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1. Introduction

Andrey Polyakov (Inria, France) eralized Homogeneous SMC VSS 2022



Homogeneity is a dilation symmetry

Symmetry is an invariance with respect to a group of transformations.

rotation

xr—>Rioc;x,

Notation: A = ¢ vhere R and e = 328 he EFuler pumbe
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Standard and Generalized Homogeneity

e Linearity = Homogeneity + Additivity + Central Symmetry
fislinear & f(e°x)=e’f(x) & fx+y)=FfK)+fly) & f(—x)=—7f(x) J

T

Example: f(x) = x1 + x2, where x=(x1, x2)
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Standard and Generalized Homogeneity

e Linearity = Homogeneity + Additivity + Central Symmetry
fislinear & f(e°x)=e’f(x) & fx+y)=FfK)+fly) & f(—x)=—7f(x) J

Example: f(x) = x1 + xp, where x=(xq, )(2)T

e Standard Homogeneity [Leonhard Euler, 18th century]:

x — e°x (standard dilation) f(eSx) = e"*f(x), (symmetry)
s € R - a scalar parameter v € R - homogeneity degree J

Example: f(x) = xixo + x5 is standard homogeneous of degree 2: f(e*x) = e>*f(x)
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Standard and Generalized Homogeneity

e Linearity = Homogeneity + Additivity + Central Symmetry
fislinear & f(e°x)=e’f(x) & fx+y)=FfK)+fly) & f(—x)=—7f(x) J

Example: f(x) = x; + xa, where x=(x1,x2) T (standard homogeneous of degree 1)

e Standard Homogeneity [Leonhard Euler, 18th century]:
x — e°x (standard dilation) f(e°x) = e’*f(x), (symmetry) J

s € R - a scalar parameter v € R - homogeneity degree

Example: f(x) = xixo + x5 is standard homogeneous of degree 2: f(e*x) = e>*f(x)
e Generalized Homogeneity [Zubov 1958; Hermes 1986; Kawski 1991; Rosier 1992;...]
x+—d(s)x (a dilation) f(d(s)x) = e"f(x) (symmetry) J

d(s) must satisfy certain properties to be a dilation

Example: d(s) = (eés & ) f(x) = x1 + x3 is d-homogeneous: f(d(s)x) = e?f(x)
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Relay oscillator

Linear oscillator

x1, X0 €ERR

sign[xi],

X1 =—sign[xz],

Xo

{

f(esx) = €% (x)

Ax,
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Geometric Homogeneity [Kawski 1991]

Definition

A one-parameter family of operators d(s) : R” — R", s € R is said to be a one-parameter
group of dilations (or, simply, dilation) in R" if
o (Group property) d(0)x= x and d(s)od(t)x =d(t+s)x;

o (Limit property) lim ||d(s)x||=+o0 and lim [ld(s)x|/=0, x#0.
s—+o0 S§——00
d(+0)x =
d(s)x
X
0 = d(-c0)x
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Geometric Homogeneity [Kawski 1991]

Definition
A one-parameter family of operators d(s) : R” — R", s € R is said to be a one-parameter
group of dilations (or, simply, dilation) in R" if

o (Group property) d(0)x= x and d(s)od(t)x =d(t+s)x;

o (Limit property) SE)TOO |d(s)x]|| =00 and im |d(s)x]|=0, x#0.

d(+00)x = o0
Geometric dilation

d(s)x d(s)x := @x(s)
is a solution of an unstable ODE

o(s) = g(9(s)). p(0) =x,
where g € C1(R",R")

X

0 = d(-c0)x
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Linear (Geometric) Dilation if ¢(s) = Gq¢(s)

The linear (geometric) dilation in R” is a matrix-valued function given by
piaC) iGi
d(s) =e =) 5, seR
i=0
where Gy € R™ " is an anti-Hurwitz matrix called a generator of d.

Andrey Polyakov (Inria, France) Generalized Homogeneous SMC VSS 2022 7/34



Linear (Geometric) Dilation if ¢(s) = Gq¢(s)

The linear (geometric) dilation in R” is a matrix-valued function given by

piaC) iGi
d(s):eSG“zzsi—!", seR
i=0

where Gy € R™ " is an anti-Hurwitz matrix called a generator of d.

Standard dilation
dl(S) =el,, Gg=1I,¢€ R>n

Weighted dilation

dy(s) =diag{e"*}, Gg=diag{r;} -0

| d,(s)x
d,(s)x

d (s)x

Linear dilation

d3(s)=e°%, Gy is anti-Hurwitz
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Homogeneous functions and vector fields

The definitions are inspired by Khomenuk 1961 and Kawski 1991.

Definition (d-homogenous function)

A function h: R” — R is said to d-homogeneous of degree v € R if

h(d(s)x) = e”*h(x), VxeR", seR.

Definition (d-homogenous vector field)

A vector field f : R" — IR" is said to d-homogeneous of degree i € R if

f(d(s)x) = e**d(s)f(x), ¥xeR", seRR.
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Example (Minimum time control system)
@ The minimum time control problem (Feldbaum 1949, La Salle 1953, Fuller 1960)

T — min
: X1 = Xo, u€eLl®((0, T)R),u(t) <1
subject to { o = 0 a(T) = x(T) =0,

has the following feedback solution:

u(x) = —sign(|x2|x2 + 2x1)

o The weighted dilation: d(s) = (" 3)
@ The dilation symmetry (homogeneity) of the control:

u(d(s)x) = —sign(|e°xa|e*xo + 2€%x1) = —e% sign(|xa|x2 + 2x1)

o The dilation symmetry of the closed-loop system x = f(x) = (xo u(x))":

@99 = ygahn ) = (o9 ) == (o ) =+ 4
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Historical Remarks

@ The types of homogeneity in R":

Standard

C Weighted C

Linear C

[Euler 18th cent]  [Zubov 1958] [Khomenuk 1961]

@ Homogeneity in Control Systems:

Geometric
[Kawski 1991]

Stability Controllability Control Design ISS Analysis
Zubov 1957 Hermes 1982 Adreini et al 1988 Ryan 1995
Rosier 1992 Kawski 1991 Coron & Praly 1991 Hong 2001

Bhat & Bernstien 1998 | Sepulchre & Aeyels 1996 Praly 1997 Andrieu et al 2008

Sliding Mode Control and Estimation

Levant 2003, Orlov 2005,
Perrruquetti, Floquet & Moulay 2008,
Dinuzzo & Ferrara 2009, Moreno 2010
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2. Homogeneity vs Linearity in Systems and Control
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Properties of linear vs homogeneous system

Linear System Homogeneous System
x = Ax, x(0) =xp x=f(x), x(0) =xo
A € R™" is a matrix f(d(s)x) = et*d(s)f(x)
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Properties of linear vs homogeneous system

Linear System Homogeneous System
x = Ax, x(0) =xp x=f(x), x(0) =xo
A € R™" is a matrix f(d(s)x) = et*d(s)f(x)
Trajectory Scaling x(t, exp) =e°x(t,x0) | x(t,d(s)xp)=d(s)x(e't, x0)

Andrey Polyakov (Inria, France) Generalized Homogeneous SMC VSS 2022 12 /34



Properties of linear vs homogeneous system

Linear System Homogeneous System
x = Ax, x(0) =xp x=f(x), x(0) =xo
A € R™" is a matrix f(d(s)x) = et*d(s)f(x)
Trajectory Scaling x(t, exp) =e°x(t,x0) | x(t,d(s)xp)=d(s)x(e't, x0)
Local < Global v v
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Properties of linear vs homogeneous system

Linear System Homogeneous System
x = Ax, x(0) =xp x=f(x), x(0) =xo
A € R™" is a matrix f(d(s)x) = et*d(s)f(x)
Trajectory Scaling x(t, exp) =e°x(t,x0) | x(t,d(s)xp)=d(s)x(e't, x0)
Local < Global v v
Invariance < Stability v v
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Properties of linear vs homogeneous system

Linear System Homogeneous System
x = Ax, x(0) =xp x=f(x), x(0) =xo
A € R™" is a matrix f(d(s)x) = et*d(s)f(x)
Trajectory Scaling x(t, exp) =e°x(t,x0) | x(t,d(s)xp)=d(s)x(e't, x0)
Local < Global v v
Invariance < Stability v v
Stability = Robustness x=Ax+w x=f(x,w)
(Input-to-State Stability) w e L% w e L®
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Properties of linear vs homogeneous system

Linear System Homogeneous System
x = Ax, x(0) =xp x=f(x), x(0) =xo
A € R™" is a matrix f(d(s)x) = et*d(s)f(x)
Trajectory Scaling x(t, exp) =e°x(t,x0) | x(t,d(s)xp)=d(s)x(e't, x0)
Local < Global v v
Invariance < Stability v v
Stability = Robustness x=Ax+w x=f(x,w)
(Input-to-State Stability) w e L% w e L®
Convergence Rate Exponential +Finite/Fixed-time (i # 0)
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Properties of linear vs homogeneous system

Linear System Homogeneous System
x = Ax, x(0) =xp x=f(x), x(0) =xo
A € R™" is a matrix f(d(s)x) = et*d(s)f(x)
Trajectory Scaling x(t, exp) =e°x(t,x0) | x(t,d(s)xp)=d(s)x(e't, x0)
Local < Global v v
Invariance < Stability v v
Stability = Robustness x=Ax+w x=f(x,w)
(Input-to-State Stability) w e L% w e L®
Convergence Rate Exponential +Finite/Fixed-time (i # 0)
Lyapunov Function A weighted Euclidean norm A homogeneous norm
V(x)=vVx"Px, P>=0 V(d(s)x)= e*V(x)
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Properties of linear vs homogeneous system

Linear System
x = Ax, x(0) =xp
A € R™" is a matrix

Homogeneous System
x = f(x), x(0)=xo
f(d(s)x) = et*d(s)f(x)

Trajectory Scaling

x(t, e°xp) =e°x(t, xo)

x(t,d(s)x0) =d(s)x(e't, x0)

Local < Global v v
Invariance < Stability v v
Stability = Robustness x=Ax+w x=f(x,w)
(Input-to-State Stability) w e L% w e L®
Convergence Rate Exponential +Finite/Fixed-time (u # 0)

Lyapunov Function

A weighted Euclidean norm

A homogeneous norm

V(d(s)x)= e*V(x)

Consistent discretization

(preserves convergence rate)

V(x)=vVx"Px, P>=0
v

Exponential

v
+Finite/Fixed-time (i # 0)

Question: Is there any potential advantage of a homogeneous controller vs linear one?

)
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Homogeneity vs Linearity: Faster convergence

Y

mv = — (kg + k,v?)sign(v), t>0
m - mass, v = x - velocity, kq, k, - coefficients of dry and viscous friction
Fixed-time stability:

m7t

2v/kgk,

v(t) =0 forall t> Thax = and for any v(0) € R?
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Homogeneity vs Linearity: Improved robustness

The control aim is to stabilize the scalar system
X=g+u

where g is an uncertainty and u is a control

Model of uncertainty lg| < c+ Alx| a structure of g is unknown
where A, c € R are unknown but g(x) = 0 as x — 0
Linear control u=—kx, k>0 u=—kx, k>0
unstable if k < A unstable if k < @
Homogeneous control u=—klx|x, k>0 u=—kpg k>0
globally practically stable locally finite-time stable
limsup |x(t)| < A/ A2tack I <k +[g(x)]|
t—+o00
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Linearity vs Homogeneity: No "peaking” effect (1)

x = Ax + bu(x), 86238 0
Ix(0)[] <1, 0001 0
0000 1
where x = (x1, %2, ..., x,) ", v : R” — R.
The control aim:  ||x(t)]| <e, Vt>T, where €>0, T >0 are given J

Hzmailov 1987, Polyak & Smirnov 2016
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Linearity vs Homogeneity: No "peaking” effect (1)

x = Ax + bu(x), 86238 0
Ix(0)[] <1, 0001 0
0000 1
where x = (x1, %2, ..., x,) ", v : R” — R.
The control aim:  ||x(t)]| <e, Vt>T, where €>0, T >0 are given J

o Linear control: For any € > 0 and T > 0 there exists k = (kl, ko, ..., k,,) such that

w(x)i=kx = |x(t)]|<Cet<e VE>T

Hzmailov 1987, Polyak & Smirnov 2016
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Linearity vs Homogeneity: No "peaking” effect (1)

0
x = Ax + bu(x), 0
U o<t ( :

where x = (x1, %2, ..., x,) ", v : R” — R.

The control aim:  ||x(t)]| <e, Vt>T, where €>0, T >0 are given J

o Linear control: For any € > 0 and T > 0 there exists k = (kl, ko, ..., k,,) such that
u(x):=kx = ||x(t)| < Ce " <e VE>T
Unbounded "peaking”: There exists® v > 0 independent of ¢ such that

sup sup |Ix(t)|| >yt — +o0ase—0
0<t<o~! [x(0)[|=1

Hzmailov 1987, Polyak & Smirnov 2016
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Linearity vs Homogeneity: No "peaking” effect (2)

Homogeneous control: For any T > 0 there exists k = (ki ko, ..., kp) :
Upom(X) := kd(=In||x|[g)x = ||x(t)]|=0, Vt>T.

Notice that |usom| < ||k|| and the overshoot is independent of & > 0.
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Linearity vs Homogeneity: No "peaking” effect (2)

Homogeneous control: For any T > 0 there exists k = (ki ko, ..., kp) :
Upom(X) := kd(=In||x|[g)x = ||x(t)]|=0, Vt>T.

Notice that |usom| < ||k|| and the overshoot is independent of & > 0.

"Overshoots” of linear (left) and homogeneous (right) controllers (n=2, ¢ = 0.005, T =1)
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3. Generalized Homogeneous Euclidean Space
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Monotonicity of linear dilations

a homogeneous projection

2 =d(s1)z, ||zl =1
5 1
&0 |
-5 a homogeneous projection 4

2z =d(s2), ||| =1
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Definition

a homogeneous projection

A dilation d is monotone w.r.t. | - | if 2t al =1
s — ||d(s)x]| is strictly increasing, Vx # 0.

-5 a homogeneous projection
2 =d(s2), ||| =1
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Monotonicity of linear dilations

Definition
a homogeneous projection
A dilation d is monotone w.r.t. | - || if . T
s — ||d(s)x]| is strictly increasing, Vx # 0.
20

Theorem (Monotonicity in R") -

© e
A dilation d(s) is monotone for || x|| = V' x ' Px
ifand only if PGy + G/ P =0, P-0. 5 0 5
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Monotonicity of linear dilations

Definition

a homogeneous projection
A dilation d is monotone w.r.t. | - || if . T
s — ||d(s)x]| is strictly increasing, Vx # 0.

S0
Theorem (MonOtoniCity In Rn) -5 a homogeneous projection
2z =d(s2), ||| =1

A dilation d(s) is monotone for || x|| = V' x ' Px
ifand only if PGy + G/ P =0, P-0. 5 0 5

Proposition (Uniqueness of a homogeneous projection to the sphere)

If d is monotone then Vx # 0 there exists a unique pair (sp, xp) € R x S such that
x = d(sp)xp, where S = {x : ||x|| = 1} is the unit sphere.

Remark: If d(s) = e® then ﬁ is standard homogeneous projection.

Andrey Polyakov (Inria, France) Generalized Homogeneous SMC VSS 2022 18 /34



Homogeneous Norm

Definition (a norm)

p € C(R",Ry) is a norm if

e p(x)=0< x=0 e p(+e°x) =e’p(x)
* p(x+y) < p(x)+p(y)
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Homogeneous Norm

Definition (a homogeneous "norm™)

Definition (a norm)

p € C(R",Ry) is a norm if p€ C(R",Ry) is a d-homogeneous norm if
e p(x)=0< x=0 e p(+esx) = e’p(x) e p(x)=0< x=0 e p(+d(s)x)=e’p(x)
* p(x+y) < p(x)+ply) o 7777

Andrey Polyakov (Inria, France) Generalized Homogeneous SMC VSS 2022 19 /34



Homogeneous Norm

Definition (a homogeneous "norm™)

Definition (a norm)

p € C(R",Ry) is a norm if p€ C(R",Ry) is a d-homogeneous norm if
e p(x)=0< x=0 e p(+esx) = e’p(x) e p(x)=0< x=0 e p(+d(s)x)=e’p(x)
* p(x+y) < p(x)+ply) o 7777

Canonical homogeneous norm for monotone dilation [Polyakov, Coron, Rosier 2016]

Ix|la=e> where s, €R:||d(—sc)x||=1, x#0

-5
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Homogeneous Norm

Definition (a homogeneous "norm™)

Definition (a norm)

p € C(R",Ry) is a norm if p€ C(R",Ry) is a d-homogeneous norm if
e p(x)=0< x=0 e p(+esx) = e’p(x) e p(x)=0< x=0 e p(+d(s)x)=e’p(x)
* p(x+y) < p(x)+ply) o 7777

Canonical homogeneous norm for monotone dilation [Polyakov, Coron, Rosier 2016]

Ix|la=e> where s, €R:||d(—sc)x||=1, x#0

5

-5

-5
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Properties of a canonical homogeneous norm

Let ||x|la be induced by ||x| = vV xT Px with
PG4+ G4{P =0, P>0

1) || - |la is positive definite and d-homogeneous of degree 1;
2) a(llxlla) < lIxI < @(lx[la), ¥x € R
Foif p<1 _ ©if p<1
_Jpm el _Jp nmop=sl
U(P)—{pa if p>1, “(p)_{pﬁ if p>1;

& = 0.5\ max (P%GdP*% n P*%GJP%) >0,
B =05Amin (P2G4P~2 + P26, PE) >0,
3) [ lla € C(R") N C=(R"\{0}) and

9 x[la _ x"d" (= In||x]la)X td(—In||x|la)
ox XTdT(—InHXHd)XflGdd(—In || x]|a)x

Ix]la

VSS 2022 20/34
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Generalized Homogeneous Vector Space IR/}

Vector Space

|

A vector space is a set V together with two operations (satisfying some axioms)
@ a vector addition V x V — V denoted by v+w € V for v,w € V.
@ a multiplication by a scalar R X V — V denoted by a*v for« € R and v € V.

Homeomorphism on IR”
®(x) = [Ix[lad(=In[x[la)x, x€R"  ®7Hz) =d(n|z])F. z€R

A\

Theorem [Polyakov 2020]

Let a linear dilation d in R"” be monotone with respect to a norm || - || and
o xFy:=d HD(x) +P(y)), wherex,yecR",
@ A*x :=sign(A)d(In |A])x, where A € R, x € R”,

Then the set R" with the operations + and ~ is a vector space R} with the norm || - ||4.

Andrey Polyakov (Inria, France) Generalized Homogeneous SMC VSS 2022 21/34



How to compute ||x|/¢4?

Bisection Method:
[d(—Inr)x]]

Algorithm (|x[la=r:[ld(~Inr)x||=1)

Initialization: r> 0 and ¥ >0
Step:
if ||[d(—In7)x|| > 1 then
r =T, T = min(2F, fmax)
else if ||d(—Inr)x|| <1 then
rF=rr= max(£/2, rmin)

else 1
forj=1,..., jmaxdo | [TTTTOTTIIIORR T
c=(r+7)/2
if [|d(—Inc)x|| < 1 then 7 = ¢ 0
elser =c
return r,r

V.

after several steps ||x|la = (r +7)/2 if fmin < ||x]ld < fmax
Andrey Polyakov (Inria, France) Generalized Homogeneous SMC VSS 2022 22/34




4. Generalized Homogeneous Sliding Mode Control
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Problem Statement

x(t) = Ax(t) + Bu(t) (1)

e x(t) € R" is the system state,
e u(t) € R™ is the control input
@ A€ R™™and B € R™™ is a known and controllable pair of matrices

Problem 1 is to design a sliding mode control & : IR" — IR™ such that the system
x(t) = Ax(t) + Bi(x(t)) (2)

is globally asymptotically stable and x = 0 is the only sliding (discontinuity) set?.

2Such a sliding mode algorithm can be classified as quasi-continuous (Levant 2005)
Andrey Polyakov (Inria, France) Generalized Homogeneous SMC VSS 2022 24 /34



Problem Statement

x(t) = Ax(t) + Bu(t)+g(t, x(1)) (1)

e x(t) € R" is the system state,
e u(t) € R™ is the control input
@ Ac R™™and B € R™™ is a known and controllable pair of matrices

@ g : IR X IR™ is an unknown function
Problem 1 is to design a sliding mode control & : IR — IR™ such that the system
x(t) = Ax(t) + Bi(x(t)) (2)

is globally asymptotically stable and x = 0 is the only sliding (discontinuity) set?.

Problem 2 is to characterize a class of uncertainties g to be rejected by . J

2Such a sliding mode algorithm can be classified as quasi-continuous (Levant 2005)
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A "homogeneous intuition” behind the sliding mode control

@ The unit sliding mode control (Gutman & Leitmann 1976, Utkin 1992) is given by:

0= Kox+Kpgg,  Ko=—(CB)T'CA KeR™M

where C € R™*" : det(CB) # 0.
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A "homogeneous intuition” behind the sliding mode control

@ The unit sliding mode control (Gutman & Leitmann 1976, Utkin 1992) is given by:

0= Kox+Kpgg,  Ko=—(CB)T'CA KeR™M
where C € R™*" : det(CB) # 0.Denoting o = Cx for g = 0 we derive
0= Cx=(CA+ CBKy) x — CBK % is standard homogeneous system!

AT EBKo ToT
=0

Notice that ﬁ is the standard homogeneous projection to the unit sphere.
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A "homogeneous intuition” behind the sliding mode control

@ The unit sliding mode control (Gutman & Leitmann 1976, Utkin 1992) is given by:

0= Kox+Kpgg,  Ko=—(CB)T'CA KeR™M
where C € R™*" : det(CB) # 0.Denoting o = Cx for g = 0 we derive
0= Cx=(CA+ CBKy) x — CBKH%:” is standard homogeneous system!
=0

Notice that ﬁ is the standard homogeneous projection to the unit sphere.

@ If 0 =x then the generalized homogeneous sliding mode control [Polyakov 2020]
0= KoX—i—Kd(—lﬂ HXHd)X, Ko,KE]Rmxn
is discontinuous only at x=0
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A "homogeneous intuition” behind the sliding mode control

@ The unit sliding mode control (Gutman & Leitmann 1976, Utkin 1992) is given by:

0= Kox+Kpgg,  Ko=—(CB)T'CA KeR™M
where C € R™*" : det(CB) # 0.Denoting o = Cx for g = 0 we derive
0= Cx=(CA+ CBKy) x — CBRH%:” is standard homogeneous system!
=0

Notice that ﬁ is the standard homogeneous projection to the unit sphere.

@ If 0 =x then the generalized homogeneous sliding mode control [Polyakov 2020]
0= KoX—i—Kd(—lﬂ HXHd)X, Ko,KE]Rmxn
is discontinuous only at x=0

Question 1: How to select Ky and a dilation d such that the system
x = (A+ BKo)x + BKd(—In ||x]|q)x will be d-homogeneous?

Question 2: How to select K to guarantee finite-time stability of the latter system?
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If a pair {A, B} is controllable then
1) the linear algebraic equation
AGy— GoA+BYy=A, GyB=0, YyeR™" GygeR™" (3)

always has solutions and for any solution one holds
o Gg = I, — Gy is anti-Hurwitz and d(s) = €% is a linear dilation in R",
o the matrix Ag = A+ BKy is nilpotent for Ky = Yy(I, — Go) ™! and Aod(s) = e~5d(s)Ao;
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If a pair {A, B} is controllable then
1) the linear algebraic equation
AGy— GoA+BYy=A, GyB=0, YyeR™" GygeR™" (3)

always has solutions and for any solution one holds
o Gg = I, — Gy is anti-Hurwitz and d(s) = €% is a linear dilation in R",
o the matrix Ag = A+ BKy is nilpotent for Ky = Yy(I, — Go) ™! and Aod(s) = e~5d(s)Ao;

2) the following LMI has a solution X € R™", Y € R™*"::
AcX+XAg+BY +Y BT+ Gy X+XG] =0, GyX+XGJ =0, X=XT =0, (4)
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If a pair {A, B} is controllable then
1) the linear algebraic equation
AGy— GoA+BYy=A, GyB=0, YyeR™" GygeR™" (3)

always has solutions and for any solution one holds
o Gg = I, — Gy is anti-Hurwitz and d(s) = €% is a linear dilation in R",
o the matrix Ag = A+ BKy is nilpotent for Ky = Yy(I, — Go) ™! and Aod(s) = e~5d(s)Ao;

2) the following LMI has a solution X € R™", Y € R™*"::
AcX+XAg+BY +Y BT+ Gy X+XG] =0, GyX+XGJ =0, X=XT =0, (4)

3) the canonical homogeneous norm || - ||4 induced by || x| =V xTX~1x is

@ a Lyapunov function of the finite-time stable system (1) with g = 0 the control
u(x) = Kox + Kd(—In||x]|a)x, K=vyx1 (5)
o the exact settling time function of the system (1), (5): %”X”d = —1 for x # 0;
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If a pair {A, B} is controllable then
1) the linear algebraic equation
AGy— GoA+BYy=A, GyB=0, YyeR™" GygeR™" (3)

always has solutions and for any solution one holds
o Gg = I, — Gy is anti-Hurwitz and d(s) = €% is a linear dilation in R",
o the matrix Ag = A+ BKy is nilpotent for Ky = Yy(I, — Go) ™! and Aod(s) = e~5d(s)Ao;

2) the following LMI has a solution X € R™", Y € R™*"::
AcX+XAg+BY +Y BT+ Gy X+XG] =0, GyX+XGJ =0, X=XT =0, (4)

3) the canonical homogeneous norm || - ||4 induced by || x| =V xTX~1x is

@ a Lyapunov function of the finite-time stable system (1) with g = 0 the control
u(x) = Kox + Kd(—In||x]|a)x, K=vyx1 (5)
o the exact settling time function of the system (1), (5): %”X”d = —1 for x # 0;
4) x = 0 is the only sliding (discontinuity) set and u € C®°(R"\{0}, R™) is bounded:
lullrm <'[[Kol| - [Ix]] + | K]]
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A sketch of the proof

o If Gg=1,— Gop,d(s) = e5Cd then Ag = A+ BKj is nilpotent and
Aod(s) = e °d(s)Ao, d(s)B=¢e°B

@ ||x||4 is a Lyapunov and the settling-time function, simultaneously:

9llxllg
ox x

d _ xTd" (= In|[x]la)X"d(=In [ x[la) —1g(_
dt“X”d - HXdeTdT(flnHX||d)X_1Gdd(f|nHde)x (AO + BYX d( In HXHd))X

~(GgX+XGJ )

_ X (in x| XA X+ XA +BY +Y T BT )x (- in [xa)x
<TdT (= Inxa)XH(GaX + XGg )X~1d" (< In x]a)x

=0
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Characterization of uncertainties

Corollary

Let u: IR” — IR™ be defined as in the Main Theorem and a locally measurable locally
bounded function g : R X R” — IR" satisfy the following inequality

x"d" (= In||x[la)X"d(~In ||x]la)g (t.x)

= 1, 6
o Il T R X G mliax < (6)

then the origin of the system
% = Ax+ Bu(x) +g(t,x), t>0 (7)

is globally uniformly finite-time stable and

dle < 14y x£0

Remark on rejection of bounded matched perturbation

47 min

For g(t,x) = Bgo(t,x) (6) holds if gg BT X 1Bgg < A2, (X 12GyXx1/2 4+ X1/2G] X~1/2)

y
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"Upgrading” Liner Feedback to Homogeneous SMC

x = Ax + Bu, u= Kx is already given

Note: a==1 = u=Kx a=0,B=+0c0 = u=Kox+(K—Kop)d(—In|x|q)x
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"Upgrading” Liner Feedback to Homogeneous SMC

x = Ax + Bu, u= Kx is already given

Algorithm

1 Find the matrices Ky € R™*" and Gg as in the Main Theorem.
2 Find a symmetric matrix P € R"*" such that

(A+BK)TP+ P(A+ BK) <0,
PG4+ Gy P =0, P>0

Note: a==1 = u=Kx a=0,B=+0c0 = u=Kox+(K—Kop)d(—In|x|q)x
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"Upgrading” Liner Feedback to Homogeneous SMC

x = Ax + Bu, u= Kx is already given

Algorithm
1 Find the matrices Ky € R™*" and Gg as in the Main Theorem.
2 Find a symmetric matrix P € R"*" such that

(A+BK)TP+ P(A+ BK) <0,
PG4+ Gy P =0, P>0

3 Define the control as follows
u = Kox + (K — Ko)d(— Insat, g||x||la)x

a if 0<p<a,
where ||x||¢ is induced by [|x|| = VxT Px and sat, g(0) = ¢ p if a<p<$B,

g if p>B.
Note: a==1 = u=Kx x=0,B=+0c0 = u=Kox+(K—Kop)d(—In|x|q)x
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5. Control Experiment
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List of control experiments

@ Rotary Inverted Pendulum System
Cruz-Ortiz, Ballesteros, Polyakov, Efimov, Chairez, Poznyak, IEEE TIE, 2021
Institutions: Inria, France+CINVESTAV, Mexico

@ Quadrotor Control
Wang, Polyakov, Zheng, ICRA 2020
Institution: Inria, France

@ Two Rotor System
Zimenko, Polyakov, Efimov, Perruquetti, IEEE TAC, 2020
Institutions: Inria, France + ITMO University, Russia

@ Omni-Directional Mobile Robot
Zhou, Rios, Mera, Zheng, Polyakov, in preparation
Institution: Inria, France + TechLaguna, Mexco
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TM)

Homogeneous Quadrotor Control (QDrone of Qunaser

e f1,f, f3, fy are propellers thrusts (control inputs)
e 0,¢, ¢ are yaw, pitch and roll angles
e (x,y,z) is position of quadrotor

Results of "upgrade” are shown in http://researchers.lille.inria.fr/~polyakov/drone.mp4
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@ The homogeneity is a dilation symmetry known since 18th century.

Potential advantages of homogeneous control systems vs linear:

o faster convergence
o better robustness
e smaller overshoot (no " peaking” effect)

The generalized homogeneity is useful for analysis of high-order sliding mode control
systems [Levant 2003, Orlov 2005, Moreno 2010,...]

@ The generalized homogeneity can be utilized for sliding mode control design as well!
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Thank you very much for your attention

Andrey Polyakov

Generalized
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