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1. Introduction
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Homogeneity is a dilation symmetry

Symmetry is an invariance with respect to a group of transformations.

Notation: λ = es , where s ∈ R and e = 2.71828... is the Euler number.
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x 7→R(α)x ,

x 7→ λx ,
λ > 0

· ·

· ·



Standard and Generalized Homogeneity

• Linearity = Homogeneity + Additivity + Central Symmetry

f is linear ⇔ f (esx)=es f (x) & f (x+y)= f (x)+f (y) & f (−x) = −f (x)

Example: f (x) = x1 + x2, where x=(x1, x2)
>

(standard homogeneous of degree 1)

• Standard Homogeneity [Leonhard Euler, 18th century]:

x 7→ esx (standard dilation) f (esx) = eνs f (x), (symmetry)

s ∈ R - a scalar parameter ν ∈ R - homogeneity degree

Example: f (x) = x1x2 + x22 is standard homogeneous of degree 2: f (esx) = e2s f (x)

• Generalized Homogeneity [Zubov 1958; Hermes 1986; Kawski 1991; Rosier 1992;...]

x 7→ d(s)x (a dilation) f (d(s)x) = eνs f (x) (symmetry)

d(s) must satisfy certain properties to be a dilation

Example: d(s) =
(
e2s 0
0 es

)
, f (x) = x1 + x22 is d-homogeneous: f (d(s)x) = e2s f (x)
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Phase portrait of the homogeneous system ẋ = f (x)

Linear oscillator Relay oscillator{
ẋ1=x2,
ẋ2=−x1,

x1, x2∈R

{
ẋ1=− sign[x2],
ẋ2= sign[x1],

x1, x2∈R

f (esx) = es f (x) f (esx) = e0s f (x)

x2

x1
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Geometric Homogeneity [Kawski 1991]

Definition

A one-parameter family of operators d(s) : Rn 7→ Rn, s ∈ R is said to be a one-parameter
group of dilations (or, simply, dilation) in Rn if

(Group property) d(0)x= x and d(s)◦d(t)x =d(t+s)x ;

(Limit property) lim
s→+∞

‖d(s)x‖=+∞ and lim
s→−∞

‖d(s)x‖=0, x 6=0.

Geometric dilation

d(s)x := ϕx (s)

is a solution of an unstable ODE

ϕ̇(s) = g(φ(s)), ϕ(0) = x ,

where g ∈ C 1(Rn, Rn)
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Linear (Geometric) Dilation if ϕ̇(s) = Gdϕ(s)

The linear (geometric) dilation in Rn is a matrix-valued function given by

d(s) = esGd =
+∞

∑
i=0

s iG i
d

i ! , s ∈ R

where Gd ∈ Rn×n is an anti-Hurwitz matrix called a generator of d.

Standard dilation

d1(s) = es In, Gd = In ∈ Rn×n

Weighted dilation

d2(s)=diag{eri s}, Gd=diag{ri}�0

Linear dilation

d3(s)=esGd , Gd is anti-Hurwitz 1
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Homogeneous functions and vector fields

The definitions are inspired by Khomenuk 1961 and Kawski 1991.

Definition (d-homogenous function)

A function h : Rn 7→ R is said to d-homogeneous of degree ν ∈ R if

h(d(s)x) = eνsh(x), ∀x ∈ Rn, s ∈ R.

Definition (d-homogenous vector field)

A vector field f : Rn 7→ Rn is said to d-homogeneous of degree µ ∈ R if

f (d(s)x) = eµsd(s)f (x), ∀x ∈ Rn, s ∈ R.
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Example (Minimum time control system)

The minimum time control problem (Feldbaum 1949, La Salle 1953, Fuller 1960)

T → min
u

subject to

{
ẋ1 = x2,
ẋ2 = u,

u ∈ L∞((0,T ), R), |u(t)| ≤ 1
x1(T ) = x2(T ) = 0,

has the following feedback solution:

u(x) = − sign(|x2|x2 + 2x1)

The weighted dilation: d(s) =
(
e2s 0
0 es

)
The dilation symmetry (homogeneity) of the control:

u(d(s)x) = − sign(|esx2|esx2 + 2e2sx1) = −e0s sign(|x2|x2 + 2x1)

The dilation symmetry of the closed-loop system ẋ = f (x) = (x2 u(x))>:

f (d(s)x) =

(
esx2

u(d(s)x)

)
=

(
esx2
u(x)

)
= e−s

(
e2sx2
esu(x)

)
= e−sd(s)f (x)
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Historical Remarks

The types of homogeneity in Rn:
Standard ⊂ Weighted ⊂ Linear ⊂ Geometric

[Euler 18th cent] [Zubov 1958 ] [Khomenuk 1961 ] [Kawski 1991 ]

Homogeneity in Control Systems:

Stability Controllability Control Design ISS Analysis
Zubov 1957 Hermes 1982 Adreini et al 1988 Ryan 1995
Rosier 1992 Kawski 1991 Coron & Praly 1991 Hong 2001

Bhat & Bernstien 1998 Sepulchre & Aeyels 1996 Praly 1997 Andrieu et al 2008
... ... ... ...

Sliding Mode Control and Estimation ...
... Levant 2003, Orlov 2005, ...
... Perrruquetti, Floquet & Moulay 2008, ...
... Dinuzzo & Ferrara 2009, Moreno 2010 ...

...
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2. Homogeneity vs Linearity in Systems and Control
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Properties of linear vs homogeneous system

Linear System Homogeneous System
ẋ = Ax , x(0) = x0 ẋ = f (x), x(0) = x0
A ∈ Rn×n is a matrix f (d(s)x) = eµsd(s)f (x)

Trajectory Scaling x(t, esx0)=esx(t, x0) x(t,d(s)x0)=d(s)x(eµst, x0)
Local ⇔ Global X X

Invariance ⇔ Stability X X
Stability ⇒ Robustness ẋ = Ax + w ẋ = f (x ,w)
(Input-to-State Stability) w ∈ L∞ w ∈ L∞

Convergence Rate Exponential +Finite/Fixed-time (µ 6= 0)

Lyapunov Function A weighted Euclidean norm A homogeneous norm

V (x) =
√
x>Px , P � 0 V (d(s)x)= esV (x)

Consistent discretization X X
(preserves convergence rate) Exponential +Finite/Fixed-time (µ 6= 0)

Question: Is there any potential advantage of a homogeneous controller vs linear one?
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Homogeneity vs Linearity: Faster convergence

-
x

mv̇ = −(kd + kvv
2) sign(v), t > 0

m - mass, v = ẋ - velocity, kd , kv - coefficients of dry and viscous friction

Fixed-time stability:

v(t) = 0 for all t ≥ Tmax =
mπ

2
√
kdkv

and for any v(0) ∈ R2
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Homogeneity vs Linearity: Improved robustness

The control aim is to stabilize the scalar system

ẋ = g + u

where g is an uncertainty and u is a control

Model of uncertainty |g | ≤ c + λ|x | a structure of g is unknown
where λ, c ∈ R are unknown but g(x)→ 0 as x → 0

Linear control u = −kx , k > 0 u = −kx , k > 0

unstable if k < λ unstable if k < g (x)
x

Homogeneous control u = −k |x |x , k > 0 u = −k x
|x | , k > 0

globally practically stable locally finite-time stable

lim sup
t→+∞

|x(t)| ≤ λ+
√

λ2+4ck
2k

d |x |
dt ≤ −k + |g(x)|
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Linearity vs Homogeneity: No ”peaking” effect (1)

{
ẋ = Ax + bu(x),
‖x(0)‖ ≤ 1,

t > 0, A =

(
0 1 0 ... 0
0 0 1 ··· 0
··· ··· ··· ··· ···
0 0 0 ··· 1
0 0 0 ··· 0

)
, B =

(
0
0
···
0
1

)
where x = (x1, x2, ..., xn)>, u : Rn → R.

The control aim: ‖x(t)‖≤ ε, ∀t≥T , where ε>0, T >0 are given

Linear control: For any ε > 0 and T > 0 there exists k = (k1, k2, ..., kn) such that

u`(x) := kx ⇒ ‖x(t)‖ ≤ Ce−σt ≤ ε, ∀t ≥ T

Unbounded ”peaking”: There exists1 γ > 0 independent of σ such that
sup

0≤t≤σ−1
sup

‖x(0)‖=1

‖x(t)‖ ≥ γσn−1 → +∞ as ε→ 0

1Izmailov 1987, Polyak & Smirnov 2016
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Linearity vs Homogeneity: No ”peaking” effect (2)

Homogeneous control: For any T > 0 there exists k̃ = (k̃1, k̃2, ..., k̃n) :

uhom(x) := k̃d(− ln ‖x‖d)x ⇒ ‖x(t)‖ = 0, ∀t ≥ T .

Notice that |uhom| ≤ ‖k̃‖ and the overshoot is independent of ε > 0.

”Overshoots” of linear (left) and homogeneous (right) controllers (n=2, ε = 0.005, T =1)
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3. Generalized Homogeneous Euclidean Space
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Monotonicity of linear dilations

Definition

A dilation d is monotone w.r.t. ‖ · ‖ if
s 7→ ‖d(s)x‖ is strictly increasing, ∀x 6= 0.

Theorem (Monotonicity in Rn)

A dilation d(s) is monotone for ‖x‖ =
√
x>Px

if and only if PGd + G>d P�0,P�0.

x1

-5 0 5

x 2

-5

0

5

x

a homogeneous projection
z1 = d(s1)x, ‖z1‖ = 1

a homogeneous projection
z2 = d(s2)x, ‖z2‖ = 1

d(s)x
s < 0

Proposition (Uniqueness of a homogeneous projection to the sphere)

If d is monotone then ∀x 6= 0 there exists a unique pair (s0, x0) ∈ R× S such that
x = d(s0)x0, where S = {x : ‖x‖ = 1} is the unit sphere.

Remark: If d(s) = es then x
‖x‖ is standard homogeneous projection.
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Remark: If d(s) = es then x
‖x‖ is standard homogeneous projection.
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Monotonicity of linear dilations

Definition

A dilation d is monotone w.r.t. ‖ · ‖ if
s 7→ ‖d(s)x‖ is strictly increasing, ∀x 6= 0.
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Homogeneous Norm

-Definition (a norm)

p ∈ C (Rn, R+) is a norm if
• p(x)=0⇔ x=0 • p(±esx) = esp(x)

• p(x + y) ≤ p(x) + p(y)

Definition (a homogeneous ”norm”)

p∈C (Rn, R+) is a d-homogeneous norm if
• p(x)=0⇔ x=0 • p(±d(s)x)=esp(x)

• ????

Canonical homogeneous norm for monotone dilation [Polyakov, Coron, Rosier 2016]

‖x‖d=esx where sx ∈ R : ‖d(−sx )x‖=1, x 6= 0

-5 0 5
-5

0

5

-5 0 5
-5

0

5

‖x‖ = (0.5x21 + 0.4x1x2 + x22 )
1
2

‖x‖d induced by ‖x‖ and d(s)=diag{e2s , es}
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Properties of a canonical homogeneous norm

Let ‖x‖d be induced by ‖x‖ =
√
x>Px with

PGd + G>d P � 0, P � 0

1) ‖ · ‖d is positive definite and d-homogeneous of degree 1;

2) σ(‖x‖d) ≤ ‖x‖ ≤ σ(‖x‖d), ∀x ∈ Rn

σ(ρ) =

{
ρβ if ρ ≤ 1,
ρα if ρ > 1,

σ(ρ) =

{
ρα if ρ ≤ 1,
ρβ if ρ > 1;

α = 0.5λmax

(
P

1
2GdP

− 1
2 + P−

1
2G>d P

1
2

)
> 0,

β = 0.5λmin

(
P

1
2GdP

− 1
2 + P−

1
2G>d P

1
2

)
> 0.

3) ‖ · ‖d ∈ C (Rn) ∩ C∞(Rn\{0}) and

∂‖x‖d
∂x

= ‖x‖d
x>d>(− ln ‖x‖d)X−1d(− ln ‖x‖d)

x>d>(− ln ‖x‖d)X−1Gdd(− ln ‖x‖d)x
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Generalized Homogeneous Vector Space Rn
d

Vector Space

A vector space is a set V together with two operations (satisfying some axioms):

a vector addition V×V 7→ V denoted by v+̃w ∈ V for v ,w ∈ V.

a multiplication by a scalar R×V 7→ V denoted by α·̃v for α ∈ R and v ∈ V.

Homeomorphism on Rn

Φ(x) = ‖x‖dd(− ln ‖x‖d)x , x ∈ Rn Φ−1(z) = d(ln ‖z‖) z
‖z‖ , z ∈ Rn

Theorem [Polyakov 2020 ]

Let a linear dilation d in Rn be monotone with respect to a norm ‖ · ‖ and

x+̃y := Φ−1(Φ(x) + Φ(y)), where x , y ∈ Rn,

λ·̃x := sign(λ)d(ln |λ|)x , where λ ∈ R, x ∈ Rn,

Then the set Rn with the operations +̃ and ·̃ is a vector space Rn
d with the norm ‖ · ‖d.
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How to compute ‖x‖d?

Bisection Method:

Algorithm (‖x‖d= r : ‖d(− ln r )x‖=1)

Initialization: r> 0 and r>0
Step:

if ‖d(− ln r)x‖ > 1 then
r = r ; r = min(2r , rmax)
else if ‖d(− ln r)x‖ < 1 then
r = r ; r = max(r/2, rmin)
else

for j = 1, ..., jmax do
c = (r + r)/2
if ‖d(− ln c)x‖ < 1 then r = c
else r = c

return r , r

after several steps ‖x‖d ≈ (r + r)/2 if rmin ≤ ‖x‖d ≤ rmax
Andrey Polyakov (Inria, France) Generalized Homogeneous SMC VSS 2022 22 / 34

‖d(− ln r)x‖

r0

1

‖x‖dr r



4. Generalized Homogeneous Sliding Mode Control
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Problem Statement

ẋ(t) = Ax(t) + Bu(t)

+g(t, x(t))

(1)

x(t) ∈ Rn is the system state,

u(t) ∈ Rm is the control input

A ∈ Rn×n and B ∈ Rn×m is a known and controllable pair of matrices

g : R×Rm is an unknown function

Problem 1 is to design a sliding mode control ũ : Rn 7→ Rm such that the system

ẋ(t) = Ax(t) + Bũ(x(t)) (2)

is globally asymptotically stable and x = 0 is the only sliding (discontinuity) set2.

Problem 2 is to characterize a class of uncertainties g to be rejected by ũ.

2Such a sliding mode algorithm can be classified as quasi-continuous (Levant 2005)
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A ”homogeneous intuition” behind the sliding mode control

The unit sliding mode control (Gutman & Leitmann 1976, Utkin 1992) is given by:

ũ = K̃0x + K̃ Cx
‖Cx‖ , K̃0 = −(CB)−1CA, K̃ ∈ Rm×m

where C ∈ Rm×n : det(CB) 6= 0.

Denoting σ = Cx for g = 0 we derive

σ̇ = Cẋ = (CA+ CBK̃0)︸ ︷︷ ︸
=0

x − CBK̃ σ
‖σ‖ is standard homogeneous system!

Notice that σ
‖σ‖ is the standard homogeneous projection to the unit sphere.

If σ=x then the generalized homogeneous sliding mode control [Polyakov 2020 ]

ũ = K0x +Kd(− ln ‖x‖d)x , K0,K ∈ Rm×n

is discontinuous only at x=0

Question 1: How to select K0 and a dilation d such that the system

ẋ = (A+ BK0)x + BKd(− ln ‖x‖d)x will be d-homogeneous?

Question 2: How to select K to guarantee finite-time stability of the latter system?
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ẋ = (A+ BK0)x + BKd(− ln ‖x‖d)x will be d-homogeneous?

Question 2: How to select K to guarantee finite-time stability of the latter system?
Andrey Polyakov (Inria, France) Generalized Homogeneous SMC VSS 2022 25 / 34



Main Theorem

If a pair {A,B} is controllable then

1) the linear algebraic equation

AG0 − G0A+ BY0 = A, G0B = 0, Y0 ∈ Rm×n, G0 ∈ Rn×n (3)

always has solutions and for any solution one holds
Gd = In − G0 is anti-Hurwitz and d(s) = esGd is a linear dilation in Rn,
the matrix A0 = A+ BK0 is nilpotent for K0 = Y0(In − G0)

−1 and A0d(s) = e−sd(s)A0;

2) the following LMI has a solution X ∈ Rn×n, Y ∈ Rm×n::

A0X+XA>0+BY+Y >B>+GdX+XG>d =0, GdX+XG>d �0, X =X> � 0; (4)

3) the canonical homogeneous norm ‖ · ‖d induced by ‖x‖=
√
x>X−1x is

a Lyapunov function of the finite-time stable system (1) with g = 0 the control

u(x) = K0x +Kd(− ln ‖x‖d)x , K = YX−1, (5)

the exact settling time function of the system (1), (5): d
dt ‖x‖d = −1 for x 6= 0;

4) x = 0 is the only sliding (discontinuity) set and u ∈ C∞(Rn\{0}, Rm) is bounded:

‖u‖Rm ≤ ‖K0‖ · ‖x‖+ ‖K‖

Andrey Polyakov (Inria, France) Generalized Homogeneous SMC VSS 2022 26 / 34



Main Theorem

If a pair {A,B} is controllable then

1) the linear algebraic equation

AG0 − G0A+ BY0 = A, G0B = 0, Y0 ∈ Rm×n, G0 ∈ Rn×n (3)

always has solutions and for any solution one holds
Gd = In − G0 is anti-Hurwitz and d(s) = esGd is a linear dilation in Rn,
the matrix A0 = A+ BK0 is nilpotent for K0 = Y0(In − G0)

−1 and A0d(s) = e−sd(s)A0;

2) the following LMI has a solution X ∈ Rn×n, Y ∈ Rm×n::

A0X+XA>0+BY+Y >B>+GdX+XG>d =0, GdX+XG>d �0, X =X> � 0; (4)

3) the canonical homogeneous norm ‖ · ‖d induced by ‖x‖=
√
x>X−1x is

a Lyapunov function of the finite-time stable system (1) with g = 0 the control

u(x) = K0x +Kd(− ln ‖x‖d)x , K = YX−1, (5)

the exact settling time function of the system (1), (5): d
dt ‖x‖d = −1 for x 6= 0;

4) x = 0 is the only sliding (discontinuity) set and u ∈ C∞(Rn\{0}, Rm) is bounded:

‖u‖Rm ≤ ‖K0‖ · ‖x‖+ ‖K‖

Andrey Polyakov (Inria, France) Generalized Homogeneous SMC VSS 2022 26 / 34



Main Theorem

If a pair {A,B} is controllable then

1) the linear algebraic equation

AG0 − G0A+ BY0 = A, G0B = 0, Y0 ∈ Rm×n, G0 ∈ Rn×n (3)

always has solutions and for any solution one holds
Gd = In − G0 is anti-Hurwitz and d(s) = esGd is a linear dilation in Rn,
the matrix A0 = A+ BK0 is nilpotent for K0 = Y0(In − G0)

−1 and A0d(s) = e−sd(s)A0;

2) the following LMI has a solution X ∈ Rn×n, Y ∈ Rm×n::

A0X+XA>0+BY+Y >B>+GdX+XG>d =0, GdX+XG>d �0, X =X> � 0; (4)

3) the canonical homogeneous norm ‖ · ‖d induced by ‖x‖=
√
x>X−1x is

a Lyapunov function of the finite-time stable system (1) with g = 0 the control

u(x) = K0x +Kd(− ln ‖x‖d)x , K = YX−1, (5)

the exact settling time function of the system (1), (5): d
dt ‖x‖d = −1 for x 6= 0;

4) x = 0 is the only sliding (discontinuity) set and u ∈ C∞(Rn\{0}, Rm) is bounded:

‖u‖Rm ≤ ‖K0‖ · ‖x‖+ ‖K‖

Andrey Polyakov (Inria, France) Generalized Homogeneous SMC VSS 2022 26 / 34



Main Theorem

If a pair {A,B} is controllable then

1) the linear algebraic equation

AG0 − G0A+ BY0 = A, G0B = 0, Y0 ∈ Rm×n, G0 ∈ Rn×n (3)

always has solutions and for any solution one holds
Gd = In − G0 is anti-Hurwitz and d(s) = esGd is a linear dilation in Rn,
the matrix A0 = A+ BK0 is nilpotent for K0 = Y0(In − G0)

−1 and A0d(s) = e−sd(s)A0;

2) the following LMI has a solution X ∈ Rn×n, Y ∈ Rm×n::

A0X+XA>0+BY+Y >B>+GdX+XG>d =0, GdX+XG>d �0, X =X> � 0; (4)

3) the canonical homogeneous norm ‖ · ‖d induced by ‖x‖=
√
x>X−1x is

a Lyapunov function of the finite-time stable system (1) with g = 0 the control

u(x) = K0x +Kd(− ln ‖x‖d)x , K = YX−1, (5)

the exact settling time function of the system (1), (5): d
dt ‖x‖d = −1 for x 6= 0;

4) x = 0 is the only sliding (discontinuity) set and u ∈ C∞(Rn\{0}, Rm) is bounded:

‖u‖Rm ≤ ‖K0‖ · ‖x‖+ ‖K‖
Andrey Polyakov (Inria, France) Generalized Homogeneous SMC VSS 2022 26 / 34



A sketch of the proof

If Gd = In − G0,d(s) = esGd then A0 = A+ BK0 is nilpotent and

A0d(s) = e−sd(s)A0, d(s)B = esB

‖x‖d is a Lyapunov and the settling-time function, simultaneously:

d
dt ‖x‖d =

∂‖x‖d
∂x︷ ︸︸ ︷

‖x‖d x>d>(− ln ‖x‖d)X−1d(− ln ‖x‖d)
x>d>(− ln ‖x‖d)X−1Gdd(− ln ‖x‖d)x

ẋ︷ ︸︸ ︷
(A0 + BYX−1d(− ln ‖x‖d))x

=
x>d>(− ln ‖x‖d)X−1(

−(GdX+XG>d )︷ ︸︸ ︷
A0X+XA>0 +BY+Y >B>)X−1d(− ln ‖x‖d)x

x>d>(− ln ‖x‖d)X−1(GdX + XG>d︸ ︷︷ ︸
�0

)X−1d>(− ln ‖x‖d)x
= −1.

Andrey Polyakov (Inria, France) Generalized Homogeneous SMC VSS 2022 27 / 34



Characterization of uncertainties

Corollary

Let u : Rn 7→ Rm be defined as in the Main Theorem and a locally measurable locally
bounded function g : R×Rn 7→ Rn satisfy the following inequality

sup
t≥0,x∈Rn

‖x‖d x>d>(− ln ‖x‖d)X−1d(− ln ‖x‖d)g (t,x)
x>d>(− ln ‖x‖d)X−1Gdd(− ln ‖x‖d)x

= κ < 1, (6)

then the origin of the system

ẋ = Ax + Bu(x) + g(t, x), t > 0 (7)

is globally uniformly finite-time stable and

d‖x‖d
dt ≤ −1 + κ, x 6= 0

Remark on rejection of bounded matched perturbation

For g(t, x) = Bg0(t, x) (6) holds if g>0 B>X−1Bg0<
1
4λ2

min

(
X−1/2GdX

1/2 + X 1/2G>d X−1/2)
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”Upgrading” Liner Feedback to Homogeneous SMC

ẋ = Ax + Bu, u = Kx is already given

Algorithm

1 Find the matrices K0 ∈ Rm×n and Gd as in the Main Theorem.

2 Find a symmetric matrix P ∈ Rn×n such that{
(A+ BK )>P + P(A+ BK ) ≺ 0,

PGd + G>d P � 0, P � 0

3 Define the control as follows

u = K0x + (K −K0)d(− ln satα,β‖x‖d)x

where ‖x‖d is induced by ‖x‖ =
√
x>Px and satα,β(ρ) =


α if 0 < ρ < α,
ρ if α ≤ ρ ≤ β,
β if ρ > β.

Note: α=β=1 ⇒ u=Kx α=0, β=+∞ ⇒ u=K0x+(K−K0)d(− ln ‖x‖d)x
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2 Find a symmetric matrix P ∈ Rn×n such that{
(A+ BK )>P + P(A+ BK ) ≺ 0,

PGd + G>d P � 0, P � 0

3 Define the control as follows

u = K0x + (K −K0)d(− ln satα,β‖x‖d)x

where ‖x‖d is induced by ‖x‖ =
√
x>Px and satα,β(ρ) =


α if 0 < ρ < α,
ρ if α ≤ ρ ≤ β,
β if ρ > β.

Note: α=β=1 ⇒ u=Kx α=0, β=+∞ ⇒ u=K0x+(K−K0)d(− ln ‖x‖d)x
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ẋ = Ax + Bu, u = Kx is already given

Algorithm

1 Find the matrices K0 ∈ Rm×n and Gd as in the Main Theorem.

2 Find a symmetric matrix P ∈ Rn×n such that{
(A+ BK )>P + P(A+ BK ) ≺ 0,

PGd + G>d P � 0, P � 0

3 Define the control as follows

u = K0x + (K −K0)d(− ln satα,β‖x‖d)x

where ‖x‖d is induced by ‖x‖ =
√
x>Px and satα,β(ρ) =


α if 0 < ρ < α,
ρ if α ≤ ρ ≤ β,
β if ρ > β.

Note: α=β=1 ⇒ u=Kx α=0, β=+∞ ⇒ u=K0x+(K−K0)d(− ln ‖x‖d)x
Andrey Polyakov (Inria, France) Generalized Homogeneous SMC VSS 2022 29 / 34



5. Control Experiment
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List of control experiments

Rotary Inverted Pendulum System
Cruz-Ortiz, Ballesteros, Polyakov, Efimov, Chairez, Poznyak, IEEE TIE, 2021

Institutions: Inria, France+CINVESTAV, Mexico

Quadrotor Control
Wang, Polyakov, Zheng, ICRA 2020

Institution: Inria, France

Two Rotor System
Zimenko, Polyakov, Efimov, Perruquetti, IEEE TAC, 2020

Institutions: Inria, France + ITMO University, Russia

Omni-Directional Mobile Robot
Zhou, Rios, Mera, Zheng, Polyakov, in preparation

Institution: Inria, France + TechLaguna, Mexco
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Homogeneous Quadrotor Control (QDrone of QunaserTM)

f1, f2, f3, f4 are propellers thrusts (control inputs)

θ, φ, ψ are yaw, pitch and roll angles

(x , y , z) is position of quadrotor

Results of ”upgrade” are shown in http://researchers.lille.inria.fr/∼polyakov/drone.mp4
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Summary

The homogeneity is a dilation symmetry known since 18th century.

Potential advantages of homogeneous control systems vs linear:

faster convergence
better robustness
smaller overshoot (no ”peaking” effect)

The generalized homogeneity is useful for analysis of high-order sliding mode control
systems [Levant 2003, Orlov 2005, Moreno 2010,...]

The generalized homogeneity can be utilized for sliding mode control design as well!
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Thank you very much for your attention
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