_1, x_2, ..., x_n)^\top$, $u : \mathbb{R}^n \to \mathbb{R}$.

The control aim: $||x(t)|| \le \varepsilon$, $\forall t \ge T$, where $\varepsilon > 0$, T > 0 are given

• Linear control: For any $\varepsilon > 0$ and T > 0 there exists $k = (k_1, k_2, ..., k_n)$ such that

 $u_{\ell}(x) := kx \quad \Rightarrow \quad \|x(t)\| \leq Ce^{-\sigma t} \leq \varepsilon, \quad \forall t \geq T$

¹Izmailov 1987, Polyak & Smirnov 2016

Linearity vs Homogeneity: No "peaking" effect (1)

$$\begin{cases} \dot{x} = Ax + bu(x), \\ \|x(0)\| \le 1, \end{cases} \quad t > 0, \quad A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \\ 1 \end{pmatrix}$$

where $x = (x_1, x_2, ..., x_n)^{\top}$, $u : \mathbb{R}^n \to \mathbb{R}$.

The control aim: $||x(t)|| \le \varepsilon$, $\forall t \ge T$, where $\varepsilon > 0$, T > 0 are given

• Linear control: For any $\varepsilon > 0$ and T > 0 there exists $k = (k_1, k_2, ..., k_n)$ such that

$$u_{\ell}(x) := kx \quad \Rightarrow \quad \|x(t)\| \leq Ce^{-\sigma t} \leq \varepsilon, \quad \forall t \geq T$$

Unbounded "peaking": There exists¹ $\gamma > 0$ independent of σ such that $\sup_{0 \le t \le \sigma^{-1}} \sup_{\|x(0)\|=1} \|x(t)\| \ge \gamma \sigma^{n-1} \to +\infty \text{ as } \varepsilon \to 0$

¹Izmailov 1987, Polyak & Smirnov 2016

Linearity vs Homogeneity: No "peaking" effect (2)

Homogeneous control: For any T > 0 there exists $\tilde{k} = (\tilde{k}_1, \tilde{k}_2, ..., \tilde{k}_n)$:

$$u_{hom}(x) := \tilde{k}\mathbf{d}(-\ln \|\mathbf{x}\|_{\mathbf{d}})x \quad \Rightarrow \quad \|\mathbf{x}(t)\| = 0, \quad \forall t \ge T.$$

Notice that $|u_{hom}| \leq \|\tilde{k}\|$ and the overshoot is independent of $\varepsilon > 0$.

Linearity vs Homogeneity: No "peaking" effect (2)

Homogeneous control: For any T > 0 there exists $\tilde{k} = (\tilde{k}_1, \tilde{k}_2, ..., \tilde{k}_n)$:

$$u_{hom}(x) := \tilde{k} \mathbf{d}(-\ln \|\mathbf{x}\|_{\mathbf{d}}) x \quad \Rightarrow \quad \|x(t)\| = 0, \quad \forall t \ge T.$$

Notice that $|u_{hom}| \leq \|\tilde{k}\|$ and the overshoot is independent of $\varepsilon > 0$.

"Overshoots" of linear (left) and homogeneous (right) controllers (n=2, $\varepsilon = 0.005$, T=1)

3. Generalized Homogeneous Euclidean Space

Definition

A dilation **d** is **monotone** w.r.t. $\|\cdot\|$ if $s \mapsto \|\mathbf{d}(s)x\|$ is strictly increasing, $\forall x \neq \mathbf{0}$.

Definition

A dilation **d** is **monotone** w.r.t. $\|\cdot\|$ if $s \mapsto \|\mathbf{d}(s)x\|$ is strictly increasing, $\forall x \neq \mathbf{0}$.

Theorem (Monotonicity in \mathbb{R}^n)

A dilation $\mathbf{d}(s)$ is monotone for $\|\mathbf{x}\| = \sqrt{\mathbf{x}^\top P \mathbf{x}}$ if and only if $PG_{\mathbf{d}} + G_{\mathbf{d}}^\top P \succ 0$, $P \succ 0$.

Definition

A dilation **d** is **monotone** w.r.t. $\|\cdot\|$ if $s \mapsto \|\mathbf{d}(s)x\|$ is strictly increasing, $\forall x \neq \mathbf{0}$.

Theorem (Monotonicity in \mathbb{R}^n)

A dilation $\mathbf{d}(s)$ is monotone for $\|\mathbf{x}\| = \sqrt{\mathbf{x}^\top P \mathbf{x}}$ if and only if $PG_{\mathbf{d}} + G_{\mathbf{d}}^\top P \succ 0$, $P \succ 0$.

Proposition (Uniqueness of a homogeneous projection to the sphere)

If **d** is monotone then $\forall x \neq \mathbf{0}$ there exists a unique pair $(s_0, x_0) \in \mathbb{R} \times S$ such that $x = \mathbf{d}(s_0)x_0$, where $S = \{x : ||x|| = 1\}$ is the unit sphere.

Remark: If $\mathbf{d}(s) = e^s$ then $\frac{x}{\|x\|}$ is standard homogeneous projection.

Definition (a norm)

$$p \in C(\mathbb{R}^n, \mathbb{R}_+) \text{ is a norm if}$$

• $p(x) = 0 \Leftrightarrow x = \mathbf{0} \quad \bullet \ p(\pm e^s x) = e^s p(x)$
• $p(x+y) \le p(x) + p(y)$

Definition (a norm)

$$p \in C(\mathbb{R}^n, \mathbb{R}_+) \text{ is a norm if}$$

• $p(x) = 0 \Leftrightarrow x = \mathbf{0} \quad \bullet \ p(\pm e^s x) = e^s p(x)$
• $p(x+y) \le p(x) + p(y)$

Definition (a homogeneous "norm")

$$p \in C(\mathbb{R}^n, \mathbb{R}_+)$$
 is a **d**-homogeneous norm if
• $p(x) = 0 \Leftrightarrow x = \mathbf{0}$ • $p(\pm \mathbf{d}(s)x) = e^s p(x)$
• ????

Definition (a norm)

$$p \in C(\mathbb{R}^n, \mathbb{R}_+) \text{ is a norm if}$$

• $p(x) = 0 \Leftrightarrow x = \mathbf{0} \quad \bullet \ p(\pm e^s x) = e^s p(x)$
• $p(x+y) \le p(x) + p(y)$

Definition (a homogeneous "norm")

$$p \in C(\mathbb{R}^n, \mathbb{R}_+)$$
 is a **d**-homogeneous norm if
• $p(x) = 0 \Leftrightarrow x = \mathbf{0}$ • $p(\pm \mathbf{d}(s)x) = e^s p(x)$
• ????

Canonical homogeneous norm for monotone dilation [Polyakov, Coron, Rosier 2016]

$$\|x\|_{\mathbf{d}} = e^{s_x}$$
 where $s_x \in \mathbb{R} : \|\mathbf{d}(-s_x)x\| = 1$, $x \neq \mathbf{0}$

Definition (a norm)

$$p \in C(\mathbb{R}^n, \mathbb{R}_+) \text{ is a norm if}$$

• $p(x) = 0 \Leftrightarrow x = \mathbf{0} \quad \bullet \ p(\pm e^s x) = e^s p(x)$
• $p(x+y) \le p(x) + p(y)$

Definition (a homogeneous "norm")

$$p \in C(\mathbb{R}^n, \mathbb{R}_+)$$
 is a **d**-homogeneous norm if
• $p(x) = 0 \Leftrightarrow x = \mathbf{0}$ • $p(\pm \mathbf{d}(s)x) = e^s p(x)$
• ????

Canonical homogeneous norm for monotone dilation [Polyakov, Coron, Rosier 2016]

$$\|x\|_{\mathbf{d}} = e^{s_x}$$
 where $s_x \in \mathbb{R} : \|\mathbf{d}(-s_x)x\| = 1$, $x \neq \mathbf{0}$

VSS 2022 19 / 34

Properties of a canonical homogeneous norm

Let $||x||_d$ be induced by $||x|| = \sqrt{x^\top Px}$ with $PG_d + G_d^\top P \succ 0, \quad P \succ 0$

1) $\|\cdot\|_{\mathbf{d}}$ is positive definite and **d**-homogeneous of degree 1;

2)

$$\underline{\sigma}(\|\mathbf{x}\|_{\mathbf{d}}) \leq \|\mathbf{x}\| \leq \overline{\sigma}(\|\mathbf{x}\|_{\mathbf{d}}), \, \forall \mathbf{x} \in \mathbb{R}^{n}$$

$$\underline{\sigma}(\rho) = \begin{cases} \rho^{\beta} & \text{if } \rho \leq 1, \\ \rho^{\alpha} & \text{if } \rho > 1, \end{cases} \quad \overline{\sigma}(\rho) = \begin{cases} \rho^{\alpha} & \text{if } \rho \leq 1, \\ \rho^{\beta} & \text{if } \rho > 1; \end{cases}$$

$$\alpha = 0.5\lambda_{\max} \left(P^{\frac{1}{2}}G_{\mathbf{d}}P^{-\frac{1}{2}} + P^{-\frac{1}{2}}G_{\mathbf{d}}^{\top}P^{\frac{1}{2}}\right) > 0,$$

$$\beta = 0.5\lambda_{\min} \left(P^{\frac{1}{2}}G_{\mathbf{d}}P^{-\frac{1}{2}} + P^{-\frac{1}{2}}G_{\mathbf{d}}^{\top}P^{\frac{1}{2}}\right) > 0.$$

3) $\|\cdot\|_{\mathbf{d}}\in C(\mathbb{R}^n)\cap C^\infty(\mathbb{R}^nackslash\{\mathbf{0}\})$ and

$$\frac{\partial \|x\|_{\mathbf{d}}}{\partial x} = \|x\|_{\mathbf{d}} \frac{x^{\top} \mathbf{d}^{\top} (-\ln \|x\|_{\mathbf{d}}) X^{-1} \mathbf{d} (-\ln \|x\|_{\mathbf{d}})}{x^{\top} \mathbf{d}^{\top} (-\ln \|x\|_{\mathbf{d}}) X^{-1} G_{\mathbf{d}} \mathbf{d} (-\ln \|x\|_{\mathbf{d}}) x}$$

Generalized Homogeneous Vector Space \mathbb{R}^n_d

Vector Space

A vector space is a set $\mathbb V$ together with two operations (satisfying some axioms):

- a vector addition $\mathbb{V} \times \mathbb{V} \mapsto \mathbb{V}$ denoted by $v + w \in \mathbb{V}$ for $v, w \in \mathbb{V}$.
- a multiplication by a scalar $\mathbb{R} \times \mathbb{V} \mapsto \mathbb{V}$ denoted by $\alpha \tilde{\cdot} v$ for $\alpha \in \mathbb{R}$ and $v \in \mathbb{V}$.

Homeomorphism on \mathbb{R}^n

$$\Phi(x) = \|x\|_{\mathbf{d}} \mathbf{d}(-\ln \|x\|_{\mathbf{d}})x, \quad x \in \mathbb{R}^n \qquad \Phi^{-1}(z) = \mathbf{d}(\ln \|z\|) \frac{z}{\|z\|}, \quad z \in \mathbb{R}^n$$

Theorem [Polyakov 2020]

Let a linear dilation \mathbf{d} in \mathbb{R}^n be monotone with respect to a norm $\|\cdot\|$ and

- $x + y := \Phi^{-1}(\Phi(x) + \Phi(y))$, where $x, y \in \mathbb{R}^n$,
- $\lambda \tilde{\cdot} x := \operatorname{sign}(\lambda) \mathbf{d}(\ln |\lambda|) x$, where $\lambda \in \mathbb{R}$, $x \in \mathbb{R}^n$,

Then the set \mathbb{R}^n with the operations $\tilde{+}$ and $\tilde{\cdot}$ is a vector space \mathbb{R}^n_d with the norm $\|\cdot\|_d$.

How to compute $||x||_d$?

Bisection Method:

Algorithm $(||x||_d = r : ||d(-\ln r)x|| = 1)$ Initialization: $\underline{r} > 0$ and $\overline{r} > 0$ Step: if $||d(-\ln \overline{r})x|| > 1$ then $\underline{r} = \overline{r}; \ \overline{r} = \min(2\overline{r}, r_{max})$ else if $||d(-\ln \underline{r})x|| < 1$ then $\overline{r} = \underline{r}; \ \underline{r} = \max(\underline{r}/2, r_{min})$ else for i = 1 i.e. do

for
$$j = 1, ..., j_{max}$$
 do
 $c = (\underline{r} + \overline{r})/2$
if $\|\mathbf{d}(-\ln c)x\| < 1$ then $\overline{r} = c$
else $\underline{r} = c$

else
$$\underline{r} = c$$

return $\underline{r}, \overline{r}$

after several steps $\|x\|_{\mathbf{d}} \approx (\underline{r} + \overline{r})/2$ if $r_{\min} \leq \|x\|_{\mathbf{d}} \leq r_{\max}$

4. Generalized Homogeneous Sliding Mode Control

$$\dot{x}(t) = Ax(t) + Bu(t)$$

- $x(t) \in \mathbb{R}^n$ is the system state,
- $u(t) \in \mathbb{R}^m$ is the control input
- $A \in \mathbb{R}^{n imes n}$ and $B \in \mathbb{R}^{n imes m}$ is a known and controllable pair of matrices

Problem 1 is to design a sliding mode control $\tilde{u} : \mathbb{R}^n \mapsto \mathbb{R}^m$ such that the system

$$\dot{x}(t) = Ax(t) + B\tilde{u}(x(t))$$
⁽²⁾

is globally asymptotically stable and x = 0 is the only sliding (discontinuity) set².

²Such a sliding mode algorithm can be classified as quasi-continuous (*Levant 2005*) Andrey Polyakov (Inria, France) Generalized Homogeneous SMC (1)

$$\dot{x}(t) = Ax(t) + Bu(t) + g(t, x(t))$$

- $x(t) \in \mathbb{R}^n$ is the system state,
- $u(t) \in \mathbb{R}^m$ is the control input
- $A \in \mathbb{R}^{n imes n}$ and $B \in \mathbb{R}^{n imes m}$ is a known and controllable pair of matrices
- $g: \mathbb{R} imes \mathbb{R}^m$ is an <u>unknown</u> function

Problem 1 is to design a sliding mode control $\tilde{u} : \mathbb{R}^n \mapsto \mathbb{R}^m$ such that the system

$$\dot{x}(t) = Ax(t) + B\tilde{u}(x(t))$$
⁽²⁾

is globally asymptotically stable and $x = \mathbf{0}$ is the only sliding (discontinuity) set².

Problem 2 is to characterize a class of uncertainties g to be rejected by \tilde{u} .

²Such a sliding mode algorithm can be classified as <u>quasi-continuous</u> (Levant 2005)

Andrey Polyakov (Inria, France)

Generalized Homogeneous SMC

(1)

• The unit sliding mode control (Gutman & Leitmann 1976, Utkin 1992) is given by:

$$\begin{split} \tilde{u} &= \tilde{K}_0 x + \tilde{K} \frac{C x}{\|C x\|}, \qquad \tilde{K}_0 = -(CB)^{-1} CA, \quad \tilde{K} \in \mathbb{R}^{m \times m} \\ \text{where } C \in R^{m \times n} : \det(CB) \neq 0. \end{split}$$

• The unit sliding mode control (Gutman & Leitmann 1976, Utkin 1992) is given by:

$$\tilde{u} = \tilde{K}_0 x + \tilde{K} \frac{C_x}{\|C_x\|}, \qquad \tilde{K}_0 = -(CB)^{-1} CA, \quad \tilde{K} \in \mathbb{R}^{m \times m}$$

where $C \in R^{m \times n}$: det $(CB) \neq 0$. Denoting $\sigma = Cx$ for g = 0 we derive

$$\dot{\sigma} = C\dot{x} = \underbrace{(CA + CB\tilde{K}_0)}_{=0} x - CB\tilde{K}\frac{\sigma}{\|\sigma\|}$$
 is standard homogeneous system!

Notice that $\frac{\sigma}{\|\sigma\|}$ is the <u>standard</u> homogeneous projection to the unit sphere.

• The unit sliding mode control (Gutman & Leitmann 1976, Utkin 1992) is given by:

$$\tilde{u} = \tilde{K}_0 x + \tilde{K} \frac{Cx}{\|Cx\|}, \qquad \tilde{K}_0 = -(CB)^{-1}CA, \quad \tilde{K} \in \mathbb{R}^{m \times m}$$

where $C \in R^{m \times n}$: det $(CB) \neq 0$.Denoting $\sigma = Cx$ for g = 0 we derive

$$\dot{\sigma} = C\dot{x} = \underbrace{(CA + CB\tilde{K}_0)}_{=0} x - CB\tilde{K}\frac{\sigma}{\|\sigma\|}$$
 is standard homogeneous system!

Notice that $\frac{\sigma}{\|\sigma\|}$ is the <u>standard</u> homogeneous projection to the unit sphere.

• If $\sigma = x$ then the generalized homogeneous sliding mode control [Polyakov 2020] $\tilde{u} = K_0 x + K \mathbf{d}(-\ln ||x||_{\mathbf{d}}) x, \quad K_0, K \in \mathbb{R}^{m \times n}$

is discontinuous only at x=0

• The unit sliding mode control (Gutman & Leitmann 1976, Utkin 1992) is given by:

$$\tilde{u} = \tilde{K}_0 x + \tilde{K} \frac{Cx}{\|Cx\|}, \qquad \tilde{K}_0 = -(CB)^{-1}CA, \quad \tilde{K} \in \mathbb{R}^{m \times m}$$

where $C \in R^{m \times n}$: det $(CB) \neq 0$.Denoting $\sigma = Cx$ for g = 0 we derive

$$\dot{\sigma} = C\dot{x} = \underbrace{(CA + CB\tilde{K}_0)}_{=0} x - CB\tilde{K}\frac{\sigma}{\|\sigma\|}$$
 is standard homogeneous system!

Notice that $\frac{\sigma}{\|\sigma\|}$ is the <u>standard</u> homogeneous projection to the unit sphere.

• If $\sigma = x$ then the generalized homogeneous sliding mode control [Polyakov 2020] $\tilde{u} = K_0 x + K \mathbf{d}(-\ln ||x||_{\mathbf{d}}) x, \quad K_0, K \in \mathbb{R}^{m \times n}$

is discontinuous only at x = 0

Question 1: How to select \mathcal{K}_0 and a dilation **d** such that the system

 $\dot{x} = (A + BK_0)x + BK\mathbf{d}(-\ln ||x||_{\mathbf{d}})x$ will be **d**-homogeneous?

Question 2: How to select K to guarantee finite-time stability of the latter system?

If a pair $\{A, B\}$ is controllable then

1) the linear algebraic equation

$$AG_0 - G_0A + BY_0 = A$$
, $G_0B = \mathbf{0}$, $Y_0 \in \mathbb{R}^{m \times n}$, $G_0 \in \mathbb{R}^{n \times n}$ (3)

always has solutions and for any solution one holds

- $G_d = I_n G_0$ is anti-Hurwitz and $d(s) = e^{sG_d}$ is a linear dilation in \mathbb{R}^n ,
- the matrix $A_0 = A + BK_0$ is nilpotent for $K_0 = Y_0(I_n G_0)^{-1}$ and $A_0\mathbf{d}(s) = e^{-s}\mathbf{d}(s)A_0$;

If a pair $\{A, B\}$ is controllable then

1) the linear algebraic equation

$$AG_0 - G_0A + BY_0 = A, \quad G_0B = \mathbf{0}, \quad Y_0 \in \mathbb{R}^{m \times n}, \quad G_0 \in \mathbb{R}^{n \times n}$$
 (3)

always has solutions and for any solution one holds

- $G_d = I_n G_0$ is anti-Hurwitz and $d(s) = e^{sG_d}$ is a linear dilation in \mathbb{R}^n ,
- the matrix $A_0 = A + BK_0$ is nilpotent for $K_0 = Y_0(I_n G_0)^{-1}$ and $A_0\mathbf{d}(s) = e^{-s}\mathbf{d}(s)A_0$;
- 2) the following LMI has a solution $X \in \mathbb{R}^{n \times n}$, $Y \in \mathbb{R}^{m \times n}$::

$$A_0X + XA_0^{\top} + BY + Y^{\top}B^{\top} + G_dX + XG_d^{\top} = \mathbf{0}, \quad G_dX + XG_d^{\top} \succ \mathbf{0}, \quad X = X^{\top} \succ \mathbf{0}; \quad (4)$$

If a pair $\{A, B\}$ is controllable then

1) the linear algebraic equation

$$AG_0 - G_0A + BY_0 = A, \quad G_0B = \mathbf{0}, \quad Y_0 \in \mathbb{R}^{m \times n}, \quad G_0 \in \mathbb{R}^{n \times n}$$
 (3)

always has solutions and for any solution one holds

- $G_d = I_n G_0$ is anti-Hurwitz and $d(s) = e^{sG_d}$ is a linear dilation in \mathbb{R}^n ,
- the matrix $A_0 = A + BK_0$ is nilpotent for $K_0 = Y_0(I_n G_0)^{-1}$ and $A_0\mathbf{d}(s) = e^{-s}\mathbf{d}(s)A_0$;

2) the following LMI has a solution
$$X \in \mathbb{R}^{n \times n}$$
, $Y \in \mathbb{R}^{m \times n}$::
 $A_0 X + X A_0^\top + B Y + Y^\top B^\top + G_d X + X G_d^\top = \mathbf{0}$, $G_d X + X G_d^\top \succ 0$, $X = X^\top \succ 0$; (4)

- 3) the canonical homogeneous norm $\|\cdot\|_{\mathbf{d}}$ induced by $\|x\| = \sqrt{x^{\top}X^{-1}x}$ is
 - a Lyapunov function of the finite-time stable system (1) with g=0 the control

$$u(x) = K_0 x + K \mathbf{d}(-\ln ||x||_{\mathbf{d}})x, \qquad K = Y X^{-1},$$
 (5)

• the exact settling time function of the system (1), (5): $\frac{d}{dt} ||x||_{\mathbf{d}} = -1$ for $x \neq \mathbf{0}$;

If a pair $\{A, B\}$ is controllable then

1) the linear algebraic equation

$$AG_0 - G_0A + BY_0 = A, \quad G_0B = \mathbf{0}, \quad Y_0 \in \mathbb{R}^{m \times n}, \quad G_0 \in \mathbb{R}^{n \times n}$$
 (3)

always has solutions and for any solution one holds

- $G_d = I_n G_0$ is anti-Hurwitz and $d(s) = e^{sG_d}$ is a linear dilation in \mathbb{R}^n ,
- the matrix $A_0 = A + BK_0$ is nilpotent for $K_0 = Y_0(I_n G_0)^{-1}$ and $A_0\mathbf{d}(s) = e^{-s}\mathbf{d}(s)A_0$;

2) the following LMI has a solution
$$X \in \mathbb{R}^{n \times n}$$
, $Y \in \mathbb{R}^{m \times n}$::
 $A_0 X + X A_0^\top + B Y + Y^\top B^\top + G_d X + X G_d^\top = \mathbf{0}$, $G_d X + X G_d^\top \succ 0$, $X = X^\top \succ 0$; (4)

- 3) the canonical homogeneous norm $\|\cdot\|_{\mathbf{d}}$ induced by $\|x\| = \sqrt{x^{\top}X^{-1}x}$ is
 - a Lyapunov function of the finite-time stable system (1) with g=0 the control

$$u(x) = K_0 x + K \mathbf{d}(-\ln \|x\|_{\mathbf{d}})x, \qquad K = Y X^{-1},$$
(5)

• the exact settling time function of the system (1), (5): $\frac{d}{dt} \|x\|_{\mathbf{d}} = -1$ for $x \neq \mathbf{0}$;

4) x = 0 is the only sliding (discontinuity) set and $u \in C^{\infty}(\mathbb{R}^n \setminus \{\mathbf{0}\}, \mathbb{R}^m)$ is bounded: $\|u\|_{\mathbb{R}^m} \le \|K_0\| \cdot \|x\| + \|K\|$

A sketch of the proof

• If $G_d = I_n - G_0$, $\mathbf{d}(s) = e^{sG_d}$ then $A_0 = A + BK_0$ is nilpotent and $A_0\mathbf{d}(s) = e^{-s}\mathbf{d}(s)A_0$, $\mathbf{d}(s)B = e^sB$

• $||x||_d$ is a Lyapunov and the settling-time function, simultaneously:

$$\frac{d}{dt} \|x\|_{\mathbf{d}} = \underbrace{\|x\|_{\mathbf{d}} \frac{x^{\top} \mathbf{d}^{\top}(-\ln\|x\|_{\mathbf{d}}) X^{-1} \mathbf{d}(-\ln\|x\|_{\mathbf{d}})}{x^{\top} \mathbf{d}^{\top}(-\ln\|x\|_{\mathbf{d}}) X^{-1} \mathbf{G}_{\mathbf{d}} \mathbf{d}(-\ln\|x\|_{\mathbf{d}}) x}}_{A_{0} + BYX^{-1} \mathbf{d}(-\ln\|x\|_{\mathbf{d}}) x} = \underbrace{\frac{x^{\top} \mathbf{d}^{\top}(-\ln\|x\|_{\mathbf{d}}) X^{-1} (\overline{A}_{0} X + X \overline{A}_{0}^{\top} + BY + Y^{\top} B^{\top}) X^{-1} \mathbf{d}(-\ln\|x\|_{\mathbf{d}}) x}_{x^{\top} \mathbf{d}^{\top}(-\ln\|x\|_{\mathbf{d}}) X^{-1} (\underline{G}_{\mathbf{d}} X + X \overline{G}_{\mathbf{d}}^{\top}) X^{-1} \mathbf{d}(-\ln\|x\|_{\mathbf{d}}) x}_{>0}}_{X^{\top} \mathbf{d}^{\top}(-\ln\|x\|_{\mathbf{d}}) X^{-1} (\underline{G}_{\mathbf{d}} X + X \overline{G}_{\mathbf{d}}^{\top}) X^{-1} \mathbf{d}^{\top}(-\ln\|x\|_{\mathbf{d}}) x} = -1.$$

Corollary

Let $u : \mathbb{R}^n \mapsto \mathbb{R}^m$ be defined as in the Main Theorem and a locally measurable locally bounded function $g : \mathbb{R} \times \mathbb{R}^n \mapsto \mathbb{R}^n$ satisfy the following inequality

$$\sup_{t\geq 0, x\in\mathbb{R}^{n}} \|x\|_{\mathbf{d}} \frac{x^{\top}\mathbf{d}^{\top}(-\ln\|x\|_{\mathbf{d}})X^{-1}\mathbf{d}(-\ln\|x\|_{\mathbf{d}})g(t,x)}{x^{\top}\mathbf{d}^{\top}(-\ln\|x\|_{\mathbf{d}})X^{-1}G_{\mathbf{d}}\mathbf{d}(-\ln\|x\|_{\mathbf{d}})x} = \kappa < 1,$$
(6)

then the origin of the system

$$\dot{x} = Ax + Bu(x) + g(t, x), \quad t > 0$$

is globally uniformly finite-time stable and

$$\frac{d\|\mathbf{x}\|_{\mathbf{d}}}{dt} \leq -1 + \kappa, \quad \mathbf{x} \neq \mathbf{0}$$

Remark on rejection of bounded matched perturbation

For $g(t, x) = Bg_0(t, x)$ (6) holds if $g_0^\top B^\top X^{-1} Bg_0 < \frac{1}{4} \lambda_{\min}^2 \left(X^{-1/2} G_{\mathbf{d}} X^{1/2} + X^{1/2} G_{\mathbf{d}}^\top X^{-1/2} \right)$

(7)

$$\dot{x} = Ax + Bu$$
, $u = Kx$ is already given

Note:
$$\alpha = \beta = 1 \Rightarrow u = Kx$$

Andrey Polyakov (Inria, France)

 $\alpha = 0, \beta = +\infty \Rightarrow u = K_0 x + (K - K_0) \mathbf{d} (-\ln ||x||_{\mathbf{d}}) x$

VSS 2022 29 / 34

$$\dot{x} = Ax + Bu$$
, $u = Kx$ is already given

Algorithm

- 1 Find the matrices $K_0 \in \mathbb{R}^{m \times n}$ and G_d as in the Main Theorem.
- 2 Find a symmetric matrix $P \in \mathbb{R}^{n imes n}$ such that

$$\begin{cases} (A + B\mathbf{K})^{\top} P + P(A + B\mathbf{K}) \prec 0\\ PG_{\mathbf{d}} + G_{\mathbf{d}}^{\top} P \succ 0, \quad P \succ 0 \end{cases}$$

Note:
$$\alpha = \beta = 1 \Rightarrow u = Kx$$

Andrey Polyakov (Inria, France)

Generalized Homogeneous SMC

 $\alpha = 0, \beta = +\infty \Rightarrow u = K_0 x + (K - K_0) \mathbf{d} (-\ln ||x||_{\mathbf{d}}) x$

$$\dot{x} = Ax + Bu$$
, $u = Kx$ is already given

Algorithm

- 1 Find the matrices $K_0 \in \mathbb{R}^{m \times n}$ and G_d as in the Main Theorem.
- 2 Find a symmetric matrix $P \in \mathbb{R}^{n \times n}$ such that

$$\begin{cases} (A+B\mathbf{K})^{\top}P+P(A+B\mathbf{K}) \prec 0, \\ PG_{\mathbf{d}}+G_{\mathbf{d}}^{\top}P \succ 0, \quad P \succ 0 \end{cases}$$

Define the control as follows 3

$$u = K_0 x + (\mathbf{K} - K_0) \mathbf{d} (-\ln \operatorname{sat}_{\alpha,\beta} \|x\|_{\mathbf{d}}) x$$

where
$$||x||_{\mathbf{d}}$$
 is induced by $||x|| = \sqrt{x^{\top} P x}$ and $\operatorname{sat}_{\alpha,\beta}(\rho) = \begin{cases} \alpha & \text{if } 0 < \rho < \alpha, \\ \rho & \text{if } \alpha \le \rho \le \beta, \\ \beta & \text{if } \rho > \beta. \end{cases}$

 $\alpha = 0, \beta = +\infty \Rightarrow u = K_0 x + (K - K_0) \mathbf{d} (-\ln ||x||_{\mathbf{d}}) x$ **Note:** $\alpha = \beta = 1 \Rightarrow u = Kx$ VSS 2022 29/34

Andrey Polyakov (Inria, France)

Generalized Homogeneous SMC

$$\dot{x} = Ax + Bu$$
, $u = Kx$ is already given

Algorithm

- 1 Find the matrices $K_0 \in \mathbb{R}^{m \times n}$ and G_d as in the Main Theorem.
- 2 Find a symmetric matrix $P \in \mathbb{R}^{n imes n}$ such that

$$\begin{cases} (A+B\mathbf{K})^{\top}P+P(A+B\mathbf{K}) \prec 0, \\ PG_{\mathbf{d}}+G_{\mathbf{d}}^{\top}P \succ 0, \quad P \succ 0 \end{cases}$$

3 Define the control as follows

$$u = K_0 x + (K - K_0) \qquad \qquad x$$

$$\dot{x} = Ax + Bu$$
, $u = Kx$ is already given

Algorithm

- 1 Find the matrices $K_0 \in \mathbb{R}^{m \times n}$ and G_d as in the Main Theorem.
- 2 Find a symmetric matrix $P \in \mathbb{R}^{n \times n}$ such that

$$\begin{cases} (A+B\mathbf{K})^{\top}P+P(A+B\mathbf{K}) \prec 0, \\ PG_{\mathbf{d}}+G_{\mathbf{d}}^{\top}P \succ 0, \quad P \succ 0 \end{cases}$$

Define the control as follows 3

$$u = K_0 x + (\mathbf{K} - K_0) \mathbf{d} (-\ln \operatorname{sat}_{\alpha,\beta} \|x\|_{\mathbf{d}}) x$$

where
$$||x||_{\mathbf{d}}$$
 is induced by $||x|| = \sqrt{x^{\top} P x}$ and $\operatorname{sat}_{\alpha,\beta}(\rho) = \begin{cases} \alpha & \text{if } 0 < \rho < \alpha, \\ \rho & \text{if } \alpha \le \rho \le \beta, \\ \beta & \text{if } \rho > \beta. \end{cases}$

 $\alpha = 0, \beta = +\infty \Rightarrow u = K_0 x + (K - K_0) \mathbf{d} (-\ln ||x||_{\mathbf{d}}) x$ **Note:** $\alpha = \beta = 1 \Rightarrow u = Kx$ VSS 2022 29/34

Andrey Polyakov (Inria, France)

Generalized Homogeneous SMC

5. Control Experiment

List of control experiments

• Rotary Inverted Pendulum System

Cruz-Ortiz, Ballesteros, Polyakov, Efimov, Chairez, Poznyak, IEEE TIE, 2021 Institutions: Inria, France+CINVESTAV, Mexico

• Quadrotor Control

Wang, Polyakov, Zheng, ICRA 2020 Institution: Inria, France

• Two Rotor System

Zimenko, Polyakov, Efimov, Perruquetti, IEEE TAC, 2020 Institutions: Inria, France + ITMO University, Russia

• Omni-Directional Mobile Robot

Zhou, Rios, Mera, Zheng, Polyakov, in preparation Institution: Inria, France + TechLaguna, Mexco

Homogeneous Quadrotor Control (QDrone of QunaserTM)

- f_1 , f_2 , f_3 , f_4 are propellers thrusts (control inputs)
- θ, ϕ, ψ are yaw, pitch and roll angles
- (x, y, z) is position of quadrotor

Results of "upgrade" are shown in http://researchers.lille.inria.fr/~polyakov/drone.mp4

- The homogeneity is a dilation symmetry known since 18th century.
- Potential advantages of homogeneous control systems vs linear:
 - faster convergence
 - better robustness
 - smaller overshoot (no "peaking" effect)
- The generalized homogeneity is useful for analysis of high-order sliding mode control systems [*Levant 2003, Orlov 2005, Moreno 2010,...*]
- The generalized homogeneity can be utilized for sliding mode control design as well!

Thank you very much for your attention

